×
20.10.2013
216.012.7568

Результат интеллектуальной деятельности: КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА КАРБОНИЛА ЖЕЛЕЗА И УГЛЕВОДОРОДОВ

Вид РИД

Изобретение

№ охранного документа
0002495716
Дата охранного документа
20.10.2013
Аннотация: Изобретение относится к комбинированному способу, состоящему в том, что на установке A получают чистый порошок карбонила железа путем разложения чистого пентакарбонила железа, а освобождающуюся при разложении пентакарбонила железа моноокись углерода (CO) используют для получения дальнейшего порошка карбонила железа из железа на установке A, или подводят к присоединенной установке B для получения синтез-газа, или подводят к присоединенной установке C для получения углеводородов из синтез-газа. При этом полученный на установке A порошок карбонила железа используют в качестве катализатора или компонента катализатора в присоединенной установке C для получения углеводородов из синтез-газа, полученного на установке B, и собирающийся на установке C отработанный катализатор используют в качестве дополнительного источника железа для получения порошка карбонила железа на установке A. Использование предлагаемого способа позволяет избежать отходов, таких как соли и сточные воды. 10 з.п. ф-лы, 4 ил.

Данное изобретение относится к комбинированному способу получения чистого порошка карбонила железа путем разложения чистого пентакарбонила железа и получения углеводородов из синтез-газа.

Получение чистого порошка карбонила железа путем разложения чистого пентакарбонила железа известно, например, из Ullmann's Encylopedia of Industrial Chemistry, Iron Compounds, E. Wildermuth, H. Stark и др., опубликовано в Интернете: 15 June 2000, (Wiley-VCH-Verlag).

Для этого частицы железа под высоким давлением и при высоких температурах превращают в пентакарбонил железа (Fe(CO)5). Примеси, содержащиеся в железе, предпочтительно удаляют на стадии карбонила, отчасти в результате перегонки, и получают высокочистый пентакарбонил железа. Это соединение является предшественником для осуществляемого на следующей стадии разложения пентакарбонила железа с получением порошка карбонила железа. На этой стадии пентакарбонил железа разлагают при высоких температурах с получением порошка карбонила железа.

На последовательно подключенных стадиях процесса можно этот первичный порошок карбонила железа переработать в катализатор для синтеза по Фишеру-Тропшу (Fischer-Tropsch). Дальнейшая переработка и пригодность катализатора для получения углеводородов, в частности, низкомолекулярных олефинов, из синтез-газа (синтез по Фишеру-Тропшу) описана в патентных заявках ЕР 07112853.2 от 20.07.2007 и EP 08156965.9 от 27.05.2008 (обе фирмы BASF AG, соответственно, SE).

Известно, что углеводороды могут быть получены из окиси углерода (CO) и водорода (Н2) на металлических катализаторах, например, железных или кобальтовых катализаторах.

Другие железные катализаторы для синтеза по Фишеру-Тропшу описаны в WO 2006/127261 A1, p.2, раздел [005] (полученные осаждением катализаторы) и в цитированной литературе отдел [006] (полученные расплавлением катализаторы).

Главные недостатки при получении железных - Фишер-Тропш - катализаторов, соответственно, осажденных катализаторов, как правило, состоят в высоких энергетических затратах и трудовых затратах при их получении, а также в связи с образованием отходов, которые часто оказываются вредными для окружающей среды веществами.

Задача данного изобретения состоит в том, чтобы, избежав недостатков уровня техники, создать улучшенный экономичный способ получения чистого порошка карбонила железа и способ получения углеводородов. Названный первым способ, в частности, при традиционном получении катализатора должен позволить избежать образования большого количества веществ в виде отходов. В частности, солесодержащие фракции и промывочная вода представляют собой факторы производства, которые требуют затратной последующей переработки и при определенных условиях их утилизация связана с высокими затратами. Второй из названных способов должен предоставить возможность получения углеводородов с короткой цепью из синтез-газа. В предпочтительном варианте способ должен давать предпочтительно (С28)-олефины (олефины, содержащие от 2 до 8 атомов углерода), предпочтительно (С24)-олефины (олефины, содержащие от 2 до 4 атомов углерода), более предпочтительно этен, пропен и 1-бутен, при одновременно возможной, по возможности малой доле метана, двуокиси углерода, алканов (например, (С24)-алканов) и более высокомолекулярных углеводородов, то есть углеводородов, содержащих пять или более С-атомов, (С5+ фракция).

