×
20.10.2013
216.012.755f

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ОТДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА ОТ ОТХОДЯЩЕГО ГАЗА РАБОТАЮЩЕЙ НА ИСКОПАЕМОМ ТОПЛИВЕ ЭЛЕКТРОСТАНЦИИ

Вид РИД

Изобретение

№ охранного документа
0002495707
Дата охранного документа
20.10.2013
Аннотация: Изобретение относится к способу отделения диоксида углерода от отходящего газа работающей на ископаемом топливе электростанции. Способ включает в себя абсорбционный процесс, в котором содержащий диоксид углерода отходящий газ приводят в контакт с абсорбентом, в результате чего образуется загрязненный диоксидом углерода абсорбент (25), и десорбционный процесс (10), который функционирует от горячего пара из пароводяного контура работающей на ископаемом топливе электростанции и в котором загрязненный диоксидом углерода абсорбент (25) регенерируют, в результате чего образуется регенерированный абсорбент (26). При этом в следующем за десорбционным процессом (10) процессе расширения (20) регенерированный абсорбент (26) расширяют, в результате чего образуется парообразный абсорбент (27), который возвращают в десорбционный процесс (10), и загрязненный абсорбент (25) разделяют, по меньшей мере, на один первый (30) и один второй (40) частичные потоки, причем только второй частичный поток (40) направляют в теплообмене с расширенным абсорбентом, а первый (30) и один второй (40) частичные потоки подают в десорбционный процесс (10) на его разных этапах. Также изобретение относится к устройству для осуществления способа. Изобретение обеспечивает высокую эффективность отделения при низкой потребности в собственной энергии и в то же время при высоком общем кпд энергетического процесса. 2 н. и 20 з.п. ф-лы, 3 ил.

Изобретение касается способа эксплуатации работающей на ископаемом топливе электростанции и, в частности, способа отделения диоксида углерода от отходящего газа работающей на ископаемом топливе электростанции. Кроме того, изобретение касается работающей на ископаемом топливе электростанции с сепарационным устройством для отделения диоксида углерода от отходящего газа.

В работающих на ископаемом топливе электростанциях для производства электрической энергии при сжигании ископаемого топлива образуется содержащий диоксид углерода отходящий газ. Как правило, этот продукт выпускается в атмосферу. Скапливающийся в атмосфере диоксид углерода препятствует отражению тепла от Земли, приводя при этом за счет так называемого парникового эффекта к повышению температуры ее поверхности. Чтобы достичь уменьшения выброса диоксида углерода в работающих на ископаемом топливе электростанциях диоксид углерода может быть отделен от отходящего газа.

Для отделения диоксида углерода от газовой смеси известны различные способы. В частности, для отделения диоксида углерода от отходящего газа после процесса сжигания распространен способ абсорбции-десорбции.

В промышленном масштабе описанное отделение диоксида углерода способом абсорбции-десорбции осуществляется с помощью моющего средства. В классическом абсорбционно-десорбционном процессе отходящий газ приводится в контакт в абсорбционной колонне с селективным растворителем в качестве моющего средства. При этом происходит поглощение диоксида углерода в результате химического или физического процесса. Очищенный отходящий газ выпускается из абсорбционной колонны для дальнейшей обработки или удаления. Загрязненный диоксидом углерода растворитель направляется для отделения диоксида углерода и регенерации растворителя в десорбционную колонну. Отделение в десорбционной колонне может происходить термическим путем. При этом загрязненный растворитель нагревается, в результате чего возникает газопаровая смесь из газообразного диоксида углерода и испаренного растворителя - так называемый выпар. Испаренный растворитель отделяется затем от диоксида углерода. Последний может быть в несколько этапов сжат и охлажден. В жидком или замерзшем состоянии диоксид углерода может быть затем направлен на хранение или реализацию. Регенерированный растворитель снова направляется в абсорбционную колонну, где он опять может поглощать диоксид углерода от содержащего его отходящего газа.

Основной проблемой в существующих способах отделения диоксида углерода от отходящего газа являются, в частности, очень высокие энергозатраты, необходимые в виде нагревательной энергии для десорбции. Из уровня техники до сих пор не известны усовершенствования, которые в достаточной степени позволили бы уменьшить энергозатраты интегрированной в энергетический процесс установки для отделения диоксида углерода.

