×
10.11.2013
216.012.7f5e

Результат интеллектуальной деятельности: СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ВЕЩЕСТВА

Вид РИД

Изобретение

№ охранного документа
0002498279
Дата охранного документа
10.11.2013
Аннотация: Предложен способ поиска и обнаружения наркотиков и взрывчатых веществ, находящихся в неметаллической оболочке и в укрывающих средах. Техническим результатом является повышение точности определения местоположения наркотического вещества. В веществе возбуждают магнитный резонанс с последующим измерением частоты отклика, по наличию которого делают заключение о наличии данного вещества. Предполагаемое место закладки вещества зондируют плоскополяризованным сигналом. Сигналы, отраженные от наркотического вещества, имеют правую и левую круговую поляризацию. Сигнал с правой круговой поляризацией дифференцируют по времени и перемножают с зондирующим сигналом, формируют производную корреляционной функции и определяют расстояние до вещества. Диаграммы направленности приемных антенн создают равносигнальную зону. Отраженные сигналы с правой и левой круговой поляризацией сравнивают по фазе, формируют управляющее напряжение, зависящее от степени и стороны отклонения направления на вещество от равносигнальной зоны, вращают антенный блок в горизонтальной плоскости, при этом фиксируют азимут на вещество и определяют его местоположение. 3 ил.
Основные результаты: Способ дистанционного обнаружения вещества с использованием дистанционного возбуждения электромагнитной волной магнитного резонанса в веществе и с последующим измерением частоты отклика, по наличию которого делают заключение о наличии данного вещества, при этом возбуждающий электромагнитный сигнал излучают на частоте, много большей частоты магнитного резонанса подлежащего обнаружению вещества, и модулируют излучаемый возбуждающий электромагнитный сигнал по поляризации на частоте магнитного резонанса, а отклик регистрируют на частоте модуляции, осуществляют электромагнитное зондирование предполагаемого места закладки наркотического вещества плоскополяризованным сигналом и прием сигналов с правой и левой круговой поляризацией, отраженных от наркотического вещества, находящегося в укрывающей среде, при этом отраженный сигнал с правой круговой поляризацией стробируют по времени, пропорциональному глубине залегания наркотического вещества, а отраженный сигнал с левой круговой поляризацией преобразуют по частоте с использованием напряжения гетеродина, выделяют напряжение промежуточной частоты, перемножают его с отраженным сигналом правой круговой поляризацией, выделяют гармоническое напряжение на стабильной частоте гетеродина, измеряют сдвиг фаз между отраженными сигналами с правой и левой круговой поляризацией на стабильной частоте гетеродина, сравнивают измеренное значение сдвига фаз с эталонным значением и по результату сравнения принимают решение о наличии наркотического вещества в укрывающей среде, отличающийся тем, что отраженный сигнал с правой круговой поляризацией дифференцируют по времени, перемножают с зондирующим сигналом, пропущенным через блок регулируемой задержки, выделяют низкочастотное напряжение, пропорциональное корреляционной функции , где τ - текущая временная задержка, усиливают его, воздействуют на управляющий вход блока регулируемой задержки и поддерживают водимую им задержку τ, равной нулю, что соответствует нулевому значению производной корреляционной функции , при этом фиксируют расстояние до наркотического вещества, приемные антенны размещают таким образом, чтобы их диаграммы направленности создавали равносигнальную зону, сравнивают по фазе отраженные сигналы с правой и левой круговой поляризацией, при несовпадении направления на наркотическое вещество с равносигнальной зоной формируют управляющее напряжение, амплитуда которого определяется степенью отклонения направления на наркотическое вещество от равносигнальной зоны, а полярность - стороной отклонения, воздействуют им на мотор, связанный через редуктор с антенным блоком, вращают антенный блок в горизонтальной плоскости до совпадения направления на наркотическое вещество с равносигнальной зоной, при этом фиксируют азимут на наркотическое вещество и определяют его местоположение.

Предлагаемый способ относится к физическим измерениям, а именно к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения наркотиков и взрывчатых веществ в составе предъявленных для исследования веществ, а также поляризационную селекцию и фазовый анализ для поиска и обнаружения наркотиков, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, чемоданах, дипломатах, сумках и т.п., и может найти применение в аэропортах, таможенных терминалах, блокпостах, автопарковках, железнодорожных вокзалах и т.п.

