×
10.11.2013
216.012.7f28

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТИ ФОРМИРОВАНИЯ ПСЕВДОДАЛЬНОСТИ НАВИГАЦИОННОГО СИГНАЛА

Вид РИД

Изобретение

Аннотация: Способ определения погрешности формирования псевдодальности навигационного сигнала, по которому устанавливают сигнал с несущей частотой f, равной несущей частоте имитируемого навигационного космического аппарата, с помощью имитатора навигационных сигналов, измеряют значения задержек сигнала с помощью навигационной аппаратуры потребителя, определяют погрешности измерений путем определения разности задержек сигналов имитатора навигационных сигналов и задержек, измеренных навигационной аппаратурой потребителя, разделяют суммарную погрешность измерений на погрешность навигационной аппаратуры потребителя и погрешность имитатора навигационных сигналов. При этом в двух неизменных каналах навигационной аппаратуры потребителя определяют псевдодальности навигационных сигналов, сформированных в каждом из двух каналов имитатора навигационных сигналов по результатам соответствующих измерений. Технический результат - определение погрешности формирования псевдодальности между каналами имитатора навигационных сигналов без использования линии задержки, то есть исключив дополнительную неизвестную погрешность. 1 ил.
Основные результаты: Способ определения погрешности формирования псевдодальности навигационного сигнала, по которому устанавливают сигнал с несущей частотой f, равной несущей частоте имитируемого навигационного космического аппарата, с помощью имитатора навигационных сигналов, измеряют значения задержек сигнала с помощью навигационной аппаратуры потребителя, определяют погрешности измерений путем определения разности задержек сигналов имитатора навигационных сигналов и задержек, измеренных навигационной аппаратурой потребителя, разделяют суммарную погрешность измерений на погрешность навигационной аппаратуры потребителя и погрешность имитатора навигационных сигналов, отличающийся тем, что в двух неизменных каналах навигационной аппаратуры потребителя определяют псевдодальности навигационных сигналов, сформированных в каждом из двух каналов имитатора навигационных сигналов по результатам измерений где - псевдодальность навигационного сигнала ГЛОНАСС B-й литеры, формируемого M-м каналом имитатора навигационных сигналов; - псевдодальность навигационного сигнала ГЛОНАСС A-й литеры, формируемого N-м каналом имитатора навигационных сигналов; - псевдодальность навигационного сигнала ГЛОНАСС B-й литеры, формируемого N-м каналом имитатора навигационных сигналов; - псевдодальность навигационного сигнала ГЛОНАСС A-й литеры, формируемого M-м каналом имитатора навигационных сигналов; - псевдодальность навигационного сигнала ГЛОНАСС A-й литеры, принимаемого X-м каналом навигационной аппаратуры потребителя; - псевдодальность навигационного сигнала ГЛОНАСС B-й литеры, принимаемого Y-м каналом навигационной аппаратуры потребителя, с последующим определением погрешности формирования псевдодальности навигационного сигнала между указанными каналами имитатора навигационных сигналов из выражения: , где - задержки формирования сигнала в N-м канале имитатора; - задержки формирования сигнала в M-м канале имитатора; - разность между псевдодальностями навигационного сигнала ГЛОНАСС A-й литеры, формируемого N-м каналом имитатора навигационных сигналов и принимаемого X-м каналом навигационной аппаратуры потребителя; - разность между псевдодальностями навигационного сигнала ГЛОНАСС B-й литеры, формируемого M-м каналом имитатора навигационных сигналов и принимаемого Y-м каналом навигационной аппаратуры потребителя; - разность между псевдодальностями навигационного сигнала ГЛОНАСС B-й литеры, формируемого N-м каналом имитатора навигационных сигналов и принимаемого Y-м каналом навигационной аппаратуры потребителя; - разность между псевдодальностями навигационного сигнала ГЛОНАСС A-й литеры, формируемого M-м каналом имитатора навигационных сигналов и принимаемого X-м каналом навигационной аппаратуры потребителя.

Изобретение относится к области приборостроения и может найти применение в системах космической навигации для повышения точности имитаторов навигационных сигналов в части устранения погрешностей формирования сигналов между каналами.

