×
10.11.2013
216.012.7f92

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью. Сущность: в сетях среднего напряжения при возникновении ОЗЗ возникает переходный процесс разряда емкости поврежденной фазы на землю. Расстояние от шин, питающих линию электропередачи, до места однофазного замыкания на землю определяют по суммарной емкости нулевой последовательности всех линий, подключенных к шинам, по значению мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, по погонному индуктивному сопротивлению нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, по скорости нарастания напряжения нулевой последовательности после возникновения однофазного замыкания на землю. Технический результат: повышение точности. 2 ил.
Основные результаты: Способ определения дальности до однофазного замыкания на землю в линиях электропередачи путем одностороннего измерения напряжений и токов доаварийного и аварийного режимов, отличающийся тем, что по суммарной емкости нулевой последовательности всех линий, подключенных к шинам, по значению мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, по погонному индуктивному сопротивлению нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, по скорости нарастания напряжения нулевой последовательности после возникновения однофазного замыкания на землю определяют расстояние от шин, питающих линию электропередачи, до места однофазного замыкания на землю.

Предлагаемое изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью.

Известен «Способ определения место и характера повреждения линии электропередачи с использованием ее моделей», который заключается в том, что выделяют напряжения и токи основных гармоник, подают напряжения основных гармоник на входы моделей, измеряют токи на указанных входах и сравнивают их с выделенными токами, подключают к каждой модели комплексную нагрузку в месте предполагаемого повреждения, устанавливают активные и реактивные проводимости комплексных нагрузок такими, чтобы токи основных гармоник на входах моделей и выделенных токов линии совпали, определяют углы комплексных нагрузок, выбирают нагрузку с нулевым углом и принимают, что место и характер повреждения соответствуют месту подключения указанной нагрузки и величинам ее активных проводимостей (Лямец Ю.Я., Антонов В.И., Ефремов В.А., Нудельман Г.С, Подшивалин Н.В. Патент РФ №RU 2033622, МПК G01R 31/11, Н02Н 3/28, 20.04.1995).

Известен «Способ определения места повреждения на воздушных линиях электропередачи», взятый за прототип, который заключается в том, что по измеренным фазным токам и напряжениям в момент короткого замыкания и току нагрузки в предаварийном режиме при помощи телеграфных уравнений получают приближенное расстояние до места повреждения. Далее посредством итерационного процесса, меняя переходное сопротивление в месте повреждения, учитывая поперечные емкости линии, волновые процессы и критерий того, что мнимая часть расстояния до места повреждения стремится к нулю, уточняют расстояние до места повреждения (Висящев А.Н., Устинов А.А. Патент РФ №RU 2426998, МПК G01R 31/08, 20.11.2009).

Недостатки обоих способов связаны с тем, что для определения места повреждения используются напряжения и токи, связанные с промышленной частотой 50 Гц. Рабочие частоты данного метода малы, что приводит к малой точности данного метода. Кроме того, основными характеристиками модели являются сопротивления линии электропередачи, и переходное сопротивление места повреждения. При этом величина переходного сопротивления места повреждения не известна, и она является источником погрешностей. Кроме того, измерительные трансформаторы промышленной частоты 50 Гц имеют большие угловые погрешности (угловые погрешности порядка 60° для трансформаторов тока нулевой последовательности типа ТЗЛМ и ТЗРЛ), что также является источником погрешности.

Задача изобретения заключается в повышении точности определения места повреждения линии электропередачи, за счет того, что в качестве исходных сигналов в предлагаемом способе используют сигналы переходного процесса, которые возникают при однофазном замыкании на землю.

Технический результат достигается тем, что в способе определения дальности до однофазного замыкания на землю в линиях электропередачи путем одностороннего измерения напряжений и токов доаварийного и аварийного режимов, согласно заявляемому изобретению, по суммарной емкости нулевой последовательности всех линий, подключенных к шинам, по значению мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, по погонному индуктивному сопротивлению нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, по скорости нарастания напряжения нулевой последовательности после возникновения однофазного замыкания на землю - определяют расстояние от шин, питающих линию электропередачи, до места однофазного замыкания на землю.

Таким образом, для определения расстояния от шин, питающих линию электропередачи, до места однофазного замыкания на землю определяют суммарную емкость нулевой последовательности всех линий, подключенных к шинам, значение мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, погонное индуктивное сопротивление нулевой последовательности линии электропередачи, скорость нарастания напряжения нулевой последовательности на поврежденной линии после возникновения однофазного замыкания на землю.

Сущность изобретения поясняется чертежами, где на фиг.1 изображена общая схема подстанции, на линии которой происходит ОЗЗ, на фиг.2 изображена упрощенная схема переходного процесса.

При повреждении линии электропередачи, скорость возникновения дугового высоковольтного разряда в месте повреждения весьма высока, обычно указывают величину времени возникновения τ<100 нс. Благодаря весьма крутому фронту изменения напряжения в месте повреждения, генерируются высокие частоты переходных процессов F<(1/τ)~10 МГц. Таким образом, частоты переходных процессов значительно больше промышленной частоты 50 Гц.

Это, во-первых, повышает точность определения места повреждения в предлагаемом способе.

