×
27.10.2013
216.012.7ab6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ АСТРОНОМИЧЕСКОГО АЗИМУТА И ШИРОТЫ ПО НЕИЗВЕСТНЫМ ЗВЕЗДАМ

Вид РИД

Изобретение

№ охранного документа
0002497076
Дата охранного документа
27.10.2013
Аннотация: Изобретение относится к области астрономо-геодезических измерений и может быть использовано для определения по звездам астрономических азимутов направлений на земные ориентиры для решения разнообразных задач инженерной геодезии. Способ определения астрономического азимута и широты по неизвестным звездам включает измерение теодолитом зенитных расстояний наблюдаемой неизвестной звезды и горизонтальных направлений на нее и на земной предмет, вычисление места севера и азимута как разности горизонтального направления на земной предмет и места севера. Измерения теодолитом проводят четырехкратно через промежутки времени не более 60 мин и место севера вычисляют по формуле: tg M=A/B, а широту определяют дважды по формулам: tg φ=[sin z cos(N-M)-sin z(N-M]:(cos z-z); tg φ=[sin z cos (N-M)-sin z(N-M)]:(cos z-z). Техническим результатом является расширение функциональных возможностей и повышение точности совместного определения азимута и широты. 4 ил.
Основные результаты: Способ определения астрономического азимута и широты по неизвестным звездам, включающий измерение теодолитом зенитных расстояний наблюдаемой неизвестной звезды и горизонтальных направлений на нее и на земной предмет, вычисление места севера и азимута как разности горизонтального направления на земной предмет и места севера, отличающийся тем, что измерение теодолитом производят четырехкратно через промежутки времени не более 60 мин, и место севера вычисляют по формуле:tgM=A/B;где А и В вычисляют по формулам:A=-b cos N+a cos N+d cos N-c cos N;B=+b sin N-a sin N-d sin N+c sin N,где коэффициенты a, b, с, d вычисляют по формулам:a=sin z:(cos z-z); b=sin z:(cos z-z);c=sin z:(cos z-z); d=sin z:(cos z-z);где N, N, N, N - горизонтальные направления на наблюдаемую неизвестную звезду в четырех точках суточной параллели, измеренные по горизонтальному кругу теодолита; z, z, z, z - зенитные расстояния в четырех точках суточной параллели наблюдаемой неизвестной звезды, определяемые по формуле, соответствующей данному типу теодолита, по данным вертикального круга теодолита, а широту определяют дважды по формулам:tg φ=[sin z cos(N-M)-sin z cos(N-M)]:(cos z-cos z);tg φ=[sin z cos(N-M)-sin z cos(N-M)]:(cos z-cos z).

Изобретение относится к области астрономо-геодезических измерений и может быть использовано для определения по звездам астрономических азимутов направлений на земные ориентиры для решения разнообразных задач инженерной геодезии.

Известен способ определения азимута земного предмета (Колесниченко А.Е. Астрономическое определение азимута земного предмета. Артиллерийский журнал, №6, стр.24-28, 1951 г.), включающий измерение зенитные расстояния одной и той же звезды дважды через небольшой промежуток времени. Зная широту места, находят азимут а звезды в момент ее наблюдения по формуле:

A=O-N,

где О - среднее значение направления на звезду,

N=C0-b0+Θ,

здесь С0 - средний отсчет по горизонтальному кругу на звезду.

b0=arc tg[ΔZ0/(tg Z0 tg ΔC0)],

Θ=arc sin[(tg φ tg Z0 sin b0)/cos C0],

ΔZ0=(Z2-Z1)/2; Z0=(Z2+Z1)/2;

ΔC0=(C2-C1)/2.

Точность определения азимута зависит от точности угловых измерений теодолитом и точности знания широты места наблюдения.

Недостатком является необходимость знание географической широты места стояния теодолита.

Известен способ определения азимута по неизвестной звезде (Колесниченко А.Е., Трофименко В.Т. О точности определения азимута по неизвестной звезде. Геодезия и картография, №6, стр.14-17, 1988 г.), включающий измерение дважды через небольшой промежуток времени зенитных расстояний и направлений на одну и ту же неизвестную звезду. Азимут А местного предмета вычисляют по формуле:

А=М-MN,

где М - отсчет по горизонтальному кругу на земной предмет,

MN - место севера.