Известен способ оценки среднеквадратичного отклонения (СКО) случайной составляющей погрешности временной задержки навигационных сингналов, формируемых контрольно-проверочным генератором МРК40 (стр.33-36 в Прецизионный измеритель временных характеристик генераторов навигационных сигналов космических навигационных спутников: доклад / В.П.Ильченко, В.Ю.Лебедев, В.И.Тисленко // Научная сессия ТУСУР-2010: Материалы докладов Всероссийской научно-технической конференции студентов, аспирантов и молодых ученых, Томск, 4-7 мая 2010 г. - Томск: В-Спектр, 2010. Ч.1. - 352 с.), состоящий в следующем.

Синхронизация цифрового осциллографа осуществлялась по сигналу «1 сек», поступающему от МРК40, который также используется для формирования навигационного сигнала (НС). Оценки временных задержек (по несущей частоте и дальномерному коду) выполнялись с использованием разработанного алгоритма при обработке реализации НС на интервале 1 мс. В качестве сигнала опорной частоты для аналого-цифрового преобразователя в цифровом осциллографе и МРК40 использовался сигнал «10 МГц», формируемый рубидиевым стандартом частоты.

Основным недостатком этого способа является высокий уровень сигнала, не менее минус 80 дБВт, данный уровень" сигнала достигается при использовании малошумящего усилителя, который вносит дополнительную неизвестную погрешность.

Наиболее близким к заявляемому является способ (RU №2318189, G01C 25/00), основанный на разделении суммарной погрешности измерений на погрешность в навигационной аппаратуре потребителя (НАП) и погрешность имитатора навигационных сигналов (ИНС).

Вначале производится измерение суммарных погрешностей НАП и ИНС. Устанавливается фаза сигнала ИНС для первой поверяемой точки. Линией задержки устанавливается исходная (нулевая) задержка τз=0 на частоте f, производится калибровка НАП. С равномерным шагом ϕ, последовательно устанавливаются дискретные значения фазы сигнала на выходе ИНС, равные второй, третьей и т.д. до последней K-й поверяемой точки его фазовой шкалы. С помощью НАП производятся измерения фазы сигнала во всех задаваемых точках.

Затем устанавливается фаза сигнала ИНС для первой поверяемой точки, и линией задержки вводится дополнительная задержка сигнала τз=α, величину которой целесообразно устанавливать по измерениям НАП, кратной величине приращения фазы сигнала ИНС (ϕ). На ИНС последовательно устанавливаются дискретные значения фазы сигнала, равные второй, третьей и т.д. до K-й точки. С помощью НАП производятся измерения фазы сигнала во всех задаваемых точках. Полученные экспериментальные зависимости при нулевой линии задержки и при задержке сигнала τз=α позволяют определить погрешности НАП и ИНС. Значения погрешностей при этом определяются для К дискретных значений фазы сигнала, задаваемых ИНС.

Основным недостатком этого способа является использование линии задержки, которая вносит дополнительную неизвестную погрешность, которая искажает псевдодальность сформированного навигационного сигнала

Задачей изобретения является определение погрешности формирования псевдодальности между каналами имитатора навигационных сигналов, исключая дополнительную неизвестную погрешность.

Поставленная задача решается тем, что в способе определения погрешности формирования псевдодальности навигационного сигнала, по которому устанавливают сигнал с несущей частотой fн, равной несущей частоте имитируемого навигационного космического аппарата, с помощью имитатора навигационных сигналов, измеряют значения задержек сигнала с помощью навигационной аппаратуры потребителя, определяют погрешности измерений путем определения разности задержек сигналов имитатора навигационных сигналов и задержек, измеренных навигационной аппаратурой потребителя, разделяют суммарную погрешность измерений на погрешность навигационной аппаратуры потребителя и погрешность имитатора навигационных сигналов, согласно изобретению в двух неизменных каналах навигационной аппаратуры потребителя определяют псевдодальности навигационных сигналов, сформированных в каждом из двух каналов имитатора навигационных сигналов по результатам измерений