Согласно изобретению было среди прочего установлено:

что, если рассматривать кругооборот вещества моноокиси углерода (CO), то получение пентакарбонила железа и последующее разложение с полученим порошка карбонила железа можно рассматривать как круговой процесс, в котором происходит вторичное использование CO. По сравнению с альтернативными способами получения, например, осаждение соединений железа, кальцинирование и последующее восстановление до металлического железа, путь через карбонильное соединение предпочтителен прежде всего потому, что отсутствуют отходы (такие как соли) и сточные воды. Предпочтительным является комбинированный способ, в котором кругообороты энергии и веществ связаны таким образом, что, исходя из железа или окиси железа в качестве сырья через промежуточную стадию порошка карбонила железа получают базирующийся на железе катализатор для химических превращений, в частности, для синтеза по Фишеру-Тропшу.

В соответствии с этим был открыт комбинированный способ, который отличается тем, что на одной установке A получают чистый порошок карбонила железа в результате разложения чистого пентакарбонила железа, а освобождающуюся при разложении пентакарбонила железа моноокись углерода (CO) используют для получения дальнейшего порошка карбонила железа из железа в установке A или используют в присоединенной установке B для получения синтез-газа, или подводят к присоединенной установке C для получения углеводородов из синтез-газа, и полученный на установке A порошок карбонила железа используют в качестве катализатора или компонента катализатора в присоединенной установке C для получения углеводородов из синтез-газа, полученного на установке В.

Относительно способа получения чистого порошка карбонила железа на установке A:

При разложении пентакарбонила железа имеется в виду предпочтительно термическое разложение газообразного пентакарбонила железа. Порошок карбонила железа, полученный после разложения пентакарбонила железа, перед его последующим применением предпочтительно обрабатывают водородом. Эту обработку порошка карбонила железа водородом предпочтительно проводят при температуре в интервале от 300 до 600°C. В результате этой обработки понижается остаточное содержание углерода, азота, а также кислорода в порошке карбонила железа. (DE 528463 C1, 1927). Источником используемого водорода является предпочтительно присоединенная установка B для получения синтез-газа.

Железо, используемое для получения порошка карбонила железа, предварительно обрабатывают водородом.

Эту обработку железа водородом проводят предпочтительно при температуре в интервале от 300 до 1000°C.

В результате этой обработки понижается, в частности, содержание кислорода в железе.

Источником используемого водорода является предпочтительно присоединенная установка B для получения синтез-газа.

Пентакарбонил железа, используемый для получения чистого порошка карбонила железа, перед использованием предпочтительно чистят перегонкой.

В результате такой перегонки удаляют примеси, такие как переходные металлы, в частности, Ni и Cr, в виде их карбонильных соединений.

Дополнительно используемый CO для получения дальнейшего пентакарбонила железа предпочтительно берется из присоединенной установки B для получения синтез-газа.

Чистый порошок карбонила железа, получаемый в соответствии со способом на установке A, предпочтительно имеет следующие характеристики:

порошок карбонила железа состоит из сферических первичных частиц, диаметр которых предпочтительно лежит в интервале больше или равно 1-50 мкм. Первичные частицы могут быть агломерированными.

Относительно способов в установках B и C для получения углеводородов в результате взаимодействия моноокиси углерода с водородом (то есть получения синтез-газа):

Необходимый синтез-газ получают предпочтительно на установке В общеизвестными способами (такими как, например, описанные в Weissermel и др.. Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pp.15-24), например, взаимодействием угля или метана с парами воды, или в результате частичного окисления метана. В качестве первичного источника энергии для получения синтез-газа подходит, наряду с углем и природным газом, также биомасса.

Молярное отношение моноокиси углерода и водорода в синтез-газе лежит в интервале от 3:1 до 1:3. Более предпочтительно в установке C используют синтез-газ, у которого молярные отношения при смешивании моноокиси углерода и водорода находятся в интервале от 2:1 до 1:2.

