×
27.10.2013
216.012.7ad5

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РЕДОКС ПОТЕНЦИАЛА БИОЛОГИЧЕСКИХ СРЕД

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу измерения редокс потенциала биологических сред и может быть использовано для мониторинга с целью получения диагностической информации о состоянии пациента. Способ измерения редокс потенциала биологических сред предусматривает определение потенциала рабочего электрода при разомкнутой цепи относительно хлорсеребряного электрода сравнения в тестируемой среде. Стандартизация состояния поверхности рабочего электрода позволяет получить точные и воспроизводимые результаты измерений редокс потенциала, кроме того, способ позволяет непрерывно фиксировать изменения значения редокс потенциала для получения дополнительной информации о тестируемой среде в ходе измерения. 3 ил., 2 табл.
Основные результаты: Способ измерения редокс потенциала биологических сред путем определения потенциала рабочего электрода при разомкнутой цепи относительно хлорсеребряного электрода сравнения в тестируемой среде, отличающийся тем, что рабочий электрод подвергают предварительному катодно-анодному сканированию в растворе неорганического восстановителя в циклическом потенциодинамическом режиме в течение не менее пятидесяти циклов в диапазоне потенциалов от -600 до +600 мВ относительно хлорсеребряного электрода сравнения со скоростью не менее 500 мВ/с с платинированным титаном в качестве вспомогательного электрода, затем дополнительно проводят не менее десяти циклов в диапазоне потенциалов от +100 до +200 мВ со скоростью не менее 500 мВ/с, затем измеряют потенциал рабочего электрода при разомкнутой цепи относительно хлорсеребряного электрода сравнения в 0,05 до 0,5 М водном растворе сульфата натрия до диапазона потенциалов от 135 до 145 мВ с последующим измерением редокс потенциала биологических систем в режиме непрерывной записи изменения потенциала в течение не менее 30 мин.

Изобретение относится к способу измерения редокс потенциала биологических сред (кровь, плазма крови, сыворотка крови, спинномозговая жидкость, моча и др.), отражающему состояние окислительно-восстановительного равновесия исследуемой системы. Способ может быть использован для мониторинга изменения окислительно-восстановительного состояния организма с целью получения диагностической информации о состоянии пациента и обеспечения своевременной коррекции его лечения.

Известен способ определения оксидантно/антиоксидантной активности растворов. В данном способе оксидантно/антиоксидантную активность оценивают по изменению окислительно-восстановительного потенциала до и после введения анализируемого вещества в специальный раствор, содержащий медиаторную пару [патент РФ 2235998 С2].

Основным недостатком этого способа является необходимость введения в систему дополнительной окислительно-восстановительной пары, в том числе ионов тяжелых металлов (V, Fe, Sn). Также приводятся только дискретные значения величин окислительно-восстановительного потенциала (0,17 В и 0,21 В до и после введения пробы соответственно) без указания времени измерения.

Наиболее близким аналогом, выбранным за прототип, является способ оценки общего окислительного статуса жидких сред организма путем измерения их окислительно-восстановительного потенциала (ОВП). Показано, что метод может быть полезен для диагностики, оценки и контроля состояния пациентов, перенесших травму (например, травму головы), пациентов с подозрениями на критическое состояние либо пребывающих в критическом состоянии, пациентов с подозрением на инфекции и инфаркт миокарда, либо перенесших инфаркт миокарда. Кроме того, было обнаружено, что метод полезен при контроле и оценке сохранности препаратов крови, а также при мониторинге пациентов, которые получали такие препараты [патент США 0267074 А1].

Основным недостатком данного способа является невоспроизводимость метода измерения редокс потенциала, поскольку известно, что в процессе измерения на поверхности электрода возможно протекание процессов адсорбции белков и других компонентов исследуемых объектов, что приводит к загрязнению поверхности электрода и, как следствие, снижается точность измерений редокс потенциала. Кроме того, приведены только дискретные значения величины редокс потенциала в диапазоне от -4,1 до -34,0 мВ без указания времени, через которые они были получены, хотя известно, что редокс потенциал в биологических средах не достигает стационарного значения даже в течение длительного времени, поэтому необходимо регистрировать динамику изменения редокс потенциала во времени и принимать за конечную величину редокс потенциала значение через определенное время измерения.