Во-вторых, большая разность частот переходных процессов F<10 МГц и промышленной частоты 50 Гц позволяет достаточно легко выделить сигналы переходных процессов на фоне промышленной частоты 50 Гц.

Рассмотрим весь переходный процесс, начиная с момента непосредственно до повреждения. Трехфазный источник питания 1 (фиг.1) подключен к шинам 2 (в однолинейной модели). От шин 2 отходят неповрежденные линии электропередачи 3, ток нулевой последовательности на линиях измеряется трансформаторами 4. От этих же шин 2 отходит линия электропередачи 5, на которой произошло повреждение - OЗЗ 6. Провода поврежденной линии электропередачи проходят через трансформатор тока 7, который измеряет ток Iо. В исходном состоянии (до повреждения, до ОЗЗ) напряжение на нейтрали источника питания 1 равно нулю (напряжение нулевой последовательности Uo=0). Напряжения на шинах 2 контролируются трансформатором напряжения 8, который выдает фазные напряжения 9 и напряжение нулевой последовательности 10.

При замыкании на землю одной фазы поврежденной линии электропередачи 5 (например, фазы С) происходит разряд суммарной емкости Со нулевой последовательности всех линий, подключенных к шинам этой фазы. Обычно основной вклад в сопротивление нулевой последовательности линии вносит индуктивное сопротивление линии. Поэтому упрощенную схему (фиг.2) переходного процесса можно представить в виде разряда суммарной емкости 11 Со нулевой последовательности всех линий, подключенных к шинам, через индуктивность нулевой последовательности 12 Lo поврежденной линии на отрезке от шин 2 до точки повреждения, до ОЗЗ 6.

В исходном состоянии, до повреждения, емкость 11 Со заряжена до напряжения Uc, которое было на поврежденной фазе С в момент повреждения. При этом ток разряда Iо регистрирует трансформатор тока 7.

Индуктивность нулевой последовательности 12 Lo пропорционально длине Д поврежденной линии на отрезке от шин 2 до точки повреждения, до ОЗЗ 6:

Lo=Д*Lпогонное, где: Lпогонное - погонное индуктивное сопротивление нулевой последовательности поврежденной линии.

При приложении напряжения Uc к индуктивности Lo ток Iо линейно нарастает со временем:

dIo/dt=Uc/Lo=Uc/(Д*Lпогонное), где: dIo/dt - скорость нарастания тока Iо.

Поэтому, измерив величину скорости dIo/dt сразу после возникновения ОЗЗ, зная напряжение Uc в момент повреждения и параметр линии L погонное, - определяем дальность Д от шин 2 до места повреждения 6:

Д=Uc/(dIo/dt*L погонное).

В общем случае, закон изменения тока dIo/dt будет более сложный, но в любом случае, измерив скорость нарастания тока dIo/dt со временем, можно определить дальность Д от шин до места повреждения.

Ток нулевой последовательности 1о изменяет напряжение Uo на шинах 2:

dUo/dt=Io/Co.

Поэтому скорость нарастания тока dIo/dt равна:

dIo/dt=Co*(d2Uo/dt2).

Соответственно, по скорости нарастания напряжения нулевой последовательности Uo на шинах 2, получим дальность Д от шин 2 до места повреждения 6:

Д=Uc/[(d2Uo/dt2)*Со*Lпогонное].

Полный разряд емкости Со 11 на индуктивность Lo 12 приводит к перекачке энергии заряженного конденсатора Со 11 в энергию тока Iо, mах (максимальное значение тока нулевой последовательности) на индуктивности Lo 12:

Io, max2*Lo=Uc2*Co

Поэтому, замерив Io, max переходного процесса, определяем Lo=Д*Lпогонное, и, соответственно, находим дальность до OЗЗ:

Д=Uc2*Co/(Io, max2* Lпогонное).

Максимальное значение тока нулевой последовательности Io,max определим из максимальной величины скорости нарастания напряжения dUo/dt,max; и, соответственно, из скорости нарастания напряжения нулевой последовательности Uo на шинах 2, находим дальность до OЗЗ:

Д=Uc2/[(dUo/dt, max)2* Со*Lпогонное]

Таким образом, предлагаемый способ определения дальности до однофазного замыкания на землю в линиях электропередачи имеет следующие особенности:

1. Контролируется напряжение нулевой последовательности Uo на шинах.

2. Контролируется напряжение каждой фазы (А, В, С) на шинах.

3. По данным контрольным величинам, по суммарной емкости Со нулевой последовательности всех линий, подключенных к шинам, и по параметрам поврежденной линии - определяется дальность до ОЗЗ.

4. В нормальном режиме напряжение нулевой последовательности Uo на шинах Uo~0, поэтому поврежденный режим с ОЗЗ (когда Uo начинает изменяться) легко отличим от нормального режима работы линии.

5. Особенностью предлагаемого способа является то, что необходимо контролировать только напряжения на шинах, питающих отходящие линии, и нет необходимости контролировать большое число отходящих линий (ток нулевой последовательности на этих линиях).