В предпочтительном варианте комбинированного способа согласно данному изобретению синтез-газ содержит двуокись углерода (CO2). Содержание CO2 находится предпочтительно в интервале от 1 до 50 вес. процентов.

В более предпочтительном варианте синтез-газ в установке B получают в результате газификации угля. Такие способы описаны, например, в Nexant Inc. / Chem Systems PERP 03/04-S4 Developments in Syngas Technology, 2005, pp.10/11, соответственно, 58-63.

Синтез-газы, которые могут быть получены при газификации угля, имеют молярные отношения моноокиси углерода и водорода в интервале от 2,36 до 0,4, предпочтительно в интервале от 2 до 0,6, более предпочтительно в интервале от 1,5 до 0,8.

Выпадающий в осадок, отработанный катализатор, образующийся при способе получения углеводородов на установке C используют затем, предпочтительно после обработки водородом, которая описана выше, предпочтительно в качестве источника железа для получения порошка карбонила железа на установке A.

Более предпочтительно согласно данному изобретению получение порошка карбонила железа на установке A, который используют в качестве катализатора или компонента катализатора в присоединенной установке C для получения углеводородов, связанное с повторным использованием CO, при вовлечении установки B для получения синтез-газа, и присоединение к кругообороту железа в результате возврата отработанного катализатора из установки C в установку A.

Предпочтительные варианты комбинированного способа согласно данному изобретению (присоединения) схематически представлены на рисунке 1.

Отдельные стадии на рисунке 1 можно, как показано ниже, - исходя из „отработанного катализатора (содержащего железо)" - представить в виде предпочтительного варианта исполнения:

1) Окись железа смешивают с железом (Fe) или с окисью железа (источником последних в каждом случае является отработанный катализатор из установки C) и восстанавливают. Водород для восстановления берется из установки для получения синтез-газа B. Не израсходованный водород можно возвратить обратно в установку для получения синтез-газа В или подать непосредственно в установку С синтеза по Фишер-Тропшу для получения углеводородов.

2) Образовавшееся (выпавшее) металлическое железо вместе с CO из установки для получения синтез-газа B превращают на установке A в пентакарбонил железа.

3) Пентакарбонил железа разлагают на установке A в порошок карбонила железа и высвобождающийся при этом CO отводят в установку для получения синтез-газа B, в установку C для синтеза по Фишеру-Тропшу или возвращают в установку A для синтеза пентакарбонила железа. Последняя альтернатива соответствует прямому повторному использованию CO.

4) Порошок карбонила железа из установки A перерабатывают на последующих стадиях в железный катализатор для синтеза по Фишеру-Тропшу и используют в установке синтеза по Фишеру-Тропшу C для синтеза углеводородов. Дополнительно порошок карбонила железа можно продавать внешнему потребителю.

5) Катализатор из установки C снова подают в „кругооборот катализатора" для получения металлического железа (стадия 1) с целью дальнейшего получения пентакарбонила железа.

Исходя из присоединения согласно данному изобретению отдельных стадий процесса, предпочтительно образуются как для используемой моноокиси углерода, также как и для железа почти замкнутые кругообороты веществ. Сформированное таким образом объединение установок создает тем самым возможность щадящего для окружающей среды и ресурсосберегающего получения катализаторов на основе железа.

Некоторые подробности способа получения в установке C углеводородов в результате превращения синтез-газа:

В способе, осуществляемом на установке C для получения углеводородов, предпочтительно олефинов, путем взаимодействия моноокиси углерода и водорода в присутствии гетерогенного катализатора, содержащего порошок карбонила железа, предпочтительно используют порошок карбонила железа со сферическими первичными частицами.

Доля сферических первичных частиц в порошке карбонила железа составляет предпочтительно более 90 вес. процентов, более предпочтительно более 95 вес. процентов, еще более предпочтительно более 98 вес. процентов.

Сферические первичные частицы имеют диаметр в интервале от 0,01 до 250 мкм, предпочтительно в интервале от 0,1 до 200 мкм, более предпочтительно в интервале от 0,5 до 150 мкм, более предпочтительно в интервале от 0,7 до 100 мкм, еще более предпочтительно в интервале от 1 до 70 мкм, наиболее предпочтительно в интервале от 1,5 до 50 мкм.