MN=Θ-b+N0,

где Θ=arc sin[(tg φ tg z0 sin b cos ΔN)/2],

b=arc ctg[(tg z0 ctg Δz tg ΔN)/2],

где z0 и Δz - полусумма и разность зенитных расстояний z2 и z1;

N0 и ΔN - полусумма и разность направлений на звезду.

Широта места снимается с топографической карты. Недостатком способа является предварительное знание широты места.

Известен способ определения широты и азимута по звезде с неизвестными координатами (Пандул И.С. Определение широты и азимута без помощи хронометра по звезде с неизвестными координатами. // Сб. «Записки горного института», том 156, СПГГИ, 2004 г., с.225-228), принятый за прототип. Азимут, отсчитываемый от точки севера, и широту определяют по 4-кратным измерениям зенитных расстояний одной и той же неизвестной звезды, горизонтальных направлений на нее и по измерению разности часовых углов с помощью среднего секундомера. Способ включает помимо измерения горизонтальных направлений и зенитных расстояний, замеры разности часовых углов звезды с помощью секундомера. Знание широты места наблюдателя не требуется. Азимут А вычисляют по формулам

A=N0-MN,

где N0 - горизонтальное направление на земной предмет,

MN - место севера, соответствующее направлению меридиана на местности,

MN=N1-A1,

где N1 - измеренное теодолитом горизонтальное направление на первую точку суточной параллели некоторой звезды,

А1=arc cos[(sin δ - sin φ cos z1): sin z1 cos φ],

где δ=arc sin(sin φ cos z1 + cos φ sin z1 cos A1),

φ=arc sin(cos z2 sin δ + sin z2 cos δ cos q2),

q2 - параллактический угол второго параллактического треугольника.

Недостатком способа является значительное снижение точности определяемого азимута за счет одновременного применения теодолита и секундомера. Способ пригоден только для грубых определений.

Техническим результатом предлагаемого способа является расширение возможностей и повышение точности совместного определения азимута и широты.

Технический результат достигается тем, что в способе определения астрономического азимута на земной предмет и его широты, включающем измерение теодолитом зенитных расстояний наблюдаемой неизвестной звезды и горизонтальных направлений на нее и на земной предмет без применения секундомера, вычисление места севера и азимута как разности горизонтального направления на земной предмет и места севера, измерения теодолитом проводят четырехкратно через промежутки времени не более 60 мин, и место севера вычисляют по формуле:

tg MN=А/В,

где А и В вычисляют по формулам:

А=-b cos N1 + a cos N2 + d cos N3 - с cos N4,

В=+b sin N1 - a sin N2 - d sin N3 + с sin N4,

где коэффициенты а, b, с, d вычисляют по формулам:

а=sin z2:(cos z1-z2);

b=sin z1:(cos z1-z2);

c=sin z4:(cos z3-z4);

d=sin z3:(cos z3-z4);

где N1, N2, N3, N4 - горизонтальные направления на наблюдаемую неизвестную звезду в четырех точках ее суточной параллели, измеренные по горизонтальному кругу теодолита,

z1, z2, z3 z4 - зенитные расстояния в четырех точках суточной параллели наблюдаемой неизвестной звезды, определяемые по формуле, соответствующей данному типу теодолита, по данным вертикального круга теодолита, а широту определяют дважды по формулам:

tg φ=[sin z2 cos (N2-MN)-sin z1(N1-MN)]:(cos z1-z2),

tg φ=[sin z4 cos (N4-MN)-sin z3(N3-MN)]:(cos z3-z4).

Для обоснования и вывода формулы для определения астрономического азимута земного предмета воспользуемся фиг.1, где представлен параллактический треугольник светила σ1. Пусть теодолитом измерены через определенный промежуток времени горизонтальные направления N1 и N2, и зенитные расстояния z1 и z2 двух точек суточной параллели некоторой звезды.

Здесь MN - место севера, Δ - полярное расстояние, Δ=90°-δ.

