×
20.10.2013
216.012.7662

СПОСОБ ПОЛИРОВАНИЯ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к электролитно-плазменному полированию деталей из титановых сплавов и может быть использовано в турбомашиностроении при полировании рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих установок и компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий. Обрабатываемую деталь погружают в электролит, формируют вокруг обрабатываемой поверхности детали парогазовую оболочку и зажигают разряд между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала. При этом используют обрабатываемую деталь из титанового сплава, не содержащего ванадий. К обрабатываемой детали прикладывают электрический потенциал от 340 В до 360 В, а в качестве электролита используют водный раствор смеси NHF и KF при их содержании: NHF - от 5 г/л до 15 г/л, KF - от 30 г/л до 50 г/л, при этом полирование ведут при температуре от 75°C до 85°C в течение не менее 1,5 минут. Использование изобретения позволяет повысить качество обработки и надежность процесса полирования, а также снижается трудоемкость за счет одноэтапной обработки. 9 з.п. ф-лы, 1 табл., 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к способам полирования деталей из титановых сплавов, основанных на использовании электролитно-плазменной обработки и может быть использовано в турбомашиностроении при полировании рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих установок и компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий.

Для изготовления лопаток турбомашин применяются титановые сплавы, которые по сравнению со стальными лопатками обладают более высокой прочностью, в том числе и при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость.

Однако лопатки турбомашин из титановых сплавов обладают повышенной чувствительностью к концентраторам напряжения. Поэтому дефекты, образующиеся в процессе изготовления этих деталей, недопустимы, поскольку вызывают возникновение интенсивных процессов разрушения. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.

Наиболее перспективными методами обработки лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л., Машиностроение, 1987], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) №238074 (A1), МПК C25F 3/16, опубл. 06.08.86, а также Патент РБ №1132, МПК C25 F 3/16, 1996, БИ №3].

Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3], а также способ электрохимического полирования [Патент США №5028304, МПК B23H 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.91].

Известные способы электрохимического полирования не позволяют производить качественное полирование поверхности деталей из титановых сплавов.

Наиболее близким к заявляемому техническому решению является способ электролитно-плазменного полирования детали из титановых сплавов, включающий погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала [Патент РФ №2373306, МПК C25F 3/16. Бюл №32, 2009].

Однако известный способ [Патент РФ №2373306] является многостадийным, что приводит с одной стороны к возрастанию сложности процесса обработки деталей, снижению качества и надежности процесса обработки из-за необходимости обеспечения большего количества параметров процесса и их соотношений, а также к повышению его трудоемкости.

Задачей, на решение которой направлено заявляемое изобретение, является повышение качества обработки и надежность процесса полирования деталей из титановых сплавов, а также снижения его трудоемкости за счет использования одноэтапной обработки деталей.

Поставленная задача решается за счет того, что в способе полирования деталей из титановых сплавов, включающем погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала, в отличие от прототипа, используют деталь из титанового сплава, не содержащего ванадий, к обрабатываемой детали прикладывают электрический потенциал от 340 В до 360 В, а в качестве электролита используют водный раствор смеси NH4F и KF при их следующем содержании: NH4F - от 5 г/л до 15 г/л, KF - от 30 г/л до 50 г/л, а полирование ведут при температуре от 75°C до 85°C в течение не менее 1,5 минут, при этом возможно использование следующих вариантов: полирование ведут при величине тока от 0,2 А/дм2 до 0,5 А/дм2, в качестве деталей используют лопатку турбомашины; используют детали, в частности лопатки, выполненные из титанового сплава, содержащего, вес.%: Al - от 5,0% до 7,0%; Mo - от 2,0% до 4,0%; Zr - до 0,5%; Si - от 0,15% до 0,40; Fe - до 0,3%; O - до 0,15%; H - до 0,015%; N - до 0,05%; C - до 0,1%; Ti - остальное, используют детали, в частности лопатки, с шероховатостью исходной полируемой поверхностью не более Ra=0,50 мкм.

Сущность заявляемого способа, возможность его осуществления и использования иллюстрируются представленными ниже примерами.

