×
10.11.2013
216.012.7f60

Результат интеллектуальной деятельности: ТЕРМОЭЛЕКТРИЧЕСКИЙ СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КАЧЕСТВА ПОВЕРХНОСТНОГО СЛОЯ МЕТАЛЛА

Вид РИД

Изобретение

Аннотация: Использование: для неразрушающего контроля качества поверхностного слоя металла. Сущность: заключается в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую па эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталоном, о качестве поверхностного слоя судят по ее величине, при этом сначала измеряют температуру контролируемого изделия, используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталоном оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона, после чего измеряют разностную термоЭДС. Технический результат: устранение влияния температуры контролируемого изделия на величину разностной термоЭДС. 1 ил., 2 табл.
Основные результаты: Термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла, заключающийся в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую - на эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталоном, о качестве поверхностного слоя судят по ее величине, отличающийся тем, что сначала измеряют температуру контролируемого изделия, используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталоном, оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона, после чего измеряют разностную термоЭДС.

Предлагаемое изобретение относится к области неразрушающего контроля и может быть использовано для контроля физико-химических свойств поверхностных слоев металла контролируемого изделие, подвергнутого термической или химико-термической обработке, а также для выявления областей пластической деформации, предшествующей разрушению, необходимых для выявления остаточного ресурса.

Известен способ неразрушающего контроля качества поверхностного слоя металла (SU 670868 A1, МКП 5 G01N 25/32, опубл. 30.06.1979 г.), выбранный в качестве прототипа, заключающийся в измерении термоЭДС, возникающий при контакте нагреваемых электродов с контролируемым изделием, и сопоставлении с термоЭДС эталонного образца. Используют две группы одинаково нагретых электродов из одного материала, устанавливаемых на обработанную и необработанную поверхность детали, а о качестве поверхностного слоя судят по величине суммарной термоЭДС электродов.

В этом способе контроля в качестве холодного электрода выступает контролируемое изделие. Поэтому если его температура изменяется при разных условиях контроля, например, в первый раз изделие контролируют при положительной температуре внешней окружающей среды, а второй раз - при отрицательной температуре, то при одинаковом качестве поверхностного слоя величина термоЭДС будет различной.

Недостатком этого способа является влияние на величину разностной термоЭДС температуры контролируемого изделия, в результате этого нельзя однозначно судить о качестве поверхностного слоя.

Задачей изобретения является устранение влияния температуры контролируемого изделия на величину разностной термоЭДС.

Поставленная задача решена за счет того, что в термоэлектрическом способе неразрушающего контроля качества поверхностного слоя металла, так же как в прототипе, используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую на эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталонным образцом, а о качестве поверхностного слоя судят по ее величине.

Согласно изобретению сначала измеряют температуру контролируемого изделия,

используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталонным образцом, оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона.

Известно, что абсолютная термоЭДС металлов и сплавов зависит от разности температур между нагреваемым и холодным электродами [В.Г. Лившиц, В.С. Крапошин, Я.Л. Линецкий. Физические свойства металлов и сплавов. М.: Металлургия, 1980, стр.232, формула 235)]:

e=a+2bΔТ+3cΔТ2,

где a, b, c - коэффициенты уравнения;

ΔТ - разность температур между нагреваемым и холодным электродами.

Разностная термоЭДС, используемая в прототипе, определяется выражением:

e1-e2=(a1-a2)+2ΔT(b1-b2)+3ΔT2(c1-c2),

где а1, b1, c1 - коэффициенты уравнения, определяющего термоЭДС контролируемого изделия;

a2, b2, c2 - коэффициенты уравнения, определяющего термоЭДС эталонного образца,

ΔТ - разность температур между нагреваемым и холодным электродами.

Таким образом, разностная термоЭДС будет оставаться неизменной для одного контролируемого изделия, если параметры контроля неизменны, то есть разность температур между нагреваемым и холодным электродами постоянна.

На фиг.1 представлена схема устройства для осуществления предлагаемого способа.

В таблице 1 приведены значения разностной термоЭДС, измеренные предлагаемым способом, от деформации при различных температурах контролируемого изделия.

В таблице 2 приведены результаты измерения термоЭДС по способу прототипу.

Заявляемый способ осуществлен с помощью устройства для контроля качества поверхностного слоя металла (фиг.1), содержащего последовательно соединенные первую группу нагреваемых электродов 1, эталонный образец 2, контролируемое изделие 3, вторую группу нагреваемых электродов 4. Нагреватель 5 размещен с возможностью воздействия на первую 1 и вторую 4 группы нагреваемых электродов. Входы дифференциального усилителя 6 подключены к первой и второй группам нагреваемых электродов 1 и 4. Выход дифференциального усилителя 6 подключен к аналого-цифровому преобразователю 7 (АЦП). Выход аналого-цифрового преобразователя 7 (АЦП) подключен к первому входу микроконтроллера 8, к первому выходу которого подключен индикатор 9. Датчик температуры 10 подключен ко второму входу микроконтроллера с возможностью теплового контакта с контролируемым изделием 3. Второй выход микроконтроллера подключен r блоку управления нагревателем 11. Выход блока управления нагревателем 11 подключен к нагревателю 5.