6. Длительность переходного процесса при ОЗЗ весьма мала: меньше миллисекунды. Поэтому для записи переходного процесса (скорости изменения напряжения нулевой последовательности Uo на шинах) требуется высокая частота дискретизации (сотни тысяч измерений в секунду).

Способ определения дальности до однофазного замыкания на землю в линиях электропередачи путем одностороннего измерения напряжений и токов доаварийного и аварийного режимов, отличающийся тем, что по суммарной емкости нулевой последовательности всех линий, подключенных к шинам, по значению мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, по погонному индуктивному сопротивлению нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, по скорости нарастания напряжения нулевой последовательности после возникновения однофазного замыкания на землю определяют расстояние от шин, питающих линию электропередачи, до места однофазного замыкания на землю.
СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 166.
10.09.2015
№216.013.79ad

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и системы...
Тип: Изобретение
Номер охранного документа: 0002562738
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79b0

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов, высокопотенциальной теплоты пара...
Тип: Изобретение
Номер охранного документа: 0002562741
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79b2

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ включает использование конденсационной установки, имеющей конденсатор паровой турбины с производственным отбором пара и систему маслоснабжения ее подшипников с маслоохладителем, и дополнительное осуществление утилизации высокопотенциальной теплоты пара производственного отбора,...
Тип: Изобретение
Номер охранного документа: 0002562743
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79b4

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ включает утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара и утилизацию высокопотенциальной теплоты пара производственного...
Тип: Изобретение
Номер охранного документа: 0002562745
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a04

Способ разделения потока жидкости

Изобретение относится к машиностроению, а именно к способам разделения потока жидкости. В способе разделения потока жидкость к зубчатому зацеплению подводят через общий входной канал, образованный сквозными каналами 13 и 14, выполненными в каждой рабочей и разделительной секции одной части...
Тип: Изобретение
Номер охранного документа: 0002562825
Дата охранного документа: 10.09.2015
27.09.2015
№216.013.7f73

Способ экспресс тестирования знаний обучаемых

Изобретение относится к области технологий компьютерного тестирования при обучении и подготовке специалистов для различных отраслей знаний и специальностей. Правильные варианты ответов и номер тестируемого отмечаются тестируемыми путем закрашивания соответствующих белых полей. Правильные...
Тип: Изобретение
Номер охранного документа: 0002564224
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.8065

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты обратной сетевой воды осуществляют при помощи теплового двигателя с замкнутым...
Тип: Изобретение
Номер охранного документа: 0002564466
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.8069

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной...
Тип: Изобретение
Номер охранного документа: 0002564470
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.817f

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию низкопотенциальной теплоты обратной сетевой воды осуществляют при помощи теплового двигателя с...
Тип: Изобретение
Номер охранного документа: 0002564748
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.86ea

Способ получения адсорбента

Изобретение относится к способам получения адсорбента на основе цеолитсодержащей породы. Цеолитсодержащую породу размалывают и перемешивают с выгорающей добавкой, связующим и с водным раствором пластификатора и формируют гранулы. Гранулы подвергают сушке, термообработке, гидротермальной...
Тип: Изобретение
Номер охранного документа: 0002566141
Дата охранного документа: 20.10.2015
Показаны записи 111-120 из 184.
20.08.2015
№216.013.717c

Способ утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии. Осуществляют подачу отработавшего пара...
Тип: Изобретение
Номер охранного документа: 0002560622
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.717e

Способ утилизации теплоты тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации ее теплоты для дополнительной выработки электрической энергии. Осуществляют подачу отработавшего пара из паровой турбины в паровое пространство конденсатора, в котором...
Тип: Изобретение
Номер охранного документа: 0002560624
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.78c5

Способ работы тепловой электрической станции

Предлагаемое изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС в зимний период времени. Способ работы тепловой электрической станции, по которому...
Тип: Изобретение
Номер охранного документа: 0002562506
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.797f

Способ определения частоты трехфазного напряжения

Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях. Согласно способу для определения частоты F используют цифровые сигналы всех...
Тип: Изобретение
Номер охранного документа: 0002562692
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.799f

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов и низкопотенциальной теплоты системы...
Тип: Изобретение
Номер охранного документа: 0002562724
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79a0

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ включает использование конденсационной установки, имеющей конденсатор паровой турбины с производственным отбором пара, и дополнительное осуществление утилизации высокопотенциальной теплоты пара производственного отбора. При этом утилизацию низкопотенциальной теплоты пара отопительных...
Тип: Изобретение
Номер охранного документа: 0002562725
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79a2

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ относится к паровой турбине с маслоохладителем и системой маслоснабжения подшипников. При этом используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара...
Тип: Изобретение
Номер охранного документа: 0002562727
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79a3

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ включает утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара. При этом указанные утилизации осуществляют при помощи теплового двигателя с замкнутым...
Тип: Изобретение
Номер охранного документа: 0002562728
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79a5

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины, высокопотенциальной...
Тип: Изобретение
Номер охранного документа: 0002562730
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79a6

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ заключается в том, что отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар...
Тип: Изобретение
Номер охранного документа: 0002562731
Дата охранного документа: 10.09.2015
+ добавить свой РИД