,

,

где

- псевдодальность навигационного сигнала ГЛОНАСС B-й литеры, формируемого M-м каналом имитатора навигационных сигналов;

- псевдодальность навигационного сигнала ГЛОНАСС A-й литеры, формируемого N-м каналом имитатора навигационных сигналов;

- псевдодальность навигационного сигнала ГЛОНАСС B-й литеры, формируемого N-м каналом имитатора навигационных сигналов;

- псевдодальность навигационного сигнала ГЛОНАСС A-й литеры, формируемого M-м каналом имитатора навигационных сигналов;

- псевдодальность навигационного сигнала ГЛОНАСС A-й литеры, принимаемого X-м каналом навигационной аппаратуры потребителя;

- псевдодальность навигационного сигнала ГЛОНАСС B-й литеры, принимаемого Y-м каналом навигационной аппаратуры потребителя, с последующим определением погрешности формирования псевдодальности навигационного сигнала между указанными каналами имитатора навигационных сигналов из выражения:

,

где

- задержки формирования сигнала в N-м канале имитатора;

- задержки формирования сигнала в M-м канале имитатора;

- разность между псевдодальностями навигационного сигнала ГЛОНАСС A-й литеры, формируемого N-м каналом имитатора навигационных сигналов и принимаемого X-м каналом навигационной аппаратуры потребителя;

- разность между псевдодальностями навигационного сигнала ГЛОНАСС B-й литеры, формируемого M-м каналом имитатора навигационных сигналов и принимаемого Y-м каналом навигационной аппаратуры потребителя;

- разность между псевдодальностями навигационного сигнала ГЛОНАСС B-й литеры, формируемого N-м каналом имитатора навигационных сигналов и принимаемого Y-м каналом навигационной аппаратуры потребителя;

- разность между псевдодальностями навигационного сигнала ГЛОНАСС A-й литеры, формируемого M-м каналом имитатора навигационных сигналов и принимаемого X-м каналом навигационной аппаратуры потребителя.

На чертеже приведена схема экспериментальной установки для реализации предлагаемого способа.

С целью уменьшения влияния случайной составляющей погрешности формирования и определения псевдодальности навигационную аппаратуру потребителя и имитатор навигационных сигналов синхронизируют по частоте (например, 10 МГц) и секундной метке времени. Имитатор навигационных сигналов формирует 2 сигнала: A-й литеры ГЛОНАСС в N-м канале и B-й литеры ГЛОНАСС в M-м канале. Навигационная аппаратура потребителя осуществляет захват и сопровождение сигналов в Х-м и Y-м каналах соответственно.

Ниже приведена разность псевдодальности формируемых N-м каналом имитатора навигационных сигналов и принимаемого X-м каналом навигационной аппаратуры потребителя сигнала A-й литеры ГЛОНАСС.

где - псевдодальность принимаемого навигационного сигнала A-й литеры ГЛОНАСС X-м каналом навигационной аппаратуры потребителя;

- псевдодальность формируемого навигационного сигнала A-й литеры ГЛОНАСС N-м каналом имитатора навигационных сигналов.

Подробнее рассмотрим , которая состоит из литерной задержки для A-й литеры ГЛОНАСС в имитаторе навигационных сигналов , литерной задержки для A-й литеры в навигационной аппаратуре потребителя и задержки формирования сигнала имитатора навигационных сигналов в N-м канале .

Далее рассмотрим разность формируемых M-м каналом имитатора навигационных сигналов и принимаемого Y-м каналом навигационной аппаратуры потребителя сигнала ГЛОНАСС B-й литеры.

где - псевдодальность принимаемого навигационного сигнала B-й литеры ГЛОНАСС Y-м каналом навигационной аппаратуры потребителя;

- псевдодальность формируемого навигационного сигнала B-й литеры ГЛОНАСС М-м каналом имитатора навигационных сигналов.

Подробнее рассмотрим , которая состоит из литерной задержки для B-й литеры ГЛОНАСС в имитаторе навигационных сигналов , литерной задержки для B-й литеры ГЛОНАСС в навигационной аппаратуре потребителя и задержки формирования сигнала имитатора навигационных сигналов в M-м канале .