Зная место севера, всегда легко получить астрономический азимут направления на земной предмет

где N0 - горизонтальное направление на земной предмет.

Широту определяют по формулам (4) и (5).

Сходимость широт φ вычисленных по формулам (4) и (5) служит контролем вычислений. Формулами (9-10) следует пользоваться при определении искомого азимута. Формулы легко программируются с помощью стандартной программы Mathcad и вычисления выполненных наблюдений занимают совсем мало времени.

Способ осуществляют следующим образом. Выбирают звезду в западной или восточной части неба. Наблюдения восточной звезды следует начинать, а западной - заканчивать невысоко над горизонтом. Наблюдают любую звезду, заметную и легко опознаваемую для повторных наблюдений. Чтобы не потерять выбранную звезду, ее надо гидировать, удерживая все время в поле зрения грубы теодолита. Звезда должна быть не ближе 35° к меридиану наблюдателя, для чего теодолит следует грубо ориентировать в меридиане по компасу или на глаз. Измеренное зенитное расстояние отягощено приборными погрешностями, ошибкой наведения на звезду и ошибкой определения астрономической рефракции. Для уменьшения влияния ошибки рефракции следует наблюдать звезду, если ее зенитное расстояние менее 80°. Для учета астрономической рефракции в каждом приеме необходимо измерять температуру t°С и атмосферное давление воздуха В (в мм рт.ст.).

Порядок наблюдений следующий. Для наблюдений используют теодолит (желательно с накладным уровнем), наружный термометр, барометр-анероид, карманный фонарик и световая визирная цель. Для обеспечения устойчивости теодолита ножки штатива следует устанавливать на кирпичи или вбитые в землю колья.

Первый полуприем - круг лево (круг право):

1) визирование на земной предмет: отсчеты N0 по горизонтальному и Л, П по вертикальному кругам (при двух положениях вертикального круга). Перед каждым отсчетом по вертикальному кругу пузырек уровня при алидаде вертикального круга приводят в нульпункт;

2) визирование на звезду и взятием отсчетов N1 по горизонтальному и Л1 по вертикальному кругам;

3) приблизительно через час вторичное визирование на ту же звезду и взятие отсчетов N2 по горизонтальному и Л2 по вертикальному кругам;

Далее следует перерыв в наблюдениях при смене кругов в течении примерно 10-15 минут.

Второй полуприем - круг право (круг лево):

4) визирование на ту же звезду, отсчеты N3 по горизонтальному и П3 по вертикальному кругам;

5) через час вторичное визирование на звезду и отсчеты N4 по горизонтальному и П4 по вертикальному кругам;

6) повторное визирование на земной предмет: отсчеты N′0 по горизонтальному и П', Л' по вертикальному кругам (при двух положениях вертикального круга). Вертикальный круг при визировании на земной предмет отсчитывают для последующего вычисления места зенита MZ. Полный прием измерений занимает не более 135 мин.

Методика визирования на звезду. После грубого захвата звезды горизонтальную нить следует установить на пути видимого движения звезды в поле зрения грубы. Ввести изображение звезды в биссектор и удерживать его там до контакта с горизонтальной нитью. В этот момент надо прекратить вращение наводящего винта алидады и последовательно отсчитать вертикальный и горизонтальный круги теодолита, предварительно убедившись в том, что пузырек уровня при алидаде вертикального круга находится в нульпункте. При выполнении приема в промежутках между наблюдениями звезды измерять температуру и атмосферное давление воздуха, необходимые для вычисления астрономической рефракции ρ. Для вычисления этих поправок брать метеоданные для конкретных наблюдений.

Для уменьшения ряда ошибок, в частности ошибки определения широты желательно отнаблюдать другую звезду в противоположной стороне неба по изложенной выше методике.

Методика вычислений.

Вычисляют место зенита вертикального круга MZ по формуле, например, для теодолита Theo - 010

MZ=0,5(Л+П±360°),

где Л, П - отсчеты по вертикальному лимбу при двух положениях (справа и слева от наблюдателя). Затем вычисляют видимые зенитные расстояния z1, z2, z3, z4 - зенитные расстояния в четырех точках суточной параллели наблюдаемой звезды, определяемые по формуле, соответствующей данному типу теодолита, по данным вертикального круга теодолита. Например, для теодолита Theo - 010,

z=0,5 (Л-П±360°),

z=Л-MZ,

z=MZ-П.