Технической задачей способа является обеспечение точного и воспроизводимого измерения редокс потенциала электрода в биологических жидкостях (кровь, сыворотка крови, плазма крови, спинномозговая жидкость и др.) и тканях. Кроме того, необходимо непрерывно фиксировать изменения значения редокс потенциала, как для стандартизации времени измерения редокс потенциала, так и для получения дополнительной информации о тестируемой среде в ходе измерения.

Поставленная задача достигается тем, что рабочий электрод подвергают предварительному катодно-анодному сканированию в растворе неорганического восстановителя в циклическом потенциодинамическом режиме в течение не менее пятидесяти циклов в диапазоне потенциалов от -600 до +600 мВ относительно хлорсеребряного электрода сравнения со скоростью не менее 500 мВ/с с платинированным титаном в качестве вспомогательного электрода, затем дополнительно проводят не менее десяти циклов в диапазоне потенциалов от +100 до +200 мВ со скоростью не менее 500 мВ/с, затем измеряют потенциал рабочего электрода при разомкнутой цепи относительно хлорсеребряного электрода сравнения в 0,05 до 0,5 М водном растворе сульфата натрия до диапазона потенциалов от 135 до 145 мВ с последующим измерением редокс потенциала биологических систем в режиме непрерывной записи потенциала в течение не менее 30 минут.

Предлагаемый способ состоит в том, что платиновый рабочей электрод в виде проволоки, диска, стержня подвергается предварительному катодно-анодному сканированию в циклическом потенциодинамическом режиме. Электродом сравнения может служить стандартный хлорсеребряный электрод, изготовленный в виде стержня, проволоки или фольги, покрытых хлоридом серебра. Вспомогательным электродом может служить сетка, лист, фольга из платины, платинированной платины, платинированного титана, стеклоуглерода, термически расширенного графита.

Предлагаемый способ измерения редокс потенциала в биологических средах включает в себя: (а) катодно-анодное сканирование рабочего электрода в 0,05-0,2 молярном водном растворе неорганического восстановителя (сульфита натрия) в циклическом потенциодинамическом режиме с помощь потенциостата IPC-Compact в диапазоне потенциалов от -600 мВ (х.с.э.) до + 600 мВ (х.с.э.) в течение не менее 50 циклов при скорости развертки потенциала не менее 500 мВ/с, заТем в течение не менее 10 циклов в диапазоне потенциалов от +100 мВ (х.с.э.) до +200 мВ (х.с.э.) при скорости развертки потенциала не менее 500 мВ/с; (б) измерение потенциала при разомкнутой цепи рабочего электрода относительно хлорсеребряного электрода сравнения в водном растворе 0,05-0,5 молярного сульфата натрия с цельЮ контроля соответствия потенциала рабочего электрода стандартизованному значению, составляющему 140±5 мВ (х.с.э.); (в) измерение редокс потенциала рабочего электрода относительно хлорсеребряного электрода сравнения в тестируемой биологической среде в течение 30 минут, во время измерения производится постоянная запись изменения редокс потенциала с помощью потенциостата с компьютерным интерфейсом IPC-Compact, за величину редокс потенциала исследуемой среды принимается величина потенциала рабочего платинового электрода через 30 минут измерения.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1 (по прототипу).

Редокс потенциал плазмы крови практически здорового человека (как пример биологической системы) определяют путем измерения потенциала при разомкнутой цепи рабочего (платинового) электрода относительно хлорсеребряного электрода сравнения. Запись динамики изменения редокс потенциала проводится в течение 30 минут (Фиг.1). После каждого измерения, рабочий электрод промывается дистиллированной водой и погружается в исследуемую биологическую систему для следующего измерения. Таким образом проводят 3 последовательных измерения.