Известны способы дистанционного обнаружения вещества (патенты РФ №№2.128.832, 2.148.817, 2.150.105, 2.161.300, 2.165.104, 2.179.716, 2.185.614, 2.226.686, 2.244.942, 2.249.202, 2.308.734, 2.340.913; патенты США №№4.756.866, 5.986.455, 6.194.898, 6.392.408; патенты Великобритании №№2.159.626, 2.254.923, 2.289.344, 2.293.885; Гречишкин В.Д. и др. Локальный ЯКР в твердых телах. Успехи физических наук, 1993, т.163, №10; Дикарев В.И. Безопасность, защита и спасение человека. СПб, 2007, с.446-467 и др.).

Из известных способов наиболее близким к предлагаемому является «Способ дистанционного обнаружения вещества» (патент РФ №2.308.734, G01R 33/20, 2006), который и выбран в качестве прототипа.

Известный способ заключается в дистанционном возбуждении электромагнитной волной магнитного резонанса в веществе и с последующим измерением частоты отклика, при этом возбуждающий электромагнитный сигнал излучают на частоте, много большей частоты магнитного резонанса вещества, и модулируют излучаемый возбуждающий сигнал по поляризации на частоте магнитного резонанса, а отклик регистрируют на частоте модуляции. Электромагнитное зондирование осуществляют плоскополяризованным сигналом и прием сигналов с правой и левой круговой поляризацией, отраженных от наркотического вещества, при этом отраженный сигнал с правой круговой поляризацией стробируют по времени, пропорциональному глубине залегания наркотического вещества, а отраженный сигнал с левой круговой поляризацией преобразуют по частоте с использованием напряжения гетеродина, выделяют напряжение промежуточной частоты, перемножают его с отраженным сигналом с правой круговой поляризацией, выделяют гармоническое напряжение на стабильной частоте гетеродина, измеряют сдвиг фаз между отраженными сигналами с правой и левой круговой поляризацией на стабильной частоте гетеродина, сравнивают измеренное значение сдвига фаз с эталонным значением и по результату сравнения принимают решение о наличии наркотического вещества в укрывающей среде.

В известном способе направление на наркотическое вещество (азимут) определяется по максимуму диаграммы направленности рупорных антенн, у которых отсутствует ярко выраженная точка экстремума, что снижает точность определения азимута на наркотическое вещество. Равносигнальная зона, полученная в результате использования диаграмм направленности двух рупорных антенн, использует метод минимума, который позволяет повысить точность определения азимута на наркотическое вещество и осуществлять автоматическое слежение за перемещениями наркотического вещества.

Кроме того, известный способ не обеспечивает определение дальности до наркотического вещества.

Технической задачей изобретения является повышение точности определения местоположения наркотического вещества путем определения азимута и дальности, а также автоматического слежения за его перемещениями.

Поставленная задача решается тем, что согласно способу дистанционного обнаружения вещества с использованием дистанционного возбуждения электромагнитной волной магнитного резонанса в веществе и с последующим измерением частоты отклика, по наличию которого делают заключение о наличии данного вещества, при этом возбуждающий электромагнитный сигнал излучают на частоте, много большей частоты магнитного резонанса подлежащего обнаружению вещества, и модулируют излучаемый возбуждающий электромагнитный сигнал по поляризации на частоте магнитного резонанса, а отклик регистрируют на частоте модуляции, осуществляют электромагнитное зондирование предполагаемого места закладки наркотического вещества плоскополяризованным сигналом и прием сигналов с правой и левой круговой поляризацией, отраженных от наркотического вещества, находящегося в укрывающей среде, при этом отраженный сигнал с правой круговой поляризацией стробируют по времени, пропорциональном глубине залегания наркотического вещества, а отраженный сигнал с левой круговой поляризацией преобразуют по частоте с использованием напряжения гетеродина, выделяют напряжение промежуточной частоты, перемножают его с отраженным сигналом правой круговой поляризации, выделяют гармоническое напряжение на стабильной частоте гетеродина, измеряют сдвиг фаз между отраженными сигналами с правой и левой круговой поляризацией на стабильной частоте гетеродина, сравнивают измеренное значение сдвига фаз с эталонным значением и по результату сравнения принимают решение о наличии наркотического вещества в укрывающей среде, отличается от ближайшего аналога тем, что отраженный сигнал с правой круговой поляризацией дифференцируют по времени, перемножают с зондирующим сигналом, пропущенным через блок регулируемой задержки, выделяют низкочастотное напряжение, пропорциональное производной корреляционной функции , где τ - текущая временная задержка, усиливают его, воздействуют на управляющий вход блока регулируемой задержки и поддерживают вводимую им задержку τ, равной нулю, что соответствует нулевому значению производной корреляционной функции , при этом фиксируют расстояние до наркотического вещества, приемные антенны размещают таким образом, чтобы их диаграммы направленности создавали равносигнальную зону, сравнивают по фазе отраженные сигналы с правой и левой круговой поляризацией, при несовпадении направления на наркотическое вещество с равносигнальной зоной формируют управляющее напряжение, амплитуда которого определяется степенью отклонения направления на наркотическое вещество от равносигнальной зоны, а полярность - стороной отклонения, воздействуют им на мотор, связанный через редуктор с антенным блоком, вращают антенный блок в горизонтальной плоскости до совпадения направления на наркотическое вещество с равносигнальной зоной, при этом фиксируют азимут на наркотическое вещество и определяют его местоположение.