Заявляемый способ полирования деталей из титановых сплавов осуществляется следующим образом. Обрабатываемую деталь из титанового сплава погружают в ванну с водным раствором электролита, прикладывают к обрабатываемой детали положительный электрический потенциал, а к электролиту - отрицательный, в результате чего достигают возникновения разряда между обрабатываемым изделием и электролитом. Процесс электролитно-плазменного полирования осуществляют при электрическом потенциале от 340 В до 360 В, а в качестве электролита используют водный раствор смеси NH4F и KF при их содержании: NH4F - от 5 г/л до 15 г/л, KF - от 30 г/л до 50 г/л. Полирование ведут при величине тока от 0,2 А/дм2 до 0,5 А/дм2, при температуре от 75°C до 85°C, в течение не менее 1,5 минут. Полируемой деталью может быть лопатка турбомашины. При этом могут использоваться детали, в частности лопатки турбомашин, выполненные из титанового сплава, содержащего, вес.%: Al - от 5,0% до 7,0%; Mo - от 2,0% до 4,0%; Zr - до 0,5%; Si - от 0,15% до 0,40; Fe - до 0,3%; O - до 0,15%; H - до 0,015%; N - до 0,05%; C - до 0,1%; Ti - остальное.

Обработку ведут в среде электролита при поддержании вокруг детали парогазовой оболочки. В качестве ванны используют емкость, выполненную из материала, стойкого к воздействию электролита. Величина pH электролита находится в пределах 4-9.

При осуществлении способа происходят следующие процессы. Под действием протекающих токов происходит нагрев поверхности детали и образование вокруг нее парогазовой оболочки. Излишняя теплота, возникающая при нагреве детали и электролита, отводится через систему охлаждения. При этом поддерживают заданную температуру процесса. Под действием электрического напряжения (электрического потенциала между деталью и электролитом) в парогазовой оболочке возникает разряд, представляющий собой ионизированную электролитическую плазму, обеспечивающую протекание интенсивных химических и электрохимических реакций между обрабатываемой деталью и средой парогазовой оболочки.

При подаче положительного потенциала на деталь, в процессе протекания указанных реакций, происходит анодирование поверхности детали с одновременным химическим травлением образующегося окисла. Причем при анодной поляризации парогазовый слой состоит из паров электролита, анионов и газообразного кислорода. Поскольку травление происходит, в основном, на микронеровностях, где образуется тонкий слой окисла, а процессы анодирования продолжаются, то в результате совместного действия этих факторов происходит уменьшение шероховатости обрабатываемой поверхности и, как следствие, полирование последней.

При обработке в электролите водного раствора смеси KF и NH4F, при их содержании NH4F - от 5 г/л до 15 г/л, KF - от 30 г/л до 50 г/л, поверхность детали покрывается слоем легко растворимого налета из фтористых соединений, образованных вытеснением кислорода (TiO2+F-→TiF4). При напряжении от 340 В до 360 В температура разряда достаточно высока для ведения стабильного процесса полирования. Поскольку деталь из-за наличия парогазовой оболочки непосредственно не контактирует с электролитом, то соединение TiF4 испаряется, т.е. полирование ведется через испарение фторированного слоя (Tпл.TiF4=238°C).

Концентрация основных компонентов электролита является величиной достаточно варьируемой, в пределах NH4F - от 5 г/л до 15 г/л, KF - от 30 г/л до 50 г/л. При этом нижний предел их концентрации определяется необходимостью обеспечения количественного доминирования ионов фтора над ионами кислорода, как в образующейся на поверхности изделия пленке, так и в парогазовой оболочке. Верхний предел концентрации раствора электролита лимитируется увеличением количества образующихся, в процессе обработки, токсичных газообразных продуктов (F-, NH3). Для минимизации джоуль-ленцевых потерь электролит должен обладать достаточной электропроводимостью. При подборе концентрации электролита водного раствора смеси KF и NH4F, необходимо также учитывать возможность его продолжительного использования без дополнительной корректировки состава.

Пример. Обработке подвергали детали из титановых сплавов марок ВТ-1, ВТ3-1, ВТ9, ВТ8. Обрабатываемые образцы погружали в ванну с водным раствором электролита и прикладывали к детали положительное, а к электролиту - отрицательное напряжение. Детали обрабатывались в среде электролитов на основе водного раствора смеси NH4F и KF при их содержании: NH4F - от 5 г/л до 15 г/л, KF - от 30 г/л до 50 г/л. При обработке производили циркуляционное охлаждение электролита (поддерживалась средняя температура процесса в интервале 75…85°C). В таблице приведены результаты обработки поверхности изделий из титановых сплавов.