Как видно из данных (Фиг.1), наблюдается динамика изменения редокс потенциала плазмы крови в процессе измерения, причем даже через 30 минут его величина не достигает постоянного значения. Поэтому необходимо оговаривать период времени измерения величины редокс потенциала. Кроме того, при измерении в биологических средах, величина редокс потенциала, измеренная за определенное время, смещается в положительную сторону с каждым последующим измерением. Так, для первого измерения величина редокс потенциала через 30 минут составила -49,1 мВ, а для второго и третьего -33,5 мВ и -1,0 мВ соответственно, что связано с загрязнением поверхности электрода компонентами биологической среды.

Пример 2.

Рабочий (платиновый) электрод диаметром 1 мм подвергают катодно-анодному сканированию в водном растворе 0,1 М Na2SO3 30-ю циклами катодно-анодных импульсов напряжения со скоростью 500 мВ/с в диапазоне потенциалов от -600 до +600 мВ относительно хлорсеребряного электрода сравнения, платинированный титан используют в качестве вспомогательного электрода, после чего измеряют потенциал рабочего электрода в водном растворе 0,1 М Na2SO4 относительно хлорсеребряного электрода сравнения. Данные, полученные указанным образом, приведены в таблице 1.

Таблица 1
Значения редокс потенциала платинового электрода в 0,1М растворе Na2SO4
Номер измерения Величина редокс потенциала, мВ
1 123,62
2 113,58
3 120,92
4 111,26
5 106,43

Как видно из представленных данных, разброс данных измерений составляет ±8,73 мВ, что больше принятой нами величины ±5 мВ. Таким образом, обработка рабочего электрода в указанной области сканирования потенциалов не обеспечивает воспроизводимости результатов измерений.

Пример 3.

Рабочий (платиновый) электрод диаметром 1 мм подвергают катодно-анодному сканированию в водном растворе 0,1 М Na2SO3 50-ю циклами катодно-анодных импульсов напряжения со скоростью 500 мВ/с в диапазоне потенциалов от -600 до +600 мВ относительно хлорсеребряного электрода сравнения; платинированный титан используют в качестве вспомогательного электрода. Затем рабочий электрод сканируют 10-ю циклами в диапазоне потенциалов от +100 до +200 мВ при скорости развертки 500 мВ/с.После этого измеряют потенциал рабочего электрода в водном растворе 0,1 М Na2SO4 относительно хлорсеребряного электрода сравнения. Данные, полученные указанным образом, приведены в таблице 2.

Таблица 2
Значения редокс потенциала платинового электрода в 0,1М растворе Na2SO4
Номер измерения Величина редокс потенциала, мВ
1 145,62
2 144,27
3 140,16
4 141,02
5 143,3

Как видно из представленных данных, разброс измерений не превышает ±5 мВ, что обеспечивает воспроизводимость результатов измерений с высокой точностью.

Пример 4.

Платиновый электрод диаметром 1 мм подвергают катодно-анодному сканированию в водном растворе 0,1 М Na2SO3 50-ю циклами внешних импульсов напряжения со скоростью 500 мВ/с в диапазоне потенциалов от -600 до +600 мВ относительно хлорсеребряного электрода сравнения, платинированный титан испольуют в качестве вспомогательного электрода; после этого платиновый электрод сканируют 10-ю циклами в диапазоне потенциалов от +100 до +200 мВ при скорости развертки 500 мВ/с. Затем измеряют потенциал рабочего электрода в водном растворе 0,1 М Na2SO4 относительно хлорсеребряного электрода сравнения. После указанной обработки платинового электрода производят измерение редокс потенциала плазмы крови практически здорового человека в течение 30 минут (Фиг.2). После каждого измерения электрод вновь подвергают электрохимической обработке и контролю потенциала в деоксигенированном водном растворе 0,1М Na2SO4.

Как видно из данных (Фиг.2), редокс потенциал плазмы крови через 30 минут измерения составил -63,4 мВ, -63,2 мВ и -56,7 мВ, причем разброс данных измерений не превышает ±4,4 мВ против ±6,8 мВ [патент США 0267074]. Таким образом, предлагаемая предварительная обработка рабочего электрода обеспечивает воспроизводимость результатов измерений с ошибкой не более ±5 мВ.

Пример 5.