В химической промышленности для сбережения нагревательной энергии в десорбционном процессе известно большое число расширенных схем. Так, в EP 0133208 описан способ поддержки регенерации абсорбента в десорбенте, так называемый способ «Lean-Solvent-Flash». В EP 1759756 A1 описан способ «Lean-Solvent-Reheating», при котором десорбционный процесс поддерживается сбоку. Раскрытая в DE 2817084 C2 схема поддерживает абсорбционный процесс за счет бокового охлаждения. Другой способ расширенной схемы раскрыт в DE 1167318 с помощью так называемого способа «Split-Feed».

Известные стандартные способы по расширенным схемам из химической промышленности для отделения диоксида углерода от отработавшего газа не вполне могут быть адаптированы к другим применениям. Именно при интеграции способа отделения диоксида углерода в энергетический процесс расширенная схема в общем балансе во взаимодействии с энергетическим процессом может быть заметно уменьшена в своем сбережении энергии или даже негативно сказаться.

Даже возможное снижение потребности в собственной энергии не приводит неизбежно к повышению общего к.п.д. Также от взаимодействия между собой при интеграции в энергетический процесс не следует ожидать высокого общего к.п.д. Таким образом, дополнительные затраты не были бы экономически оправданы.

Поэтому общим недостатком известных из уровня техники способов отделения диоксида азота остаются, в частности, высокие энергозатраты. Именно при интеграции способа отделения в работающую на ископаемом топливе электростанцию это приводит к нежелательному снижению ее общего к.п.д. Даже при расширении стандартного способа известной расширенной схемой из химической промышленности потребность в собственной энергии способа отделения до сих пор не удается существенно снизить.

Задача изобретения состоит в создании способа отделения диоксида углерода от отходящего газа работающей на ископаемом топливе электростанции, который обеспечивал бы высокую эффективность отделения при низкой потребности в собственной энергии и в то же время при высоком общем к.п.д. энергетического процесса.

Другой задачей изобретения является создание работающей на ископаемом топливе электростанции с сепарационным устройством для диоксида углерода, который обеспечивал бы высокую эффективность отделения при низкой потребности в собственной энергии и в то же время при высоком общем к.п.д. электростанции.

Задача в части способа отделения диоксида углерода от отходящего газа работающей на ископаемом топливе электростанции решается, согласно изобретению, за счет того, что в процессе сжигания сжигается ископаемое топливо, причем образуется содержащий диоксид углерода отходящий газ, в последующем абсорбционном процессе содержащий диоксид углерода отходящий газ приводится в контакт с абсорбентом, диоксид углерода поглощается абсорбентом, в результате чего образуются загрязненный абсорбент и очищенный отходящий газ, в последующем десорбционном процессе загрязненный абсорбент регенерируется, причем образуется регенерированный абсорбент, загрязненный абсорбент подается в десорбционный процесс в виде первого и второго частичных потоков, и в процессе расширения абсорбент расширяется, причем образуется парообразный абсорбент, который возвращается в десорбционный процесс.

При этом изобретение исходит из идеи привлечения для решения задачи способов, известных из химической технологии. Из разнообразия зарекомендовавших себя дополнительных схем необходимо выбрать способы, которые не компенсировали бы или даже перекомпенсировали бы свои положительные свойства также во взаимодействии между собой и с энергетическим процессом. При этом сущность изобретения заключается в комбинации способов между собой таким образом, чтобы их положительные результаты можно было в значительной степени согласовать между собой. Согласно изобретению, это достигается за счет целенаправленной комбинации способов «Split-Feed» и «Lean-Solvent-Flash». Неожиданным образом именно в случае комбинации этих обоих способов можно прийти к тому заключению, что потребность в собственной энергии сепарационного устройства можно значительно снизить, а кроме того, можно с помощью установок для отделения диоксида углерода заметно повысить общий к.п.д. энергетического процесса. За счет этого можно резко сократить расходы на процесс отделения диоксида углерода.

В способе «Lean-Solvent-Flash» испарение в отстойнике десорбционной колонны поддерживается за счет вакуумного флэш-резервуара. При этом используется тот эффект, что температура кипения растворителя при меньшем давлении падает.Необходимая для создания вакуума во флэш-резервуаре электрическая энергия по сравнению со сбереженной термической энергией для испарения растворителя настолько мала, что общий баланс оказывается положительным.

В способе «Split-Feed» поток загрязненного растворителя, идущий от абсорбционной колонны, разделяется и направляется частично охлажденным в оголовок десорбционной колонны. В результате находящийся в нем выпар уже в значительной степени конденсируется. Это разгружает подключенный к десорбционной колонне конденсатор, так что он не должен отводить тепло через охлаждающую воду наружу. Вместо этого тепло может использоваться непосредственно для нагрева загрязненного растворителя.