Условия обработки по способу-прототипу при многоэтапной обработке: первый этап: электрическое напряжение 120…170 В, время - 18…50 с (0,3…0,8 мин); второй этап: напряжение - 210…350 В, время - 1,5…5 минут (90…300 с); третий этап: напряжение - 210…350 В, время - 0,8…2,5 минут (90…300 с), (дополнительное условие обработки на третьем этапе: не вынимая изделие из электролита, отключали электрическое напряжение, затем удаляли изделие из электролита, охлаждали его до температуры окружающей среды (20°C), вновь прикладывали к нему положительное по отношению к электролиту электрическое напряжение порядка 210-350 В, затем снова погружали изделие в электролит и вели полирование в течение от 0,8 до 2,5 минут); четвертый этап: напряжение - 210…350 В, время - 0,8…2,5 минут (90…300 с), (дополнительное условие обработки на четвертом этапе: не вынимая изделие из электролита, отключали электрическое напряжение, затем удаляли изделие из электролита, охлаждали его до температуры окружающей среды (20°C), вновь прикладывали к нему положительное по отношению к электролиту электрическое напряжение порядка 210-350 В, затем снова погружали изделие в электролит и вели полирование в течение от 0,8 до 2,5 минут). Обработку изделия проводили при величине тока от 0,2 А/дм2 до 0,5 А/дм2, при температуре от 70°C до 90°C.

Условия обработки по предлагаемому способу: электрический потенциал (напряжение) от 340 В до 360 В; электролит - водный раствор смеси KF и NH4F при их содержании: NH4F - от 5 г/л до 15 г/л, KF - от 30 г/л до 50 г/л; величина тока от 0,2 А/дм2 до 0,5 А/дм2, при температуре от 75°C до 85°C в течение не менее 1,5 минут.

Кроме того, были проведены исследования следующих режимов обработки деталей из титановых сплава, не содержащих ванадия (ВТ-1, ВТ3-1, ВТ9, ВТ8. Электрический потенциал: 335 В неудовлетворительный результат (Н.Р.); 340 В - удовлетворительный результат (У.Р.); 345 В - (У.Р.); 350 В - (У.Р.); 355 В - (У.Р.); 360 В - (У.Р.); 365 В - (Н.Р.). Температура процесса: 70°C - (Н.Р.); 75°C - (У.Р.); 80°C - (У.Р.); 85°C - (У.Р.); 90°C - (Н.Р.). Время обработки: 1,0 мин - (Н.Р.); 1,2 мин - (Н.Р.); 1,5 мин - (У.Р.); 2,0 мин - (У.Р.); 6,0 мин - (У.Р.); 10 мин - (У.Р.); 20 мин - (У.Р.). Электролит - на основе водного раствора смеси NH4F и KF, при их содержании: NH4F - от 5 г/л до 15 г/л, KF - от 30 г/л до 50 г/л. Электролиты: NH4F - от 5 г/л.

В таблице приведены средние значения шероховатости поверхности Ra, полученные по способу-прототипу и предлагаемому способу.

Таблица
Вари
ант
спосо
ба
Материал Исходная шероховатость поверхности, Ra мкм Шероховатость поверхности (Ra мкм), после обработки
Средняя величина, мкм Разброс значений ΔRa, мкм
Прото
тип
1. ВТ-1 0,45…0,50 0,17…0,06 0,11
2. ВТ3-1 0,45…0,50 0,19…0,05 0,14
3. ВТ9 0,45…0,50 0,20…0,07 0,13
4. ВТ8 0,45…0,50 0,21…0,06 0,15
Пред
лага
емый
5. ВТ-1 0,45…0,50 0,06…0,04 0,02
6. ВТ3-1 0,45…0,50 0,04…0,03 0,01
7. ВТ9 0,45…0,50 0,03…0,02 0,01
8. ВТ8 0,45…0,50 0,04…0,02 0,02

Таким образом, проведенные исследования показали, что применение предлагаемого способа полирования деталей из титановых сплавов позволяет повысить, по сравнению с прототипом, качество обработки изделий из титановых сплавов ВТ-1, ВТ3-1 ВТ9 и ВТ8. Как видно из приведенных в таблице примеров, средние значения шероховатости поверхности для прототипа от Ra 0,21…0,05 мкм (при величине разброса значений ΔRa=0,11 до 0,15 мкм), для предлагаемого способа улучшается до Ra 0,06…0,02 мкм (при величине разброса значений ΔRa=0,02 до 0,01 мкм).