Далее меняем местами формируемые сигналы в имитаторе навигационных сигналов. N-й канал формирует ГЛОНАСС B-ю литеру:

а M-й канал формирует ГЛОНАСС A-ю литеру:

Распишем (5) и (6) подробнее:

Затем найдем разницу уравнений (2), (4)

и уравнений (5), (6)

Если сложить уравнения (9) и (10), получим удвоенную межканальную задержку имитатора навигационных сигналов между N-м и M-м каналами:

Т.е. разность между N-м и M-м каналами имитатора навигационных сигналов равна:

Из формулы (13) следует, что определена погрешность формирования псевдодальности между каналами имитатора навигационных сигналов без использования линии задержки.

По аналогии определяется погрешность формирования псевдодальности между каналами имитатора навигационных сигналов для остальных каналов.

Таким образом, предлагаемый способ позволяет определить погрешность формирования псевдодальности навигационного сигнала между каналами имитатора навигационных сигналов без использования линии задержки, т.е. исключив дополнительную неизвестную погрешность

Способ определения погрешности формирования псевдодальности навигационного сигнала, по которому устанавливают сигнал с несущей частотой f, равной несущей частоте имитируемого навигационного космического аппарата, с помощью имитатора навигационных сигналов, измеряют значения задержек сигнала с помощью навигационной аппаратуры потребителя, определяют погрешности измерений путем определения разности задержек сигналов имитатора навигационных сигналов и задержек, измеренных навигационной аппаратурой потребителя, разделяют суммарную погрешность измерений на погрешность навигационной аппаратуры потребителя и погрешность имитатора навигационных сигналов, отличающийся тем, что в двух неизменных каналах навигационной аппаратуры потребителя определяют псевдодальности навигационных сигналов, сформированных в каждом из двух каналов имитатора навигационных сигналов по результатам измерений где - псевдодальность навигационного сигнала ГЛОНАСС B-й литеры, формируемого M-м каналом имитатора навигационных сигналов; - псевдодальность навигационного сигнала ГЛОНАСС A-й литеры, формируемого N-м каналом имитатора навигационных сигналов; - псевдодальность навигационного сигнала ГЛОНАСС B-й литеры, формируемого N-м каналом имитатора навигационных сигналов; - псевдодальность навигационного сигнала ГЛОНАСС A-й литеры, формируемого M-м каналом имитатора навигационных сигналов; - псевдодальность навигационного сигнала ГЛОНАСС A-й литеры, принимаемого X-м каналом навигационной аппаратуры потребителя; - псевдодальность навигационного сигнала ГЛОНАСС B-й литеры, принимаемого Y-м каналом навигационной аппаратуры потребителя, с последующим определением погрешности формирования псевдодальности навигационного сигнала между указанными каналами имитатора навигационных сигналов из выражения: , где - задержки формирования сигнала в N-м канале имитатора; - задержки формирования сигнала в M-м канале имитатора; - разность между псевдодальностями навигационного сигнала ГЛОНАСС A-й литеры, формируемого N-м каналом имитатора навигационных сигналов и принимаемого X-м каналом навигационной аппаратуры потребителя; - разность между псевдодальностями навигационного сигнала ГЛОНАСС B-й литеры, формируемого M-м каналом имитатора навигационных сигналов и принимаемого Y-м каналом навигационной аппаратуры потребителя; - разность между псевдодальностями навигационного сигнала ГЛОНАСС B-й литеры, формируемого N-м каналом имитатора навигационных сигналов и принимаемого Y-м каналом навигационной аппаратуры потребителя; - разность между псевдодальностями навигационного сигнала ГЛОНАСС A-й литеры, формируемого M-м каналом имитатора навигационных сигналов и принимаемого X-м каналом навигационной аппаратуры потребителя.
СПОСОБ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТИ ФОРМИРОВАНИЯ ПСЕВДОДАЛЬНОСТИ НАВИГАЦИОННОГО СИГНАЛА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 65.
27.06.2013
№216.012.5133