Согласно изобретению, эти способы целенаправленно комбинируются и интегрируются в энергетический процесс. Для этого загрязненный растворитель подается в десорбционный процесс, по меньшей мере, двумя частичными потоками. Для подачи, по меньшей мере, двумя частичными потоками не требуется никакой дополнительной энергии. При этом первый частичный поток подается в десорбционный процесс на этапе, на котором в десорбционном процессе присутствует преимущественно выпар. За счет ввода в выпар загрязненного абсорбента из первого частичного потока выпар конденсируется. В результате следующий за десорбционным процессом процесс конденсации разгружается, и сберегается электрическая энергия для направления охлаждающей воды процесса конденсации. Кроме того, подаваемый загрязненный абсорбент нагревается за счет конденсации и имеется в распоряжении десорбционного процесса. Благодаря отсутствию подогрева в десорбционном процессе сберегается нагревательная энергия в виде нагревательного пара.

Второй частичный поток подается в десорбционный процесс на этапе, на котором он непосредственно имеется в распоряжении десорбционного процесса. Возможна также подача загрязненного абсорбента большим числом частичных потоков на большем числе этапов десорбционного процесса.

Покидающий десорбционный процесс регенерированный абсорбент подается в процесс расширения, во время которого он расширяется. Для создания разрежения используется электрическая энергия. За счет расширения часть абсорбента испаряется. В результате процесса расширения жидкий абсорбент отделяется от парообразного абсорбента. Парообразный абсорбент возвращается в десорбционный процесс. Благодаря этому возвращенный парообразный абсорбент поддерживает десорбционный процесс и приводит тем самым к сбережению нагревательной энергии в виде нагревательного пара. Следовательно, сбереженный нагревательный пар может использоваться в энергетическом процессе для производства электрической энергии.

Комбинация способов «Split-Feed» и «Lean-Solvent-Flash» неожиданным образом оказывать лишь минимальное влияние. Так, при незначительных недостатках вклад отдельных способов в энергопотребление способа отделения можно почти суммировать. При этом повышается эффективность отделения. Особенно неожиданным оказалось то, что за счет предложенной комбинации обоих способов в равной мере повышается также общий к.п.д. энергетического процесса.

В одном предпочтительном варианте способа отделения диоксида углерода первый частичный поток устанавливается на температуру T1, а второй частичный поток - на температуру Т2. При этом температура T1 ниже температуры Т2. При этом температура T1 приблизительно соответствует температуре покидающего абсорбционный процесс загрязненного абсорбента. В зависимости от эксплуатационных условий десорбционного процесса может потребоваться также установить другую температуру T1. Установление температур может осуществляться за счет процесса регулирования. В зависимости от требуемых в десорбционном процессе эксплуатационных условий температуры T1, T2 регулируются.

В другом предпочтительном варианте способа отделения диоксида углерода в процессе расширения отделяется регенерированный абсорбент, и в теплообменном процессе у регенерированного абсорбента отбирается тепло, которое подается к загрязненному абсорбенту вторым частичным потоком. Это обеспечивает использование еще оставшегося в регенерированном абсорбенте тепла, чтобы нагреть загрязненный абсорбент во втором частичном потоке. Таким образом, с регулированием теплообменного процесса можно в то же время установить температуру Т2.

Целесообразно процесс расширения осуществляется при давлении Р1, a десорбционный процесс - при давлении Р2, причем давление Р2 устанавливается более низким, чем давление Р1. За счет более низкого давления Р1 в процессе расширения достигается испарение абсорбента. При этом давление Р2 может быть выше атмосферного давления, а давление Р1 лежит, следовательно, между атмосферным давлением и давлением Р2. В одном особом варианте способа отделения диоксида углерода давление Р2 устанавливается приблизительно на атмосферное давление. Это происходит практически за счет того, что десорбционный процесс осуществляется при атмосферном давлении. Следовательно, давление Р1 устанавливается ниже атмосферного давления.