Структурная схема устройства, реализующего предлагаемый способ, представлена на фиг.1. Диаграммы направленности приемных антенн 5, 13 и равносигнальная зона показаны на фиг.2. Корреляционная функция R(τ) и ее производная изображены на фиг.3.

Устройство содержит последовательно включенные генератор 3 импульсов, управляющий вход которого соединен с первым выходом синхронизатора 4, передатчик 2, управляющий вход которого соединен с вторым выходом синхронизатора 4, и передающую антенну 1, последовательно включенные первую приемную антенну 5, первый приемник 6, управляющий вход которого соединен с третьим выходом синхронизатора 4, накопитель 7, управляющий вход которого соединен с третьим выходом синхронизатора 4, и блок регистрации 22, последовательно включенные вторую приемную антенну 13, второй приемник 14, управляющий вход которого соединен с третьим выходом синхронизатора 4, смеситель 15, второй вход которого соединен с выходом первого гетеродина 16, усилитель 17 промежуточной частоты, перемножитель 18, узкополосный фильтр 19, фазовый детектор 20, второй вход которого соединен с выходом первого гетеродина 16, и блок 21 сравнения, выход которого соединен с вторым входом блока 22 регистрации, последовательно подключенные к четвертому выходу синхронизатора 4 блок 11 временной задержки и ключ 12, второй вход которого соединен с выходом второго приемника 6, а выход подключен к второму входу перемножителя 18, последовательно подключенные к выходу первого приемника 6 фазовый детектор 29, второй вход которого соединен с выходом второго приемника 14, и мотор 30, связанный через редуктор 31 с антенным блоком 10.

Блок 11 временной задержки выполненный в виде коррелятора 33, состоящего из последовательно включенных перемножителя 24, первый вход которого через дифференциатор 23 соединен с выходом первого приемника 6, а второй вход которого через блок 27 регулируемой задержки соединен с выходом передатчика 2, фильтра 25 нижних частот, усилителя 26 и блока 27 регулируемой задержки, второй выход которого подключен к второму входу ключа 12 и к индикатору 28 дальности. К редуктору 31 подключен индикатор 32 азимута.

Передающая антенна 1, приемные антенны 5 и 13 образуют антенный блок 10. Кроме того, устройство содержит исследуемое вещество 8 и наркотическое вещество 9, помещенное в укрывающую среду. Передатчик 2, приемники 6 и 14 снабжены поляризаторами.

Предлагаемый способ реализуется следующим образом.

Устройство, реализующее предлагаемый способ, может работать в двух режимах.

Первый режим основан на дистанционном возбуждении электромагнитной волной магнитного резонанса в исследуемом веществе с последующим измерением частоты отклика.

Второй режим основан на электромагнитном радиолокационном зондировании плоскополяризованной волной предполагаемого места закладки наркотического вещества, упакованного в неметаллическую оболочку и размещенного в укрывающей среде, с последующим измерением сдвига фаз между двумя отраженными составляющими, которые в общем случае имеют эллиптическую поляризацию с противоположными направлениями вращения вектора электромагнитного поля.

В первом режиме импульсы с частотой заполнения w1 и (w1-w), формируемые в генераторе 3 импульсов, поступают на передатчик 2 и излучаются передающей антенной 1 в направлении исследуемого вещества 8. Последнее может располагаться, например, на теле человека под его одеждой. Передающая 1 и приемные 5, 13 антенны выполнены, например, в виде рупорных антенн, которые снабжены поляризаторами. Сигнал на передающую антенну 1 поступает с круглого волновода, на который в свою очередь с передатчика 2 подаются две ортогональные (по поляризации) составляющие, одна на частоте w1 а другая - на частоте (w1-w), в результате чего излучаемая антенной 1 волна будет модулирована по поляризации с частотой магнитного резонанса w.

Исследуемое вещество 8, облученное электромагнитной волной, содержащей составляющую на частоте магнитного резонанса w, возбуждается и по окончании импульса облучения излучает сигнал отклика на этой же частоте. Сигнал отклика принимается приемной антенной 5, содержащей четыре ферритовых стержня диаметром 8 мм и длиной 138 мм, при этом на стержни намотаны катушки индуктивности, содержащие по 20 витков и соединенные параллельно. Работой устройства управляет синхронизатор 4.