Истинные зенитные расстояния z получить, как z=z'+ρ, где ρ - истинная астрономическая рефракция, которую можно вычислить по формуле

Затем по формулам (6, 7) вычисляют a, b, с, d и по формулам (9) А и В и место севера. Вычисления места севера MN по каждому отдельному полуприему будут различаться между собой вследствие влияния ошибки в определении MZ, поэтому на последнем этапе вычислений берут среднее значение места севера из приема.

По формуле (10) вычисляют астрономический азимут направления на земной предмет Л и по формулам (4, 5) широту места φ.

Пример. Проведен полевой эксперимент. Астрономические наблюдения азимута и широты способом выполнены летом 2011 года на Бережанском геодезическом полигоне с помощью точного оптического теодолита Theo-010. Наблюдения выполнялись по линии В-14 - АС-1 длиной 500 м. Координаты пунктов, широта и азимут линии определены из астрономических наблюдений 1 класса и приняты за эталонные:

φ0=49° 27' 40” N, A0=131° 56' 43”. Теодолит Theo-010 был установлен на пункте В-14, а световая визирная цель - на пункте АС-1. В разные дни выполнены 4 приема измерений.

Результаты измерений и вычислений представлены на фиг.2, фиг.3 и фиг.4. Средняя квадратическая погрешность определения азимута из четырех приемов mA=±11”. Средняя квадратическая погрешность определения широты из четырех приемов mφ=±15”. Полевой эксперимент подтвердил достоверность вывода рабочих формул способа.

Таким образом, способ позволяет определить астрономический азимут направления на земной предмет с точностью ±10” и широту с точностью ±15” по некоторой неизвестной звезде без знания географических координат места наблюдения, точного звездного времени, названия и экваториальных координат наблюдаемой звезды.

Способ определения астрономического азимута и широты по неизвестным звездам, включающий измерение теодолитом зенитных расстояний наблюдаемой неизвестной звезды и горизонтальных направлений на нее и на земной предмет, вычисление места севера и азимута как разности горизонтального направления на земной предмет и места севера, отличающийся тем, что измерение теодолитом производят четырехкратно через промежутки времени не более 60 мин, и место севера вычисляют по формуле:tgM=A/B;где А и В вычисляют по формулам:A=-b cos N+a cos N+d cos N-c cos N;B=+b sin N-a sin N-d sin N+c sin N,где коэффициенты a, b, с, d вычисляют по формулам:a=sin z:(cos z-z); b=sin z:(cos z-z);c=sin z:(cos z-z); d=sin z:(cos z-z);где N, N, N, N - горизонтальные направления на наблюдаемую неизвестную звезду в четырех точках суточной параллели, измеренные по горизонтальному кругу теодолита; z, z, z, z - зенитные расстояния в четырех точках суточной параллели наблюдаемой неизвестной звезды, определяемые по формуле, соответствующей данному типу теодолита, по данным вертикального круга теодолита, а широту определяют дважды по формулам:tg φ=[sin z cos(N-M)-sin z cos(N-M)]:(cos z-cos z);tg φ=[sin z cos(N-M)-sin z cos(N-M)]:(cos z-cos z).
СПОСОБ ОПРЕДЕЛЕНИЯ АСТРОНОМИЧЕСКОГО АЗИМУТА И ШИРОТЫ ПО НЕИЗВЕСТНЫМ ЗВЕЗДАМ
СПОСОБ ОПРЕДЕЛЕНИЯ АСТРОНОМИЧЕСКОГО АЗИМУТА И ШИРОТЫ ПО НЕИЗВЕСТНЫМ ЗВЕЗДАМ
СПОСОБ ОПРЕДЕЛЕНИЯ АСТРОНОМИЧЕСКОГО АЗИМУТА И ШИРОТЫ ПО НЕИЗВЕСТНЫМ ЗВЕЗДАМ
СПОСОБ ОПРЕДЕЛЕНИЯ АСТРОНОМИЧЕСКОГО АЗИМУТА И ШИРОТЫ ПО НЕИЗВЕСТНЫМ ЗВЕЗДАМ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 195.
27.03.2014
№216.012.aec9