Проводят ежедневный мониторинг величины редокс потенциала сыворотки крови пациента К. Перед проведением измерения в биологической среде рабочий (платиновый) электрод подвергают анодно-катодной обработке в водном растворе 0,1 М Na2SO3 50-ю циклами катодно-анодных импульсов напряжения со скоростью 500 мВ/с в диапазоне потенциалов от -600 до +600 мВ относительно хлорсеребряного электрода сравнения и платинированным титаном в качестве вспомогательного электрода, после этого платиновый электрод сканируют 10-ю циклами в диапазоне потенциалов от +100 до +200 мВ при скорости развертки 500 мВ/с. Затем измеряют потенциал рабочего электрода в водном растворе 0,1 М Nа2SO4 относительно хлорсеребряного электрода сравнения. После этого проводят измерение редокс потенциала сыворотки крови пациента. За величину редокс потенциала принято значение потенциала рабочего электрода при разомкнутой цепи через 30 минут измерения.

Как видно из Фиг.3, редокс потенциал биологической среды отражает состояние пациента, что характеризуется смещением потенциала в положительную сторону с 1-ых по 7-ые сутки в связи с наличием у пациента воспалительного процесса, после 7-ых суток состояние пациента улучшается и наблюдается положительная динамика лечения, что совпадает с данными редокс потенциала (смещение РП в более отрицательную сторону). Т.е. можно сказать, что редокс потенциал сыворотки крови можно использовать в качестве диагностического критерия состояния пациента.

Как видно из примеров, без предварительной обработки платинового электрода невозможно получить воспроизводимые результаты измерений редокс потенциала. Это проблема решается предлагаемым способом электрохимической предобработки платинового электрода, который обеспечивает ошибку измерений не более ±5 мВ. Кроме того, из представленных данных видно, что редокс потенциал в биологических средах не достигает стационарного значения даже в течение длительного времени, поэтому необходимо регистрировать динамику изменения редокс потенциала во времени и принимать за конечную величину редокс потенциала значение через определенное время измерения (не менее 30 минут). Таким мониторинг РП сыворотки крови может быть использован в качестве диагностического критерия для оценки состояния пациентов и качества проводимых лечебных процедур.

Способ измерения редокс потенциала биологических сред путем определения потенциала рабочего электрода при разомкнутой цепи относительно хлорсеребряного электрода сравнения в тестируемой среде, отличающийся тем, что рабочий электрод подвергают предварительному катодно-анодному сканированию в растворе неорганического восстановителя в циклическом потенциодинамическом режиме в течение не менее пятидесяти циклов в диапазоне потенциалов от -600 до +600 мВ относительно хлорсеребряного электрода сравнения со скоростью не менее 500 мВ/с с платинированным титаном в качестве вспомогательного электрода, затем дополнительно проводят не менее десяти циклов в диапазоне потенциалов от +100 до +200 мВ со скоростью не менее 500 мВ/с, затем измеряют потенциал рабочего электрода при разомкнутой цепи относительно хлорсеребряного электрода сравнения в 0,05 до 0,5 М водном растворе сульфата натрия до диапазона потенциалов от 135 до 145 мВ с последующим измерением редокс потенциала биологических систем в режиме непрерывной записи изменения потенциала в течение не менее 30 мин.
СПОСОБ ИЗМЕРЕНИЯ РЕДОКС ПОТЕНЦИАЛА БИОЛОГИЧЕСКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ РЕДОКС ПОТЕНЦИАЛА БИОЛОГИЧЕСКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ РЕДОКС ПОТЕНЦИАЛА БИОЛОГИЧЕСКИХ СРЕД
Источник поступления информации: Роспатент

Показаны записи 11-20 из 44.
20.07.2014
№216.012.e1b1

Технология получения костного мозга от доноров-трупов с бьющимся и не бьющимся сердцем

Группа изобретений относится к области медицины и может быть использована для получения костного мозга (КМ) от доноров-трупов. Для этого пунктируют крылья подвздошных костей в передней и задней трети крыльев, устанавливая в каждое по два троакара. Сбор КМ выполняют методом простой аспирации,...
Тип: Изобретение
Номер охранного документа: 0002523563
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1b2