Газостатический подшипник

Изобретение относится к области машиностроения и может применяться в радиальных опорах шпиндельных узлов металлорежущих станков и другого оборудования с быстроходными роторами при использовании в качестве смазывающей среды как газов, так и жидкостей. Газостатический подшипник содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002486380
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5262

Способ поиска шумоподобных сигналов с минимальной частотной манипуляцией

Изобретение относится к области радиотехники и может быть использовано в системах радионавигации и радиосвязи для кодовой синхронизации приемников шумоподобных сигналов с минимальной частотной манипуляцией. Технический результат - сокращение времени поиска шумоподобных сигналов при высокой...
Тип: Изобретение
Номер охранного документа: 0002486683
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.538b

Устройство для нанесения покрытий на порошки

Изобретение относится к порошковой металлургии, в частности к устройству для нанесения покрытий на порошки. Может применяться в металлургии при производстве композиционных материалов, содержащих мелкодисперсные и нанопорошки. Устройство содержит вакуумную камеру с системой откачки,...
Тип: Изобретение
Номер охранного документа: 0002486990
Дата охранного документа: 10.07.2013
27.08.2013
№216.012.6487

Способ получения прозрачной проводящей пленки insno

Изобретение относится к области тонкопленочных технологий, в частности технологии получения тонких пленок оксида индия-олова (ITO), и может быть использовано при производстве электролюминисцентных дисплеев и мониторов с сенсорным экраном. Осуществляют экстрагирование Sn и In из водных растворов...
Тип: Изобретение
Номер охранного документа: 0002491372
Дата охранного документа: 27.08.2013
10.10.2013
№216.012.7416

Способ дистанционного обследования объектов электрических сетей

Изобретение относится к области спутниковой радионавигации и может быть использовано для определения координат мест локальных повреждений объектов электрических сетей при диагностических работах на электрических сетях без вывода их из эксплуатации. Технический результат - расширение...
Тип: Изобретение
Номер охранного документа: 0002495375
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7824

Пульсовый оксиметр

Изобретение относится к медицинской технике. Пульсовый оксиметр содержит блок красного излучателя (1), блок инфракрасного излучателя (2), фотоприемник (3), блок синхронизации (7), блок вычислителя (6) и блок индикации (10). Пульсовой оксиметр дополнительно содержит аналого-цифровой...
Тип: Изобретение
Номер охранного документа: 0002496418
Дата охранного документа: 27.10.2013
10.12.2013
№216.012.897e

Устройство для теплоизоляции скважины в многолетнемерзлых породах

Изобретение относится к газовой и нефтяной промышленности, в частности к охлаждающим устройствам буровых скважин, и предназначено для эксплуатации скважин в районах кавернозных, многолетнемерзлых пород (ММП). Техническим результатом предложенного изобретения является предотвращение образования...
Тип: Изобретение
Номер охранного документа: 0002500880
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89c0

Устройство для бестраншейной замены трубопровода

Изобретение относится к устройствам для бестраншейной замены трубопроводов при ремонте и реконструкции подземных инженерных коммуникаций. Устройство содержит труборазрушающий рабочий орган с двумя дисковыми ножами, расширитель для увеличения диаметра скважины, приспособление для крепления...
Тип: Изобретение
Номер охранного документа: 0002500946
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89e5

Стенд для градуировки тензоэлементов

Изобретение относится к измерительной технике, в частности к тензометрии. Технический результат заключается в расширении области практического применения стенда и тензоэлемента, обеспечении мобильности стенда. Стенд для градуировки тензоэлементов содержит динамометр ДНУ, тензоэлемент,...
Тип: Изобретение
Номер охранного документа: 0002500983
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.91b5

Способ определения летучих фитонцидов

Изобретение относится к области аналитической химии, а именно к определению летучих фитонцидов в воздухе хвойного леса методом газожидкостной хроматографии. Способ заключается в том, что пропускают воздух хвойного леса со скоростью 40-100 мл/мин в течение 60-180 мин через склянку Дрекселя...
Тип: Изобретение
Номер охранного документа: 0002502994
Дата охранного документа: 27.12.2013
Показаны записи 11-20 из 63.
20.06.2013
№216.012.4dc0