Гидрофицированная крепь с регулируемым сопротивлением и рекуперацией энергии

Изобретение относится к горному делу, а именно к области крепления кровли очистных выработок с помощью секций механизированных крепей. Гидрофицированная крепь с регулируемым сопротивлением и рекуперацией энергии содержит гидростойку с подключенными к ее поршневой полости предохранительным...
Тип: Изобретение
Номер охранного документа: 0002510460
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.b3a7

Стенд для ударных испытаний

Изобретение относится к испытательной технике, к испытаниям на прочность образцов материалов и изделий. Стенд содержит основание, шаровой ударник, приспособление для сброса ударника, закрепленную на основании направляющую трубу для перемещения в ней ударника, выполненную с двумя параллельными...
Тип: Изобретение
Номер охранного документа: 0002511707
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3ac

Стенд для испытания длинномерных образцов при многоточечном изгибе

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит основание, опорный элемент в виде трубы, нагружатели, установленные на внутренней поверхности трубы, разъемные фиксаторы нагружателей на трубе и захваты, размещенные по длине образца и связанные с...
Тип: Изобретение
Номер охранного документа: 0002511712
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b837

Устройство компенсации высших гармоник и коррекции коэффициента мощности сети

Изобретение относится к электротехнике и электроэнергетике, а именно к устройствам подавления и компенсации высших гармоник в электрических сетях и коррекции коэффициента мощности. Технический результат заключается в снижении коэффициента искажения синусоидальной формы кривых тока и напряжения...
Тип: Изобретение
Номер охранного документа: 0002512886
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b903

Скребковый конвейер

Скребковый конвейер содержит замкнутый на приводной и натяжной звездочках двухцепной тяговый контур с закрепленными на цепях (1, 2) скребками (3) и ходовыми опорными катками (4, 5) с возможностью их перемещения по закрепленным на несущем желобе (6) направляющим (7, 8). Каждый скребок выполнен с...
Тип: Изобретение
Номер охранного документа: 0002513091
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.ba5e

Шахтная подъемная установка

Шахтная подъемная установка содержит установленный на раме, кинематически связанный с приводным блоком и тормозом, приводной барабан с закрепленным на нем концом соединенного с поднимаемым сосудом стального проволочного каната, огибающего отклоняющий блок. Рама с установленными на ней...
Тип: Изобретение
Номер охранного документа: 0002513438
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.ba7f

Способ прокладки магистрального трубопровода на обводненных и деформируемых грунтовых основаниях

Изобретение относится к трубопроводному транспорту, прокладываемому на обводненных и деформируемых грунтовых основаниях. Способ прокладки магистрального трубопровода на обводненных и деформируемых грунтовых основаниях включает технические решения, обеспечивающие надежное удержание трубопровода...
Тип: Изобретение
Номер охранного документа: 0002513471
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bae8

Шнековая установка для добычи торфа

Изобретение относится к к области разработки полезных ископаемых открытым способом, а именно к разработке торфяных и торфолечебных залежей преимущественно в мерзлом состоянии. Техническим результатом является увеличение производительности шнековой установки для добычи торфа. Установка содержит...
Тип: Изобретение
Номер охранного документа: 0002513576
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.baeb

Буровзрывомеханический способ скоростного проведения подземных выработок по крепким породам

Изобретение относится к горному делу, а именно к способам проведения горных выработок по крепким породам буровзрывным и взрывомеханическим способами, и может быть использовано при скоростном проведении подземных горных выработок, штолен, туннелей по крепким породам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002513579
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb81

Способ разработки мощных крутопадающих рудных тел

Изобретение относится к горнодобывающей промышленности и может быть использовано при подземной разработке крутопадающих месторождений, представленных неустойчивыми рудами и вмещающими породами. Способ разработки мощных крутопадающих рудных тел включает разделение рудного тела на слои,...
Тип: Изобретение
Номер охранного документа: 0002513729
Дата охранного документа: 20.04.2014
+ добавить свой РИД