Сигнал с приемной антенны 5 поступает на приемник 6, на который поступает также опорное напряжение с выхода синхронизатора 4, запирающее приемник 6 на время излучения импульсов. С выхода приемника 6 сигнал поступает на накопитель 7, где сигналы постепенно накапливаются, что позволяет увеличить дальность от приемной антенны 5 до исследуемого вещества 8 в 2-3 раза. На накопитель 7 поступает также опорное напряжение, обеспечивающее синхронизацию накапливаемых импульсов.

В случае модуляции по поляризации излучаемого сигнала с частотой w, равной частоте магнитного резонанса исследуемого вещества 8, при частоте излучаемого сигнала w1>w, вектор напряженности магнитного поля излучаемого электромагнитного сигнала содержит составляющую:

.

Исследуемое вещество 8 будет активно взаимодействовать с магнитным полем на частоте w (Дудкин В.И., Пахомов Л.Н. Основы квантовой электроники. СПб-ГТУ, 2001). Поскольку частота W1 может быть выбрана достаточно высокой w1>w, то в этом случае реализации передающая антенна 1 может быть осуществлена, например, с помощью техники антенн сверхвысоких частот (СВЧ), на которую модулированный по поляризации сигнал поступает из круглого волновода, на который, в свою очередь, поступают две линейно-поляризованные ортогональные волны и , частоты которых равны соответственно w1 (w1-w).

Переход на частоту возбуждающего излучения в диапазоне СВЧ позволяет обеспечить «дальнюю зону» для излучаемого электромагнитного сигнала уже при дальности в несколько десятков сантиметров. В результате на расстояниях порядка нескольких метров от излучателя обеспечивается уровень электромагнитного излучения, достаточный для возбуждения резонанса в веществе.

Во втором режиме генератор 3 импульсов формирует зондирующий сигнал

u1(t)=U1·Cos(w1t+φ1), 0≤t≤T1,

где U1, w1, φ1, T1 - амплитуда, несущая частота, начальная фаза и длительность сигнала (импульса),

который поступает на вход передатчика 2, где он приобретает плоскую поляризацию. Указанный сигнал через передающую антенну 1 излучается в направлении поверхности укрывающей среды, под которой может находиться наркотическое вещество 9.

При этом в укрывающей среде создается электромагнитное поле путем его электромагнитного зондирования. При достижении зондирующим сигналом наркотического вещества происходит его частичное отражение в сторону поверхности укрывающей среды.

При этом приемные антенны 5 и 13 размещаются таким образом, чтобы их диаграммы направленности создавали равносигнальную зону (фиг.2).

Когда плоскополяризованная электромагнитная волна отражается от наркотического вещества 9, на которое воздействует внешнее магнитное поле Земли, то она разделяется на две независимые составляющие, которые в общем случае имеют эллиптическую поляризацию с противоположными направлениями вращения вектора электромагнитного поля. На частотах дециметрового диапазона обе составляющие имеют круговую поляризацию. Наркотическое вещество 9 имеет отличные от укрывающей среды электрические параметры (проводимость и диэлектрическую проницаемость).

Обе волны отражаются и распространяются с различными скоростями, вследствие чего фазовые соотношения между этими волнами изменяются. Это явление обычно называют эффектом Фарадея, из-за которого отраженный сигнал испытывает вращение плоскости поляризации. Угол поворота плоскости поляризации, который определяется разной скоростью распространения и отражения сигналов с правой и левой круговой поляризацией от наркотического вещества, находится из соотношения:

,

φп, φл - фазовые запаздывания отраженных сигналов с правой (вращение плоскости поляризации по часовой стрелке) и левой (вращение плоскости поляризации против часовой стрелки) круговой поляризации соответственно.

Отраженный сигнал улавливается приемными антеннами 5 и 13. При этом приемная антенна 5 восприимчива только к отраженному сигналу с правой круговой поляризацией, а приемная антенна 13 - только к отраженному сигналу с левой круговой поляризацией.

На выходе приемников 6 и 14 образуются следующие сигналы:

uп(t)=Uп·Cos[(w1±Δw)t+φп],

uл(t)=Uл·Cos[(w1±Δw)t+φл], 0≤t≤T1,

где индексы «п» и «л» относятся соответственно к сигналам с правой и левой круговой поляризацией;

±Δw - нестабильность несущей частоты, обусловленная некогерентным отражением и другими дестабилизирующими факторами.