В одном предпочтительном варианте способа отделения диоксида углерода парообразный абсорбент перед возвратом в десорбционный процесс сжимается. При этом давление Р1 поднимается до давления P2. Целью сжатия является возврат парообразного абсорбента в десорбционный процесс. При этом возврат происходит преимущественно в зоне отстойника. Целесообразно загрязненный абсорбент отбирается из абсорбционного процесса в общем потоке, причем общий поток разделяется на первый и второй частичные потоки. Возможно также разделение на большее число частичных потоков. Разделением на первый и второй частичные потоки управляют преимущественно посредством регулировочного процесса. При этом регулирование происходит в зависимости от требуемых в десорбционном процессе эксплуатационных условий. Под разделением следует понимать также ответвление или частичный отбор. В принципе, отбор загрязненного абсорбента из абсорбционного процесса возможен также большим числом частичных потоков.

В одном предпочтительном варианте способа отделения диоксида углерода в десорбционном процессе за счет регенерации загрязненного абсорбента образуется газопаровая смесь из газообразного диоксида углерода и парообразного абсорбента, причем в процессе конденсации из газопаровой смеси конденсируется конденсат. При этом процесс конденсации следует за десорбционным процессом. Газопаровая смесь представляет собой, в основном, выпар. Состав конденсата зависит от используемого абсорбента. В предложенном способе конденсируется, в основном, чистая вода. За счет способа «Split-Feed» процесс конденсации заметно разгружается, так что, с одной стороны, для конденсации требуется меньше охлаждающей воды, а с другой стороны, образуется также меньше конденсата.

Преимущественно в качестве абсорбента используется раствор из H2O и производных амина. По сравнению с абсорбентами на основе аммиака обращение с раствором из H2O и производных амина таит в себе меньше рисков и негативных воздействий на экологию.

Способ применяется преимущественно на работающей на ископаемом топливе пароэлектростанции или на комбинированной газопаротурбинной электростанции.

Задача в части устройства решается посредством работающей на ископаемом топливе электростанции, содержащей подключенное к устройству для сжигания сепарационное устройство для диоксида углерода, через которое протекает содержащий диоксид углерода отходящий газ, причем сепарационное устройство содержит абсорбционный блок для поглощения диоксида углерода из содержащего его отходящего газа и десорбционный блок для отдачи поглощенного диоксида углерода, абсорбционный блок соединен с десорбционным блоком для пропускания загрязненного абсорбента по соединительному трубопроводу, причем соединительный трубопровод содержит первый и второй частичные трубопроводы, присоединенные к десорбционному блоку в разных местах, а десорбционный блок соединен с напорным резервуаром, причем образованный в напорном резервуаре пар возвращается в десорбционный блок по паропроводу.

Изобретение исходит при этом из идеи интеграции в сепарационное устройство комбинированных между собой схем «Split-Feed» и «Lean-Solvent-Flash». Для этого соединительный трубопровод содержит первый и второй частичные трубопроводы. Возможно применение дополнительных частичных трубопроводов. При этом первый частичный трубопровод присоединен к десорбционному блоку в ином месте, нежели второй частичный трубопровод. В случае вертикально установленной десорбционной колонны места присоединения горизонтально отстоят друг от друга. Горизонтальное расположение мест присоединения может изменяться в зависимости от конструкции. Частичные трубопроводы рассчитаны на пропускание загрязненного абсорбента.

К десорбционному блоку подключен напорный резервуар, который соединен с ним посредством подходящего трубопровода для пропускания загрязненного абсорбента. Напорный резервуар представляет собой так называемый флэш-резервуар, в котором может испаряться среда. Кроме того, напорный резервуар соединен с десорбционным блоком посредством возвратного трубопровода для пара.

Неожиданным образом схемы «Split-Feed» и «Lean-Solvent-Flash» комбинируются между собой. При эксплуатации работающей на ископаемом топливе электростанции отмечается очень небольшое влияние обеих схем друг на друга. Таким образом, без значительных вычетов вклад в уменьшение потребности в собственной энергии способа отделения и вклад отдельных способов в общий к.п.д. энергетического процесса можно суммировать, и это к тому же при возрастающей эффективности отделения.

В одном целесообразном варианте работающей на ископаемом топливе электростанции соединительный трубопровод присоединен к абсорбционному блоку в одном месте присоединения. Таким образом, абсорбент, выпускаемый при эксплуатации из абсорбционного блока отводится по соединительному трубопроводу только в одном месте. Возможны также несколько мест присоединений, в которых отводится выпускаемый абсорбент. При этом в случае вертикально установленной абсорбционной колонны несколько мест присоединений могут отстоять друг от друга вертикально или горизонтально.

Преимущественно в напорном резервуаре создается вакуум. Для этого напорный резервуар выполнен соответствующим образом и включает в себя вакуумный насос и напорные клапаны.