Способ измерения антиоксидантной активности биологических жидкостей

Изобретение относится к медицине и может быть использовано для электрохимического определения антиоксидантной активности биологических жидкостей, например плазмы или сыворотки крови. Способ включает приготовление эквимолярного водного раствора медиаторной пары хинон/гидрохинон в фосфатном...
Тип: Изобретение
Номер охранного документа: 0002523564
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e215

Способ прогнозирования начальной функции почечного аллотрансплантата в раннем послеоперационном периоде

Изобретение относиться к медицине, а именно к трансплантологии, и может быть использовано при осуществлении прогнозирования функции почечного аллотрансплантата после трансплантации почки. Для этого через 30 минут после артериальной реперфузии донорской почки, в ее корковое вещество имплантируют...
Тип: Изобретение
Номер охранного документа: 0002523663
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e3c9

Узел циркуляции для хвостовика обсадной колонны

Изобретение относится к устройствам для цементирования потайных обсадных колонн - хвостовиков обсадных колонн. Узел циркуляции для хвостовика обсадной колонны включает корпус, помещенный в нижней части транспортировочной колонны выше узла ее соединения с хвостовиком. Корпус выполнен с...
Тип: Изобретение
Номер охранного документа: 0002524103
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e5cd

Способ изготовления дермального матрикса

Изобретение относится к медицине, в частности к хирургии, травматологии, трансплантологии, кумбостиологии, и представляет собой способ изготовления дермального матрикса (ДМ). Способ включает забор кожи у донора-трупа в операционной дерматомом по стандартной методике с соблюдением правил...
Тип: Изобретение
Номер охранного документа: 0002524619
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e7f8

Способ очистки воды

Изобретение может быть использовано в области водоочистки подземных и поверхностных вод от железа и для получения питьевой воды для небольших населенных пунктов, сельскохозяйственных комплексов. Способ очистки воды включает прокачивание очищаемой воды в режиме кавитации через волновое...
Тип: Изобретение
Номер охранного документа: 0002525177
Дата охранного документа: 10.08.2014
27.08.2014
№216.012.ee40

Способ местного лечения ран с помощью биологической повязки, содержащей живые клетки линии диплоидных фибробластов человека

Представленная группа изобретений относится к медицине, а именно к дерматологии и хирургии. Способ местного лечения ран, включающий использование биологической повязки, которую накладывают на поверхность раны. Биологическая повязка содержит полимерное основание из гидрофобной перфорированной...
Тип: Изобретение
Номер охранного документа: 0002526811
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee42

Комбинированный трансплантат дермального матрикса с мезенхимальными мультипотентными стромальными клетками, способ его получения и способ лечения ран с его использованием

Группа изобретений относится к медицине, а именно к биотехнологии, и может быть использована для восстановления кожного покрова с обширными травматическими ранами с дефектом мягких тканей. Комбинированный трансплантат (КТ) представляет собой дермальный матрикс (ДМ), полученный из донорского...
Тип: Изобретение
Номер охранного документа: 0002526813
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee43

Способ восстановления кожного покрова у пациентов с обширными ранами с дефектом мягких тканей (варианты)

Представленная группа изобретений относится к медицине, а именно к дерматологии и хирургии, и может быть применено для восстановления кожного покрова у пациентов с обширными травматическими ранами с дефектом мягких тканей. Для этого выполняют иссечение утильной кожи по краям раны. Иссеченную...
Тип: Изобретение
Номер охранного документа: 0002526814
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ef5f

Устройство для приведения в действие узла оснастки обсадной колонны скважины

Изобретение относится к строительству и эксплуатации нефтяных и газовых скважин. Устройство включает корпус с радиальным отверстием, полый срезной штифт, эластичную манжету и толкатель. Срезной штифт перекрывает радиальное отверстие внутри корпуса и выступает внутрь корпуса. Эластичная манжета...
Тип: Изобретение
Номер охранного документа: 0002527098
Дата охранного документа: 27.08.2014
Показаны записи 11-20 из 56.
20.07.2014
№216.012.e1b1

Технология получения костного мозга от доноров-трупов с бьющимся и не бьющимся сердцем

Группа изобретений относится к области медицины и может быть использована для получения костного мозга (КМ) от доноров-трупов. Для этого пунктируют крылья подвздошных костей в передней и задней трети крыльев, устанавливая в каждое по два троакара. Сбор КМ выполняют методом простой аспирации,...
Тип: Изобретение
Номер охранного документа: 0002523563
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1b2