Сигнал un(t) с выхода приемника 6 через ключ 12 поступает на первый вход перемножителя 18. Чтобы измеряемая разность фаз соответствовала глубине h залегания наркотического вещества 9, перемножитель 18 стробируется по времени с помощью ключа 12, на управляющий вход которого поступают стробирующие импульсы, формируемые блоком 11 временной задержки. Последний управляется синхронизатором 4. Временная задержка импульсов определяется глубиной h залегания наркотического вещества 9 в укрывающей среде. При изменении глубины меняется и время задержки.

В качестве блока 11 временной задержки используется коррелятор 33, состоящий из перемножителя 24, фильтра 25 нижних частот, усилителя 26 и блока 27 регулируемой задержки.

На первый вход перемножителя 24 через дифференциатор 23 поступает отраженный сигнал uп(t) с выхода первого приемника 6. На второй вход перемножителя 24 через блок 27 регулируемой задержки подается зондирующий сигнал u1(t) с выхода передатчика 2. Полученное на выходе перемножителя 24 напряжение пропускается через фильтр 25 нижних частот, на выходе которого формируется производная корреляционной функции (фиг.3, б), где τ - текущая временная задержка. Усилитель 26, предназначенный для поддержания нулевого значения производной корреляционной функции и подключенный к выходу фильтра 25 нижних частот, воздействует на управляющий вход блока 27 регулируемой задержки и поддерживает вводимую им задержку τ, равной нулю (τ=0), что соответствует минимальному (нулевому) значению производной корреляционной функции (фиг.3, б). Индикатор 28 дальности, связанный со шкалой блока 27 регулируемой задержки, позволяет непосредственно считывать измеренное значение дальности R до наркотического вещества 9

,

где c - скорость распространения электромагнитных волн.

Отраженный сигнал uл(t) с выхода приемника 14 поступает на первый вход смесителя 15, на второй вход которого подается напряжения гетеродина 16:

uг(t)=Uг·Cos(wгt+φг).

На выходе смесителя 15 образуются напряжения комбинационных частот. Усилителем 17 выделяется напряжение промежуточной (разностной) частоты:

uпр(t)=Uпр·Cos[(wпр±Δw)t+φпр], 0≤t≤T1,

где ;

K1 - коэффициент передачи смесителя;

wпр=w1-wг - промежуточная частота;

φпрл-φг,

которое поступает на второй вход перемножителя 18. На выходе последнего образуется гармоническое напряжение:

u2(t)=U2·Cos(wгt+φг+Δφ), 0≤t≤T1,

где ;

K2 - коэффициент передачи перемножителя;

Δφ=φпл - разность фаз между отраженными сигналами с правой и левой круговой поляризацией,

которое выделяется узкополосным фильтром 19 и поступает на первый вход фазового детектора 20, на второй вход которого подается напряжение гетеродина uг(t). На выходе последнего образуется низкочастотное напряжение:

uн(Δφ)=Uн·CosΔφ,

где ,

K3 - коэффициент передачи фазового детектора,

пропорциональное измеряемому сдвигу фаз ∆φ. Это напряжение сравнивается в блоке 21 сравнения с эталонным напряжением.

uэ(Δφэ)=Uэ-CosΔφэ,

где Δφэ - неизменяемый фазовый сдвиг, получаемый при зондировании укрывающей среды при отсутствии наркотического вещества 9.

Сдвиг фаз Δφэ определяется частотой зондирующего сигнала и электрическими параметрами укрывающей среды. Этот сдвиг фаз остается неизменным при зондировании укрывающейся среды в отсутствие наркотических средств.

Если uн(Δφ)≈uэ(Δφэ), то в блоке 21 сравнения не формируется постоянное напряжение.

При uн(Δφ)>uэ(Δφэ) в блоке 21 сравнения формируется постоянное напряжение, которое поступает на второй вход блока 22 регистрации. Причем факт регистрации этого напряжения свидетельствует о наличии наркотического вещества в данной укрывающей среде.

Отраженные сигналы uп(t) и uл(t) с правой и левой круговой поляризацией одновременно поступают на два входа второго фазового детектора 29, на выходе которого формируется управляющее напряжение, если направление на наркотическое вещество 9 не совпадает с равносигнальной зоной (фиг.2). Причем амплитуда управляющего напряжения определяется степенью отклонения направления на наркотическое вещество от равносигнального направления (зоны), а полярность - стороной отклонения. Это напряжение воздействует на мотор 30, связанный через редуктор 31 с антенным блоком 10, так, что возникшее рассогласование устраняется, т.е. направление на наркотическое вещество 9 совпадает с равносигнальным направлением (зоной).