Улучшение качества полирования деталей из титановых сплавов по предлагаемому способу, во всех проведенных случаях обработки указывает на то, что использование способа полирования детали из титановых сплавов, включающего погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала, использование обрабатываемой детали из титанового сплава, не содержащего ванадий, приложение к обрабатываемой детали электрического потенциала от 340 В до 360 В, использование в качестве электролита водного раствора смеси NH4F и KF при их содержании: NH4F - от 5 г/л до 15 г/л, KF - от 30 г/л до 50 г/л, ведение полирования при температуре от 75°C до 85°C в течение не менее 1,5 минут, при величине тока от 0,2 А/дм2 до 0,5 А/дм2, использование в качестве обрабатываемой детали лопатки турбомашины, использование обрабатываемой детали, в частности лопатки турбомашины, выполненной из титанового сплава, содержащего, вес.%: Al - от 5,0% до 7,0%; Mo - от 2,0% до 4,0%; Zr - до 0,5%; Si - от 0,15% до 0,40; Fe - до 0,3%; O - до 0,15%; H - до 0,015%; N - до 0,05%; C - до 0,1%; Ti - остальное, использование обрабатываемой детали, в частности лопатки турбомашины, выполненной с шероховатостью исходной полируемой поверхностью не более Ra 0,50 мкм, позволяют достичь технического результата заявляемого способа - повысить качество обработки и надежность процесса полирования деталей из титановых сплавов, а также снизить его трудоемкость.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 81.
20.02.2013
№216.012.27d7

Способ оценки степени упрочнения поверхностного слоя твердых материалов

Изобретение относится к измерительной технике и может быть использовано для экспресс-определения физико-механических свойств твердых материалов, в частности для оценки степени упрочнения поверхностного слоя деталей после защитно-упрочняющей обработки. Сущность: осуществляют приготовление шлифа...
Тип: Изобретение
Номер охранного документа: 0002475719
Дата охранного документа: 20.02.2013
27.03.2013
№216.012.3139

Способ ионно-плазменного нанесения покрытия в вакууме на поверхность гравюры штампа из жаропрочного никелевого сплава

Изобретение относится к машиностроению, в частности к области горячей объемной штамповке металлических деталей, в частности деталей сложной формы, например лопаток газотурбинных двигателей. Способ ионно-плазменного нанесения покрытия в вакууме на поверхность гравюры штампа из жаропрочного...
Тип: Изобретение
Номер охранного документа: 0002478139
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.313a

Способ получения ионно-плазменного покрытия на лопатках компрессора из титановых сплавов

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Детали помещают в вакуумную камеру установки, создают требуемый вакуум, ионную очистку и ионно-имплантационную обработку поверхности основного материала детали с...
Тип: Изобретение
Номер охранного документа: 0002478140
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.326f

Способ изготовления прирабатываемого уплотнения турбомашины

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. В пресс-форме размещают оболочку из меди, заданных размеров и формы, и заполняют пресс-форму порошком...
Тип: Изобретение
Номер охранного документа: 0002478454
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.3617

Способ восстановления торца пера лопатки турбомашины с формированием щеточного уплотнения

Изобретение относится к области машиностроения и может быть использовано в турбомашиностроении при восстановительном ремонте наплавкой или сваркой и модернизации рабочих и направляющих лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002479400
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3721

Способ формирования теплозащитного покрытия на деталях газовых турбин из никелевых и кобальтовых сплавов

Изобретение относится к области машиностроения, а именно к методам формирования теплозащитных покрытий на лопатках турбин, и в особенности газовых турбин авиадвигателей и энергетических установок. Способ формирования теплозащитного покрытия на деталях газовых турбин из никелевых или кобальтовых...
Тип: Изобретение
Номер охранного документа: 0002479666
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3722

Способ ионно-имплантационной обработки деталей из титановых сплавов

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота. Ионную очистку проводят при энергии от 8 до 10 кэВ и...
Тип: Изобретение
Номер охранного документа: 0002479667
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3724

Способ получения теплозащитного покрытия

Изобретение относится к области машиностроения, а именно к методам нанесения теплозащитных покрытий на рабочие лопатки газотурбинных двигателей и энергетических установок. Поверхность лопатки подвергают ионно-имплантационной обработке ионами одного из следующих элементов N, Y, Yt или их...
Тип: Изобретение
Номер охранного документа: 0002479669
Дата охранного документа: 20.04.2013
10.06.2013
№216.012.4751