Способ измерения антиоксидантной активности биологических жидкостей

Изобретение относится к медицине и может быть использовано для электрохимического определения антиоксидантной активности биологических жидкостей, например плазмы или сыворотки крови. Способ включает приготовление эквимолярного водного раствора медиаторной пары хинон/гидрохинон в фосфатном...
Тип: Изобретение
Номер охранного документа: 0002523564
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e215

Способ прогнозирования начальной функции почечного аллотрансплантата в раннем послеоперационном периоде

Изобретение относиться к медицине, а именно к трансплантологии, и может быть использовано при осуществлении прогнозирования функции почечного аллотрансплантата после трансплантации почки. Для этого через 30 минут после артериальной реперфузии донорской почки, в ее корковое вещество имплантируют...
Тип: Изобретение
Номер охранного документа: 0002523663
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e3c9

Узел циркуляции для хвостовика обсадной колонны

Изобретение относится к устройствам для цементирования потайных обсадных колонн - хвостовиков обсадных колонн. Узел циркуляции для хвостовика обсадной колонны включает корпус, помещенный в нижней части транспортировочной колонны выше узла ее соединения с хвостовиком. Корпус выполнен с...
Тип: Изобретение
Номер охранного документа: 0002524103
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e5cd

Способ изготовления дермального матрикса

Изобретение относится к медицине, в частности к хирургии, травматологии, трансплантологии, кумбостиологии, и представляет собой способ изготовления дермального матрикса (ДМ). Способ включает забор кожи у донора-трупа в операционной дерматомом по стандартной методике с соблюдением правил...
Тип: Изобретение
Номер охранного документа: 0002524619
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e7f8

Способ очистки воды

Изобретение может быть использовано в области водоочистки подземных и поверхностных вод от железа и для получения питьевой воды для небольших населенных пунктов, сельскохозяйственных комплексов. Способ очистки воды включает прокачивание очищаемой воды в режиме кавитации через волновое...
Тип: Изобретение
Номер охранного документа: 0002525177
Дата охранного документа: 10.08.2014
27.08.2014
№216.012.ee40

Способ местного лечения ран с помощью биологической повязки, содержащей живые клетки линии диплоидных фибробластов человека

Представленная группа изобретений относится к медицине, а именно к дерматологии и хирургии. Способ местного лечения ран, включающий использование биологической повязки, которую накладывают на поверхность раны. Биологическая повязка содержит полимерное основание из гидрофобной перфорированной...
Тип: Изобретение
Номер охранного документа: 0002526811
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee42

Комбинированный трансплантат дермального матрикса с мезенхимальными мультипотентными стромальными клетками, способ его получения и способ лечения ран с его использованием

Группа изобретений относится к медицине, а именно к биотехнологии, и может быть использована для восстановления кожного покрова с обширными травматическими ранами с дефектом мягких тканей. Комбинированный трансплантат (КТ) представляет собой дермальный матрикс (ДМ), полученный из донорского...
Тип: Изобретение
Номер охранного документа: 0002526813
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee43

Способ восстановления кожного покрова у пациентов с обширными ранами с дефектом мягких тканей (варианты)

Представленная группа изобретений относится к медицине, а именно к дерматологии и хирургии, и может быть применено для восстановления кожного покрова у пациентов с обширными травматическими ранами с дефектом мягких тканей. Для этого выполняют иссечение утильной кожи по краям раны. Иссеченную...
Тип: Изобретение
Номер охранного документа: 0002526814
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ef5f

Устройство для приведения в действие узла оснастки обсадной колонны скважины

Изобретение относится к строительству и эксплуатации нефтяных и газовых скважин. Устройство включает корпус с радиальным отверстием, полый срезной штифт, эластичную манжету и толкатель. Срезной штифт перекрывает радиальное отверстие внутри корпуса и выступает внутрь корпуса. Эластичная манжета...
Тип: Изобретение
Номер охранного документа: 0002527098
Дата охранного документа: 27.08.2014
+ добавить свой РИД