Следящая система, состоящая из фазового детектора 29, мотора 30 и антенного блока 10 с редуктором 31, отрегулирована таким образом, что направление на наркотическое вещество всегда совпадает с равносигнальным направлением. При этом угловое перемещение наркотического вещества 9 или устройства в процессе работы все время коммутируется соответствующим поворотом антенного блока 10 в горизонтальной плоскости.

Предлагаемый способ обеспечивает поиск и обнаружение наркотических веществ, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, чемоданах, дипломатах, сумках и т.п.

При этом предлагаемый способ позволяет повысить достоверность поиска и обнаружения и разрешающую способность по глубине при определении местоположения наркотических веществ, находящихся в укрывающих средах. Это достигается за счет использования поляризационной селекции и устранения неоднозначности фазовых измерений, что обеспечивается тем, что фазовые измерения осуществляются между отраженными сигналами с правой и левой круговой поляризацией, а не между зондирующим и отраженным сигналами. При этом фазовый сдвиг между отраженными сигналами с правой и левой круговой поляризацией измеряется на стабильной частоте wr гетеродина. Поэтому процесс измерения фазового сдвига ∆φ инвариантен к нестабильности несущей частоты отраженного сигнала, возникающей при некогерентном отражении сигнала от наркотического вещества и других дестабилизирующих факторах, что позволяет повысить точность измерения фазового сдвига Δφ и, следовательно, и точность определения местоположения наркотических веществ.

Таким образом, предлагаемый способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение точности определения местоположения наркотического вещества. Это достигается за счет повышения точности измерения дальности и азимута наркотического вещества, а также автоматического слежения за его перемещениями.

Для измерения дальности R до наркотического вещества используется производная корреляционной функции (фиг.3, б). В области максимума корреляционная функция R(τ) (фиг.3, а) имеет малую крутизну и изменяется незначительно при изменениях т, что снижает точность определения расстояния до наркотического вещества 9.

Гораздо более благоприятной для поиска максимума является форма производной от корреляционной функции в точке τ=0 производная имеет значительную крутизну и, кроме того, меняет знак в зависимости от положения относительно точки τ=0.

Следовательно, отыскание максимума корреляционной функции (максимальный принцип - экстремальная задача) заменяется минимальным принципом - стабилизацией нулевого значения регулируемой величины.

Минимальный принцип используется и при определении азимута (3 наркотического вещества 9, когда формируется равносигнальное направление (фиг.2).

Метод минимума производной корреляционной функции и метод минимума равносигнальной зоны наряду с высокой точностью и чувствительностью, обладают еще одним существенным преимуществом нулевых методов, а именно: возможность автоматического отслеживания регулируемой величины.

Способ дистанционного обнаружения вещества с использованием дистанционного возбуждения электромагнитной волной магнитного резонанса в веществе и с последующим измерением частоты отклика, по наличию которого делают заключение о наличии данного вещества, при этом возбуждающий электромагнитный сигнал излучают на частоте, много большей частоты магнитного резонанса подлежащего обнаружению вещества, и модулируют излучаемый возбуждающий электромагнитный сигнал по поляризации на частоте магнитного резонанса, а отклик регистрируют на частоте модуляции, осуществляют электромагнитное зондирование предполагаемого места закладки наркотического вещества плоскополяризованным сигналом и прием сигналов с правой и левой круговой поляризацией, отраженных от наркотического вещества, находящегося в укрывающей среде, при этом отраженный сигнал с правой круговой поляризацией стробируют по времени, пропорциональному глубине залегания наркотического вещества, а отраженный сигнал с левой круговой поляризацией преобразуют по частоте с использованием напряжения гетеродина, выделяют напряжение промежуточной частоты, перемножают его с отраженным сигналом правой круговой поляризацией, выделяют гармоническое напряжение на стабильной частоте гетеродина, измеряют сдвиг фаз между отраженными сигналами с правой и левой круговой поляризацией на стабильной частоте гетеродина, сравнивают измеренное значение сдвига фаз с эталонным значением и по результату сравнения принимают решение о наличии наркотического вещества в укрывающей среде, отличающийся тем, что отраженный сигнал с правой круговой поляризацией дифференцируют по времени, перемножают с зондирующим сигналом, пропущенным через блок регулируемой задержки, выделяют низкочастотное напряжение, пропорциональное корреляционной функции , где τ - текущая временная задержка, усиливают его, воздействуют на управляющий вход блока регулируемой задержки и поддерживают водимую им задержку τ, равной нулю, что соответствует нулевому значению производной корреляционной функции , при этом фиксируют расстояние до наркотического вещества, приемные антенны размещают таким образом, чтобы их диаграммы направленности создавали равносигнальную зону, сравнивают по фазе отраженные сигналы с правой и левой круговой поляризацией, при несовпадении направления на наркотическое вещество с равносигнальной зоной формируют управляющее напряжение, амплитуда которого определяется степенью отклонения направления на наркотическое вещество от равносигнальной зоны, а полярность - стороной отклонения, воздействуют им на мотор, связанный через редуктор с антенным блоком, вращают антенный блок в горизонтальной плоскости до совпадения направления на наркотическое вещество с равносигнальной зоной, при этом фиксируют азимут на наркотическое вещество и определяют его местоположение.
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ВЕЩЕСТВА
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ВЕЩЕСТВА
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ВЕЩЕСТВА
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ВЕЩЕСТВА
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ВЕЩЕСТВА
Источник поступления информации: Роспатент