Содержание железа в сферических первичных частицах составляет предпочтительно более 97 вес. процентов, более предпочтительно равно или более 99 вес. процентов, еще более предпочтительно равно или более 99,5 вес. процентов, в каждом случае в пересчете на катализатор, не учитывая содержащиеся при необходимости промоторы.

Предпочтительны сферические первичные частицы, свободные от пор.

Предпочтительный порошок карбонила железа отличается в особенности тем, что, наряду со сферическими первичными частицами, он не содержит никаких нитевидных первичных частиц, в частности, не содержит описанных в DE 2919921 A1 и в Fachberichte fur Oberflachentechnik, Juli/August 1970, pp.145-150, монокристаллов железа.

На рисунках 2-4 показаны снимки, сделанные на сканирующем электронном микроскопе (SEM), для предпочтительных применяемых порошков карбонила железа со сферическими первичными частицами.

Применяемые в способе порошки карбонила железа со сферическими первичными частицами можно приобрести, например, под названием «порошок карбонила железа CN» („Carbonyleisenpulver CN") у фирмы BASF AG, соответственно, сейчас BASF SE, D-67056 Ludwigshafen.

Порошок карбонила железа, в частности, со сферическими первичными частицами получают в результате термического разложения газообразного пентакарбонила железа (Fe[CO]5), который перед этим предпочтительно очищают в результате перегонки.

Сферические первичные частицы могут быть частично агломерированными, например, до 25-95 вес. процентов.

Полученный таким образом продукт предпочтительно подвергают последующей обработке в ходе восстановления водородом.

Даже в отсутствии любых добавок порошок карбонила железа проявляет предпочтительное каталитическое действие.

Порошок карбонила железа можно для повышения каталитической эффективности легировать одним или несколькими промоторами.

Промоторы для железных катализаторов, используемых в синтезах по Фишеру-Тропшу, описаны, например, в М. Janardanarao, Ind. Eng. Chem. Res. 1990, 29, pp.1735-1753, или C.D. Frohning и др. в „Chemierohstoffe aus Kohle", 1977, pp.219-299. В качестве подходящих промоторов эти катализаторы могут содержать, например, один или несколько элементов, таких как ванадий, медь, никель, кобальт, марганец, хром, цинк, серебро, золото, калий, кальций, натрий, литий, цезий, платина, палладий, рутений, сера, хлор, в каждом случае в элементарной форме или в ионной форме.

Легирование порошка карбонила железа составляет всего (то есть в сумме, когда используют несколько промоторов) предпочтительно в интервале от 0,01 до 30 вес. процентов, более предпочтительно в интервале от 0,01 до 20 вес. процентов, еще более предпочтительно в интервале от 0,1 до 15 вес. процентов, например, от 0,2 до 10 вес. процентов, особенно предпочтительно от 0,3 до 8 вес. процентов, в каждом случае в пересчете на железо. В более предпочтительном варианте воплощения способа порошок карбонила железа легирован ионами калия и/или ионами натрия в качестве промотора.

Еще более предпочтителен порошок карбонила железа в варианте воплощения с легированием с общим содержанием калиевых ионов и/или натриевых ионов в интервале от 0,01 до 10 вес. процентов, предпочтительно в интервале от 0,1 до 5 вес. процентов (в каждом случае в пересчете на железо).

Нанесение указанных промоторов можно осуществить, например, в результате пропитывания порошка карбонила железа водными растворами солей указанных металлов, предпочтительно карбонатов, хлоридов, нитратов или оксидов.

Далее можно наносить элементы, действующие в качестве промоторов, в ходе термического разложения соответствующих газообразных карбонильных соединений, например, карбонилов меди, кобальта или никеля, во время получения порошка карбонила железа.

Порошок карбонила железа согласно другому варианту воплощения катализатора может быть нанесен на материал-носитель. Предпочтительными материалами-носителями являются TiO2, SiO2, Al2O3, цеолиты, углерод (C).

В способе получения углеводородов, в частности, олефинов порошок карбонила железа, при необходимости, легированный и, при необходимости, нанесенный на носители, можно применять в виде таблеток.

Таблетки получают известными специалистам способами. Предпочтительными формами таблеток являются таблетки и кольца.