Первая и вторая группы нагреваемых электродов 1 и 4, выполнены из одного материала, например, из меди. Нагреватель 5 может быть стандартным мощностью 25 ватт. Дифференциальный усилитель 6 должен быть с малым дрейфом напряжения смещения нуля, например, К140УД17. Аналого-цифровой преобразователь 7 (АЦП) может быть стандартным, например, К1113ПВ1, микроконтроллер 8 может быть стандартным, например, ATMEGA 16. Индикатор 9 может быть выполнен на светодиодах АЛС324А. Датчик температуры 10 может быть стандартным, например, термопара хромель-алюмель. Блок управления нагревателем 11 может быть выполнен на транзисторе, например, КТ 818Г. Эталонный образец 2 должен быть изготовлен из того же материала и той же плавки, что и контролируемое изделие 3.

Предлагаемым способом был проведен контроль качества поверхностного слоя металла девяти контролируемых изделий из трех марок сталей 12Х18Н10Т; 0.8ПС-5 и СТ3, по три образца из каждой марки.

Предварительно каждое контролируемое изделие 3 было подвергнуто разной степени пластической деформации на разрывной машине с компьютерным управлением. Для сравнения с результатами, полученными заявляемым способом, величину пластической деформации (абсолютное удлинение) измеряли штангенциркулем.

Контроль пластической деформации был проведен при трех значениях температуры каждого контролируемого изделия 3 и каждого эталонного образца 2, аналогично, как и по способу прототипу.

Вначале термоЭДС поверхностного слоя контролируемого изделия 3 измеряли при температуре +25°C. Процедуру контроля проводили следующим образом: вначале с помощью датчика температуры 10 измеряли температуру контролируемого изделия 3, и передавали данные в микроконтроллер 8, сигнал которого поступал в блок управления нагревателем 11, который устанавливал такую температуру нагревателя 5, чтобы разность температур между группами нагреваемых электродов 1, 4 и контролируемым изделием 3 и эталонным образцом 2, поддерживалась одинаковой. Нагреватель 5 воздействовал на группы нагреваемых электродов 1 и 4. Длительность воздействия контролировали микроконтроллером 8, и как только температура групп нагреваемых электродов 1 и 4 достигала требуемого значения (в примере разность температур была задана в 130°C), микроконтроллер 8 выдавал сигнал на индикатор 9, включая его для отображения величины измеренной термоЭДС. Между первой группой нагреваемых электродов 1 и эталонным образцом 2, изготовленным из той же марки стали и той же плавки, что и контролируемое изделие 3, возникала термоЭДС 1, которая поступала на первый вход дифференциального усилителя 6. Между второй группой нагреваемых электродов 4 и контролируемым изделием 3 также возникала вторая термоЭДС 2, которая поступала на второй вход дифференциального усилителя 6. Дифференциальный усилитель 6 вычитал термоЭДС 1 из термоЭДС 2. Разностная термоЭДС усиливалась дифференциальным усилителем 6 и поступала в аналого-цифровой преобразователь 7 (АЦП), который преобразовывал аналоговую величину в цифровой код, который поступал в микроконтроллер 8. Микроконтроллер 8 преобразовывал двоичный код аналого-цифрового преобразователя 7 (АЦП) в семисегментный код. Этот код поступал в индикатор 9, который отображал величину термоЭДС.

Затем контролируемое изделие 3 и эталонный образец 2 охлаждали до 0°C и процедуру измерения повторяли. На третьем этапе контролируемое изделие 3 и эталонный образец 2 охлаждали до -25°C и проводили измерения термоЭДС.

Результаты контроля приведены в таблице 1, из которой видно, что использование заявляемого способа позволяет однозначно определить одинаковую величину пластической деформации поверхностного слоя металла (0,6 мм, 1,9 мм, 3,5 мм) при изменении температуры контролируемого изделия.

Для сравнения в таблице 2 приведены результаты измерения термоЭДС по способу прототипу. Контролируемое изделие было изготовлено из стали СТ3 и предварительно было подвергнуто деформации в 3,3 мм. Деформацию (абсолютное удлинение) контролируемого образца измерили штангенциркулем. Эталонный образец был изготовлен из стали СТ3 той же плавки, что и контролируемое изделие. Из таблицы 2 видно, что при изменении температуры контролируемого изделия изменяется величина термоЭДС, в результате этого делается вывод о разной степени пластической деформации поверхностного слоя, что не соответствует действительности.

Таким образом, предлагаемый способ позволяет устранить влияние сезонных или других колебаний температуры контролируемого изделия и эталонного образца на величину разностной термоЭДС.