Показаны записи 201-210 из 219.
27.12.2019
№219.017.f2de

Устройство позиционирования мобильных агрегатов при возделывании агрокультур

Изобретение относится к сельскохозяйственному машиностроению. Устройство позиционирования наземного мобильного средства (10) при возделывании агрокультур (14) содержит первый блок искусственного зрения, размещенный на наземном мобильном средстве (10), блок обработки видеосигнала, беспилотный...
Тип: Изобретение
Номер охранного документа: 0002710163
Дата охранного документа: 24.12.2019
04.02.2020
№220.017.fd08

Способ определения расхода жидкости в трубопроводе

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта, электромагнитного явления и коррекционной обработки электрических сигналов. Отличительная особенность способа заключается в установке на...
Тип: Изобретение
Номер охранного документа: 0002712782
Дата охранного документа: 31.01.2020
04.02.2020
№220.017.fd3c

Система дистанционного контроля состояния атмосферы и ледяного покрова в северных районах

Изобретение относится к системам для дистанционного контроля состояния окружающей среды. Сущность: система содержит блок управления, блок определения координат по системе спутниковой навигации, блок определения состояния атмосферы, блок определения толщины ледяного покрова, блок...
Тип: Изобретение
Номер охранного документа: 0002712794
Дата охранного документа: 31.01.2020
05.03.2020
№220.018.090c

Способ радиочастотной идентификации животных

Предлагаемый способ относится области сельского хозяйства, в частности к животноводству, и может быть использован для получения оперативной информации о животных с целью формирования контрольно-отчетной документации. Технической задачей изобретения является повышение достоверности считывания...
Тип: Изобретение
Номер охранного документа: 0002715791
Дата охранного документа: 03.03.2020
05.03.2020
№220.018.0966

Система мониторинга состояния льда и окружающей среды

Изобретение относится к области автоматизированного мониторинга состояния льда и окружающей среды с одновременным определением координат собственного местонахождения комплекса и передачей полученной информации по радиоканалу. Измерительно-навигационный комплекс содержит корпус 1, приемник 3...
Тип: Изобретение
Номер охранного документа: 0002715845
Дата охранного документа: 03.03.2020
07.03.2020
№220.018.0a56

Система интеллектуального управления и контроля параметров и режимов работы машин и оборудования ферм по производству молока

Изобретение относится к сельскому хозяйству, в частности к оборудованию ферм по производству молока. Выходы измерителей (7)-(12) через модуль сбора данных соединены с входом компьютера фермы (14). На второй вход компьютера фермы через регистратор визуального контроля (16) подаются сигналы с...
Тип: Изобретение
Номер охранного документа: 0002716059
Дата охранного документа: 05.03.2020
19.03.2020
№220.018.0d96

Способ контроля подлинности и перемещения сельскохозяйственной продукции и система для его реализации

Предлагаемые способ и система относятся к средствам информационного обеспечения в сетях удаленного доступа, направленным на идентификацию сельскохозяйственной продукции, поступающей на реализацию. Техническим результатом является расширение диапазона рабочих частот без расширения диапазона...
Тип: Изобретение
Номер охранного документа: 0002716905
Дата охранного документа: 17.03.2020
15.04.2020
№220.018.147e

Система дистанционного контроля и управления солнечным концентраторным модулем

Предлагаемая система относится к гелиотехнике, в частности к средствам управления солнечным концентраторным модулем для получения электрической и тепловой энергии. Техническим результатом изобретения является повышение помехоустойчивости и достоверности обмена дискретной информацией между...
Тип: Изобретение
Номер охранного документа: 0002718687
Дата охранного документа: 13.04.2020
17.06.2020
№220.018.2706

Спутниковая система для определения местоположения судов и самолетов, потерпевших аварию

Изобретение относится к спутниковым системам для определения местоположения аварийных радиобуев (АРБ), предающих радиосигналы бедствия. Техническим результатом является повышение помехоустойчивости и достоверности принимаемых сложных сигналов с фазовой манипуляцией путем подавления ложных...
Тип: Изобретение
Номер охранного документа: 0002723443
Дата охранного документа: 11.06.2020
17.06.2020
№220.018.2734

Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации

Предлагаемые способ и система относятся к информационно-измерительной системе и могут быть использованы в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Техническим результатом изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002723437
Дата охранного документа: 11.06.2020
Показаны записи 201-210 из 229.
18.10.2019
№219.017.d7c7

Способ раннего обнаружения пожара и устройство для его реализации

Изобретение относится к области пожарной безопасности и предназначено для обнаружения пожара на ранних стадиях тления и возгорания горючих материалов. Технический результат - повышение избирательности и помехоустойчивости приема и достоверности синхронного детектирования фазоманипулированных...
Тип: Изобретение
Номер охранного документа: 0002703366
Дата охранного документа: 16.10.2019
13.11.2019
№219.017.e10b

Способ компьютерного контроля состояния сельскохозяйственной продукции и компьютерная система для его осуществления

Группа изобретений относится к упаковке и хранению сельскохозяйственной продукции с ограничением по условиям и сроку хранения, а именно к способу компьютерного контроля их состояния при хранении. Для этого на упаковку или тару сельскохозяйственной продукции наносят средства контроля (датчики)...
Тип: Изобретение
Номер охранного документа: 0002705596
Дата охранного документа: 11.11.2019
25.12.2019
№219.017.f207

Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации

Изобретение относится к информационно-измерительной системе и может быть использовано в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Достигаемый технический результат - обеспечение однозначности отсчета...
Тип: Изобретение
Номер охранного документа: 0002710030
Дата охранного документа: 24.12.2019
27.12.2019
№219.017.f2de

Устройство позиционирования мобильных агрегатов при возделывании агрокультур

Изобретение относится к сельскохозяйственному машиностроению. Устройство позиционирования наземного мобильного средства (10) при возделывании агрокультур (14) содержит первый блок искусственного зрения, размещенный на наземном мобильном средстве (10), блок обработки видеосигнала, беспилотный...
Тип: Изобретение
Номер охранного документа: 0002710163
Дата охранного документа: 24.12.2019
22.01.2020
№220.017.f8c6

Способ мониторинга состояния подземных сооружений метрополитена и система для его реализации

Предлагаемые способ и система относятся к автоматике и вычислительной технике и могут быть использованы при построении систем автоматизированного контроля состояния подземных сооружений метрополитена. Технической задачей изобретения является повышение помехоустойчивости приема ФМн-сигнала и...
Тип: Изобретение
Номер охранного документа: 0002711632
Дата охранного документа: 17.01.2020
04.02.2020
№220.017.fd08

Способ определения расхода жидкости в трубопроводе

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта, электромагнитного явления и коррекционной обработки электрических сигналов. Отличительная особенность способа заключается в установке на...
Тип: Изобретение
Номер охранного документа: 0002712782
Дата охранного документа: 31.01.2020
04.02.2020
№220.017.fd3c

Система дистанционного контроля состояния атмосферы и ледяного покрова в северных районах

Изобретение относится к системам для дистанционного контроля состояния окружающей среды. Сущность: система содержит блок управления, блок определения координат по системе спутниковой навигации, блок определения состояния атмосферы, блок определения толщины ледяного покрова, блок...
Тип: Изобретение
Номер охранного документа: 0002712794
Дата охранного документа: 31.01.2020
17.02.2020
№220.018.0353

Устройство для организации дорожного движения

Изобретение относится к системам регулирования и организации дорожного движения. Устройство для организации дорожного движения содержит жезл регулировщика, идентификационную метку и централизованную базу данных. Жезл регулировщика выполнен в виде цилиндрического корпуса, в котором размещены...
Тип: Изобретение
Номер охранного документа: 0002714339
Дата охранного документа: 14.02.2020
23.02.2020
№220.018.0539

Автоматический беспилотный диагностический комплекс

Предлагаемый комплекс относится к области многофункциональной работы технической диагностической техники и может быть использован для систематического дистанционного контроля состояния магистральных газопроводов и нефтепроводов, для технической разведки и контроля местности и объектов,...
Тип: Изобретение
Номер охранного документа: 0002714845
Дата охранного документа: 19.02.2020
05.03.2020
№220.018.090c

Способ радиочастотной идентификации животных

Предлагаемый способ относится области сельского хозяйства, в частности к животноводству, и может быть использован для получения оперативной информации о животных с целью формирования контрольно-отчетной документации. Технической задачей изобретения является повышение достоверности считывания...
Тип: Изобретение
Номер охранного документа: 0002715791
Дата охранного документа: 03.03.2020
+ добавить свой РИД