Перед применением в данном способе таблетки можно снова измельчить, например, перемалыванием.

Катализаторы перед применением в способе можно путем обработки водородом и/или моноокисью углерода при высокой температуре, в частности, при температуре более 300°C, перевести в реакционное для синтеза состояние. Однако, это дополнительное активирование не всегда необходимо.

Способ получения углеводородов, в частности, олефинов, предпочтительно проводят при температуре в интервале от 200 до 500°C, более предпочтительно при температуре от 300 до 400°C.

Абсолютное давление лежит предпочтительно в интервале от 1 до 100 бар, более предпочтительно от 5 до 50 бар.

Величина объемной скорости газа по Хоурли (Hourly) предпочтительно лежит в интервале от 100 до 10000, более предпочтительно от 300 до 5000 объемных частей питающего потока на одну объемную часть катализатора в час (л/л·час).

Предпочтительными реакторами для осуществления способа согласно данному изобретению являются: реактор с кипящим слоем, реактор с неподвижным (стационарным) слоем, суспензионный реактор.

В реакторе с кипящим слоем и в суспензионном реакторе катализатор предпочтительно применяют в виде порошка. Порошок может состоять из первичных частиц порошка карбонила железа, а также из их агломератов.

Порошок можно также получить перемалыванием полученных ранее таблеток.

В реакторе с неподвижным (стационарным) слоем катализатор используют в виде сформованных тел, предпочтительно в виде таблеток.

Применение таких реакторов для синтеза по Фишеру-Тропшу описано, например, C.D. Frohning и др. в „Chemierohstoffe aus Kohle", 1977, pp.219-299, или в В.Н. Davis, Topics in Catalysis, 2005, 32 (3-4), pp.143-168.

На установке C предпочтительно получают в качестве углеводородов (C2-C8)-олефины, в особенности (С24)-олефины, среди них предпочтительны этен, пропен и 1-бутен.

Способ получения в особенности олефинов дает смесь продуктов, содержащую олефины с селективностью олефинового углерода, в

особенности с селективностью α-олефинового углерода, для (С24)-соединений предпочтительно, как минимум, 30%, например, в интервале 30-45%. При указании селективности не принимается во внимание образовавшаяся двуокись углерода (то есть за исключением CO2).

В более предпочтительном варианте получают смесь продуктов, содержащую олефины с селективностью олефинового углерода для (С2-C4)-соединений предпочтительно, как минимум, 30%, причем, из этих, как минимум, 30% опять же, как минимум, 90% приходится на этен, пропен, 1-бутен. При указании селективности не принимается во внимание образовавшаяся двуокись углерода (то есть за исключением CO2).

В еще более предпочтительном варианте получают смесь продуктов, содержащую олефины с селективностью олефинового углерода для (С2-C4)-соединений предпочтительно, как минимум, 40%, например, в интервале от 40 до 45%, причем, из этих, как минимум, 40% опять же, как минимум, 90% приходится на этен, пропен, 1-бутен. При указании селективности не принимается во внимание образовавшаяся двуокись углерода (то есть за исключением CO2).

Полученные олефины используют, например, в способах получения полиолефинов, эпоксидов, оксопродуктов, акрилнитрилов, акролеина, стирола. Смотри также: Weissermel и др.. Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pp.145-192 и 267-312.

Рисунок 1:

Схематическое представление предпочтительных вариантов комбинированного способа согласно данному изобретению [объединение установки (B) для получения синтез-газа, установки (C) для синтеза по Фишеру-Тропшу и установки (A) для получения порошка карбонила железа].

Рисунки 2-4:

Порошки карбонила железа со сферическими первичными частицами, предпочтительно используемые в способе получения углеводородов, в частности, олефинов на установке C.


КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА КАРБОНИЛА ЖЕЛЕЗА И УГЛЕВОДОРОДОВ
КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА КАРБОНИЛА ЖЕЛЕЗА И УГЛЕВОДОРОДОВ
КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА КАРБОНИЛА ЖЕЛЕЗА И УГЛЕВОДОРОДОВ
КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА КАРБОНИЛА ЖЕЛЕЗА И УГЛЕВОДОРОДОВ
Источник поступления информации: Роспатент

Показаны записи 501-510 из 658.
11.03.2019
№219.016.dbe7

Покрывающая композиция, имеющая низкое содержание летучих органических соединений

Изобретение относится к покрывающей композиции, имеющей низкое содержание летучих органических соединений. Покрывающая композиция включает латексный компонент и агент для замены летучего коалесцирующего растворителя. Агент имеет следующую формулу: X(AO)H, где Х представляет собой группу от C до...
Тип: Изобретение
Номер охранного документа: 0002452750
Дата охранного документа: 10.06.2012
11.03.2019
№219.016.dc4b

Способ и водный выщелачивающий агент для перевода в раствор металлсодержащих соединений

Изобретение относится к способу перевода в раствор металлсодержащих соединений, а также к выщелачивающему агенту. Способ включает выщелачивание с помощью водного выщелачивающего агента, содержащего серную кислоту. При этом выщелачивающий агент дополнительно содержит одну или несколько...
Тип: Изобретение
Номер охранного документа: 0002408738
Дата охранного документа: 10.01.2011
11.03.2019
№219.016.dd4a

Твердые композиции ферментов и способ их получения

Изобретение относится к биотехнологии, а именно к новым твердым ферментным композициям, включающим смеси из, по меньшей мере, одного стабилизированного солью ферментного состава, по меньшей мере, одного носителя в форме частиц и, по меньшей мере, одной гидрофобной жидкости. Кроме того,...
Тип: Изобретение
Номер охранного документа: 0002447678
Дата охранного документа: 20.04.2012
11.03.2019
№219.016.dd95

Присадочная композиция, пригодная для придания антистатических качеств неживому органическому материалу и улучшения его электропроводности

Присадочная композиция состоит из: (A) 1-50% мас. сополимера олефина и диоксида серы, (B) 1-50% мас. соединения, содержащего один или несколько основных атомов азота, с длинноцепочечными углеродными остатками, по меньшей мере, с 4 атомами углерода или эквивалентным ему структурным элементом,...
Тип: Изобретение
Номер охранного документа: 0002462504
Дата охранного документа: 27.09.2012
15.03.2019
№219.016.dfd2

Способ получения водной полимерной дисперсии

Настоящее изобретение относится к водным связующим средствам для зернистых и/или волокнистых субстратов. Описан способ получения водной дисперсии полимера Р в результате инициируемой свободными радикалами водно-эмульсионной полимеризации этиленненасыщенных соединений, который включает...
Тип: Изобретение
Номер охранного документа: 0002681856
Дата охранного документа: 13.03.2019
15.03.2019
№219.016.e100

Способ получения акролеина, или акриловой кислоты или их смеси из пропана

Изобретение относится к усовершенствованному способу получения акролеина, акриловой кислоты или их смеси из пропана, при котором А) в первую реакционную зону А подают по меньшей мере два газообразных потока подачи, содержащих пропан, по меньшей мере один из которых содержит свежий пропан, с...
Тип: Изобретение
Номер охранного документа: 0002452724
Дата охранного документа: 10.06.2012
20.03.2019
№219.016.e574

Способ и устройство для грануляции расплавов полимеров, содержащих порообразователь

Изобретение касается способа и устройства для гранулирования расплавов полимера, содержащих порообразователь, в грануляционной камере, через которую протекает жидкость, относящаяся к контуру циркуляции жидкости, давление которой превышает давление окружения. На первом этапе расплав полимеров...
Тип: Изобретение
Номер охранного документа: 0002395391
Дата охранного документа: 27.07.2010
10.04.2019
№219.016.ff14

Ингибиторы коррозии для топлива и смазочных материалов

Изобретение раскрывает применение полимеров, которые статистически в среднем имеют по меньшей мере 4 кислотные группы на полимерную цепь, соотношение атомов углерода на кислотную группу от 7 до 35 и кислотное число от 80 до 320 мг КОН/г, определенное при помощи потенциографического титрования с...
Тип: Изобретение
Номер охранного документа: 0002684323
Дата охранного документа: 08.04.2019
10.04.2019
№219.017.0608