Способ определения термоокислительной стабильности смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может быть использовано для определения их ресурса. Заявлен способ определения термоокислительной стабильности смазочных материалов, при котором пробу смазочного материала постоянного объема нагревают с перемешиванием в...
Тип: Изобретение
Номер охранного документа: 0002485486
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e60

Устройство для фокусировки типа "линза люнеберга"

Изобретение относится к области конструирования направленных антенн, а именно к конструированию устройств для фокусировки при приеме-передаче радиоволн сантиметрового и миллиметрового диапазонов. Техническим результатом является возможность осуществления фокусировки электромагнитной волны вдоль...
Тип: Изобретение
Номер охранного документа: 0002485646
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5037

Грузоподъемный механизм

Изобретение относится к подъемному оборудованию, используемому для подъема-опускания груза на различных видах транспорта, в складах и производственных помещениях. Грузоподъемный механизм содержит основание с горизонтальным полым штырем, внутри которого размещен толкатель с роликами, шарнирно...
Тип: Изобретение
Номер охранного документа: 0002486128
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5133

Газостатический подшипник

Изобретение относится к области машиностроения и может применяться в радиальных опорах шпиндельных узлов металлорежущих станков и другого оборудования с быстроходными роторами при использовании в качестве смазывающей среды как газов, так и жидкостей. Газостатический подшипник содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002486380
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5262

Способ поиска шумоподобных сигналов с минимальной частотной манипуляцией

Изобретение относится к области радиотехники и может быть использовано в системах радионавигации и радиосвязи для кодовой синхронизации приемников шумоподобных сигналов с минимальной частотной манипуляцией. Технический результат - сокращение времени поиска шумоподобных сигналов при высокой...
Тип: Изобретение
Номер охранного документа: 0002486683
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.538b

Устройство для нанесения покрытий на порошки

Изобретение относится к порошковой металлургии, в частности к устройству для нанесения покрытий на порошки. Может применяться в металлургии при производстве композиционных материалов, содержащих мелкодисперсные и нанопорошки. Устройство содержит вакуумную камеру с системой откачки,...
Тип: Изобретение
Номер охранного документа: 0002486990
Дата охранного документа: 10.07.2013
27.08.2013
№216.012.6487

Способ получения прозрачной проводящей пленки insno

Изобретение относится к области тонкопленочных технологий, в частности технологии получения тонких пленок оксида индия-олова (ITO), и может быть использовано при производстве электролюминисцентных дисплеев и мониторов с сенсорным экраном. Осуществляют экстрагирование Sn и In из водных растворов...
Тип: Изобретение
Номер охранного документа: 0002491372
Дата охранного документа: 27.08.2013
10.10.2013
№216.012.7416

Способ дистанционного обследования объектов электрических сетей

Изобретение относится к области спутниковой радионавигации и может быть использовано для определения координат мест локальных повреждений объектов электрических сетей при диагностических работах на электрических сетях без вывода их из эксплуатации. Технический результат - расширение...
Тип: Изобретение
Номер охранного документа: 0002495375
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7824

Пульсовый оксиметр

Изобретение относится к медицинской технике. Пульсовый оксиметр содержит блок красного излучателя (1), блок инфракрасного излучателя (2), фотоприемник (3), блок синхронизации (7), блок вычислителя (6) и блок индикации (10). Пульсовой оксиметр дополнительно содержит аналого-цифровой...
Тип: Изобретение
Номер охранного документа: 0002496418
Дата охранного документа: 27.10.2013
10.12.2013
№216.012.897e

Устройство для теплоизоляции скважины в многолетнемерзлых породах

Изобретение относится к газовой и нефтяной промышленности, в частности к охлаждающим устройствам буровых скважин, и предназначено для эксплуатации скважин в районах кавернозных, многолетнемерзлых пород (ММП). Техническим результатом предложенного изобретения является предотвращение образования...
Тип: Изобретение
Номер охранного документа: 0002500880
Дата охранного документа: 10.12.2013
+ добавить свой РИД