Таблица 1
Деформация, мм Дифференциальная термоЭДС, мВ
Сталь 12Х18Н10Т Сталь 0,8ПС-5 Сталь 3
Температура Температура Температура
-25°C 0°C +25°C -25°C 0°C +25°C -25°C 0°C +25°C
0 0±0,5 0±0,5 0±0,5 0±0,5 0±0,5 0±0,5 0±0,5 0±0,5 0±0,5
0,6 2±0,5 2±0,5 2±0,5 2±0,5 2±0,5 2±0,5 3±0,5 3±0,5 3±0,5
1,9 3±0,5 3±0,5 3±0,5 5±0,5 5±0,5 5±0,5 5±0,5 5±0,5 5±0,5
3,5 6±0,5 6±0,5 6±0,5 7±0,5 7±0,5 7±0,5 9±0,5 9±0,5 9±0,5

Таблица 2
Температура, °С Дифференциальная термоЭДС, мВ
-25 21±0,5
0 15±0,5
+25 9±0,5

Термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла, заключающийся в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую - на эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталоном, о качестве поверхностного слоя судят по ее величине, отличающийся тем, что сначала измеряют температуру контролируемого изделия, используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталоном, оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона, после чего измеряют разностную термоЭДС.
ТЕРМОЭЛЕКТРИЧЕСКИЙ СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КАЧЕСТВА ПОВЕРХНОСТНОГО СЛОЯ МЕТАЛЛА
Источник поступления информации: Роспатент

Показаны записи 11-11 из 11.
26.08.2017
№217.015.de0b

Устройство для неразрушающего контроля шероховатости поверхностного слоя металла

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля шероховатости поверхностного слоя металла контролируемого изделия. Устройство для неразрушающего контроля шероховатости поверхностного слоя металла содержит нагреватель с возможностью теплового...
Тип: Изобретение
Номер охранного документа: 0002624787
Дата охранного документа: 06.07.2017
Показаны записи 51-60 из 234.
20.10.2013
№216.012.75ac

Способ управления погружением подводного объекта и устройство для его осуществления

Группа изобретений относится к автоматическому управлению подводными объектами с использованием судовых спускоподъемных устройств. Способ заключается в изменении длины частей гибкой механической связи между подводным объектом и судном-носителем. Основное перемещение подводного объекта по...
Тип: Изобретение
Номер охранного документа: 0002495784
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.78a8

Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации

Изобретение относится к области промысловой подготовки нефти. Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации, включающий закачку реагента-деэмульгатора в трубопровод, подачу на вход первого сепаратора воды, нагретой до 100°С тепловой энергией, выделяемой...
Тип: Изобретение
Номер охранного документа: 0002496550
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78bc

Способ получения сорбента для очистки воды от ионов железа и марганца

Изобретение относится к получению неорганических сорбентов. Способ получения сорбента включает обработку диоксида титана, состоящего из кристаллических фаз анатаза и рутила, ультразвуком в 0,2 н. растворе NaOH или НСl в течение 10 мин. Сорбент промывают декантацией не менее 3 раз и сушат при...
Тип: Изобретение
Номер охранного документа: 0002496570
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.79b5

Травитель для титана

Изобретение предназначено для подготовки поверхности титана перед нанесением биоактивных покрытий на поверхность имплантата. Травитель для титановых имплантатов содержит фосфорную кислоту, окислитель и воду при следующих количественных соотношениях компонентов, мас.%: фосфорная кислота 23-65,...
Тип: Изобретение
Номер охранного документа: 0002496819
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7eed

Устройство для индивидуального теплоснабжения

Изобретение относится к теплоэнергетике, а именно к устройствам газификации твердого топлива, используемым для обеспечения потребителя теплом и горячим водоснабжением. Устройство содержит бункер для твердого топлива с расположенными в нем колосниковой решеткой и загрузочным люком,...
Тип: Изобретение
Номер охранного документа: 0002498166
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f61

Способ определения содержания водорода в титане

Изобретение может быть использовано для контроля материалов, изначально свободных и защищенных от водорода для космических аппаратов, активных зон водоохлаждаемых ядерных энергетических установок (ЯЭУ), вентиляторов двигателей самолетов, дисков турбин высокого и низкого давления, их планетарных...
Тип: Изобретение
Номер охранного документа: 0002498282
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f68

Способ определения платины в рудах по пику селективного электроокисления сu из интерметаллического соединения ptcu методом инверсионной вольтамперометрии

Изобретение может быть использовано в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратов и пород. Способ определения платины в рудах по пику селективного электроокисления Cu из интерметаллического соединения PtCu методом инверсионной...
Тип: Изобретение
Номер охранного документа: 0002498289
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f69

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из rhcu

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ). Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику...
Тип: Изобретение
Номер охранного документа: 0002498290
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f8b

Способ определения наличия гармонических составляющих и их частот в дискретных сигналах

Изобретение относится к области цифровой обработки сигналов и может быть использовано для определения наличия гармонических составляющих и их частот в сигналах различного происхождения при решении задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа....
Тип: Изобретение
Номер охранного документа: 0002498324
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.8065

Коаксиальный магнитоплазменный ускоритель

Изобретение относится к плазменной технике и может быть использовано для ускорения плазмы до гиперскоростей и получения нанодисперсных порошков титана и меди. Коаксиальный магнитоплазменный ускоритель содержит соленоид, цилиндрический титановый ствол, цепь питания. Титановый ствол содержит...
Тип: Изобретение
Номер охранного документа: 0002498542
Дата охранного документа: 10.11.2013
+ добавить свой РИД