Способ получения ацетилена путем частичного окисления углеводородов

Изобретение относится к способу непрерывной эксплуатации установки для получения ацетилена из углеводородов, представляющих собой алканы, имеющие длину цепи до С, путем частичного окисления с получением смеси реакционного газа, которая направляется через один или несколько компрессоров, причем...
Тип: Изобретение
Номер охранного документа: 0002417975
Дата охранного документа: 10.05.2011
10.04.2019
№219.017.069d

Отбеливающие системы в полимерной оболочке

Настоящее изобретение относится к отбеливающей системе для бытовых текстильных изделий, содержащей по меньшей мере одно отбеливающее средство, где отбеливающая система выбрана из пероксибензойной кислоты, перокси-α-нафтойной кислоты, пероксилауриновой кислоты, пероксистеариновой кислоты,...
Тип: Изобретение
Номер охранного документа: 0002429288
Дата охранного документа: 20.09.2011
Показаны записи 381-387 из 387.
17.02.2018
№218.016.2dc1

Композиция для химико-механической полировки (смр), содержащая неионное поверхностно-активное вещество и карбонатную соль

Изобретение относится к композиции для химико-механической полировки (СМР). Композиция содержит (А) неорганические частицы, органические частицы или их смесь, или их композит, где частицы находятся в форме кокона, (В) амфифильное неионное поверхностно-активное вещество на основе...
Тип: Изобретение
Номер охранного документа: 0002643541
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.3077

Способ добычи нефти третичными методами

Изобретение относится к добыче нефти третичными методами. Способ добычи нефти, в котором водный нагнетаемый агент, содержащий, по меньшей мере, растворимый в воде (со)полимер полиакриламида - ПАА, растворенный в жидкости на водной основе, закачивают через по меньшей мере одну нагнетательную...
Тип: Изобретение
Номер охранного документа: 0002644773
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.31a1

Защитные элементы и способ их получения

Защитный элемент содержит подложку из прозрачного полимера, слой с модуляцией показателя преломления, представляющий собой объемную голограмму. На указанном слое нанесено покрытие на по меньшей мере части слоя с модуляцией показателя преломления, содержащее частицы переходного металла в форме...
Тип: Изобретение
Номер охранного документа: 0002645161
Дата охранного документа: 16.02.2018
25.06.2018
№218.016.6664

Термостабильный магнитно-мягкий порошок

Настоящее изобретение относится к магнитно-мягкому порошку и способу нанесения покрытия на магнитно-мягкий порошок. Порошок содержит по меньшей мере одну из следующих фторсодержащих композиций: а) фторсодержащую композицию формулы , где а находится в диапазоне от 0.015 до 0.52, b находится в...
Тип: Изобретение
Номер охранного документа: 0002658648
Дата охранного документа: 22.06.2018
26.07.2018
№218.016.7530

Катализатор риформинга углеводородов в присутствии диоксида углерода, содержащий гексаалюминат никеля

Изобретение относится к катализатору реформинга углеводородов и диоксида углерода, включающему оксидный носитель, который содержит гексаалюминат в форме β''-алюмината и частицы металлического никеля. При этом оксидная фаза катализатора содержит по меньшей мере от 65 до 95 мас.% главной фазы,...
Тип: Изобретение
Номер охранного документа: 0002662221
Дата охранного документа: 25.07.2018
16.02.2019
№219.016.bb1d

Способ риформинга смесей из углеводородов и диоксида углерода

Изобретение относится к способу риформинга содержащих углеводороды и диоксид углерода газовых смесей. Способ включает приведение в контакт исходного газа с содержащим благородный металл катализатором, превращение газа в первый газообразный продукт, приведение в контакт полученного первого...
Тип: Изобретение
Номер охранного документа: 0002680060
Дата охранного документа: 14.02.2019
06.07.2019
№219.017.a881

Способ очистки сырой терефталевой кислоты и пригодные для этого, содержащие углеродные волокна катализаторы

Изобретение относится к усовершенствованному способу очистки сырой терефталевой кислоты посредством катализируемой гидрирующей дополнительной обработки на катализаторном материале, который содержит, по меньшей мере, один нанесенный на углеродный носитель металл гидрирования, причем в качестве...
Тип: Изобретение
Номер охранного документа: 0002302403
Дата охранного документа: 10.07.2007
+ добавить свой РИД