Способ изготовления элемента прирабатываемого уплотнения турбины

Изобретение относится к машиностроению, а именно к изготовлению уплотнений зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Из порошка прирабатываемого материала формируют гранулы, поверхность которых оплавляют с образованием...
Тип: Изобретение
Номер охранного документа: 0002483837
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4752

Композиционный элемент прирабатываемого уплотнения турбины

Изобретение относится к машиностроению, а именно к композиционным уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Элемент прирабатываемого уплотнения турбины состоит из несущей и прирабатываемой частей,...
Тип: Изобретение
Номер охранного документа: 0002483838
Дата охранного документа: 10.06.2013
Показаны записи 1-10 из 140.
20.02.2013
№216.012.27d7

Способ оценки степени упрочнения поверхностного слоя твердых материалов

Изобретение относится к измерительной технике и может быть использовано для экспресс-определения физико-механических свойств твердых материалов, в частности для оценки степени упрочнения поверхностного слоя деталей после защитно-упрочняющей обработки. Сущность: осуществляют приготовление шлифа...
Тип: Изобретение
Номер охранного документа: 0002475719
Дата охранного документа: 20.02.2013
27.03.2013
№216.012.3139

Способ ионно-плазменного нанесения покрытия в вакууме на поверхность гравюры штампа из жаропрочного никелевого сплава

Изобретение относится к машиностроению, в частности к области горячей объемной штамповке металлических деталей, в частности деталей сложной формы, например лопаток газотурбинных двигателей. Способ ионно-плазменного нанесения покрытия в вакууме на поверхность гравюры штампа из жаропрочного...
Тип: Изобретение
Номер охранного документа: 0002478139
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.313a

Способ получения ионно-плазменного покрытия на лопатках компрессора из титановых сплавов

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Детали помещают в вакуумную камеру установки, создают требуемый вакуум, ионную очистку и ионно-имплантационную обработку поверхности основного материала детали с...
Тип: Изобретение
Номер охранного документа: 0002478140
Дата охранного документа: 27.03.2013
20.04.2013
№216.012.3617

Способ восстановления торца пера лопатки турбомашины с формированием щеточного уплотнения

Изобретение относится к области машиностроения и может быть использовано в турбомашиностроении при восстановительном ремонте наплавкой или сваркой и модернизации рабочих и направляющих лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002479400
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3721

Способ формирования теплозащитного покрытия на деталях газовых турбин из никелевых и кобальтовых сплавов

Изобретение относится к области машиностроения, а именно к методам формирования теплозащитных покрытий на лопатках турбин, и в особенности газовых турбин авиадвигателей и энергетических установок. Способ формирования теплозащитного покрытия на деталях газовых турбин из никелевых или кобальтовых...
Тип: Изобретение
Номер охранного документа: 0002479666
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3722

Способ ионно-имплантационной обработки деталей из титановых сплавов

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота. Ионную очистку проводят при энергии от 8 до 10 кэВ и...
Тип: Изобретение
Номер охранного документа: 0002479667
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3724

Способ получения теплозащитного покрытия

Изобретение относится к области машиностроения, а именно к методам нанесения теплозащитных покрытий на рабочие лопатки газотурбинных двигателей и энергетических установок. Поверхность лопатки подвергают ионно-имплантационной обработке ионами одного из следующих элементов N, Y, Yt или их...
Тип: Изобретение
Номер охранного документа: 0002479669
Дата охранного документа: 20.04.2013
10.06.2013
№216.012.4751

Способ изготовления элемента прирабатываемого уплотнения турбины

Изобретение относится к машиностроению, а именно к изготовлению уплотнений зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Из порошка прирабатываемого материала формируют гранулы, поверхность которых оплавляют с образованием...
Тип: Изобретение
Номер охранного документа: 0002483837
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b8e

Элемент прирабатываемого уплотнения турбины

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Элемент прирабатываемого уплотнения турбины выполнен из адгезионно соединенных между собой путем спекания...
Тип: Изобретение
Номер охранного документа: 0002484924
Дата охранного документа: 20.06.2013
20.10.2013
№216.012.7663

Способ электролитно-плазменного полирования деталей из титановых сплавов

Изобретение относится к электролитно-плазменному полированию металлических изделий, преимущественно из титановых сплавов, и может быть использовано в турбомашиностроении при обработке рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих установок и компрессоров...
Тип: Изобретение
Номер охранного документа: 0002495967
Дата охранного документа: 20.10.2013
+ добавить свой РИД