В одном особом варианте работающей на ископаемом топливе электростанции предусмотрен теплообменник, который первичной стороной встроен во второй частичный трубопровод, а с вторичной стороны соединен для подвода с напорным резервуаром, а для отвода - с абсорбционным блоком. При эксплуатации работающей на ископаемом топливе электростанции это позволяет передавать тепло от регенерированного абсорбента в напорном резервуаре на загрязненный абсорбент во втором частичном трубопроводе. Регенерированный абсорбент охлаждается тем самым для повторного использования в абсорбционном блоке, а загрязненный абсорбент нагревается для регенерации в десорбционном блоке.

В одном предпочтительном варианте работающей на ископаемом топливе электростанции в паропровод встроен компрессор. Он представляет собой устройство, посредством которого пар передается из напорного резервуара в десорбционный блок. Компрессором является преимущественно вакуумный насос с перепускным клапаном. Последний предотвращает обратное течение среды из десорбционного блока в напорный резервуар.

В другом предпочтительном варианте осуществления изобретения предусмотрен регулирующий клапан, который посредством соединительного трубопровода соединен с абсорбционным блоком, а посредством первого и второго частичных трубопроводов - с десорбционным блоком, так что при эксплуатации протекающий по соединительному трубопроводу абсорбент распределяется по первому и второму частичным трубопроводам в соотношении V. При этом регулирование происходит в зависимости от необходимых в десорбционном блоке эксплуатационных условий.

Преимущественно работающая на ископаемом топливе электростанция выполнена в виде пароэлектростанции, включающей в себя котел и паровую турбину, или в виде газопаротурбинной электростанции, включающей в себя газовую турбину и подключенный к ней со стороны отходящего газа утилизационный парогенератор, который встроен в пароводяной контур паровой турбины.

Ниже примеры осуществления изобретения более подробно поясняются с помощью прилагаемых схематичных чертежей, на которых изображают:

фиг.1 - пример способа отделения диоксида углерода в работающей на ископаемом топливе электростанции;

фиг.2 - пример пароэлектростанции с сепарационным устройством для диоксида углерода;

фиг.3 - пример газопаротурбинной электростанции с сепарационным устройством для диоксида углерода.

В изображенном на фиг.1 способе отделения диоксида углерода показаны, в основном, десорбционный 10 и расширительный 20 процессы.

Загрязненный абсорбент 25 подается в десорбционный процесс 10 первым 30 и вторым 40 частичными потоками. Подача происходит на различных этапах десорбционного процесса 10. В десорбционном процессе 10 загрязненный абсорбент 25 регенерируется. При этом образуется газопароводяная смесь 50 из диоксида углерода и парообразного абсорбента. Десорбционный процесс 10 покидают газопароводяная смесь 50 и регенерированный абсорбент 26.

Регенерированный абсорбент 26 подается затем в расширительный процесс 20. В расширительном процессе 20 при давлении, которое ниже давления в десорбционном процессе 10, парообразный абсорбент 27 отделяется от регенерированного абсорбента 26а. Последний удаляется из расширительного процесса 20 и возвращается в абсорбционный контур. Парообразный абсорбент 27 возвращается в десорбционный процесс.

Изображенная на фиг.2 пароэлектростанция с интегрированным сепарационным устройством для диоксида углерода включает в себя, в основном, работающий на ископаемом топливе парогенератор 60 и подключенное к нему сепарационное устройство 70 для диоксида углерода.

Для отвода отходящего газа парогенератор 60 соединен трубопроводом 80 для отходящего газа с сепарационным устройством 70. Кроме того, он встроен в пароводяной контур 90. Посредством пароводяного контура 90 парогенератор 60 соединен с паровой турбиной 100, приводящей в действие генератор 110.

Сепарационное устройство 70 состоит из абсорбционного блока 120, десорбционного блока 130, напорного резервуара 140, компрессора 150, теплообменника 160, конденсатора 170, нагревательного устройства 180 и теплообменника 190.

Абсорбционный блок 120 встроен в трубопровод 80 для отходящего газа. В трубопровод 80 могут быть также встроены другие устройства, например обессериватели или воздуходувки. Для протекания загрязненного абсорбента к абсорбционному блоку 120 присоединен абсорбентопровод 200. Он разветвляется в месте разветвления 205 на первый 201 и второй 202 частичные трубопроводы. С десорбционным блоком 130 первый частичный трубопровод 201 соединен в первом месте присоединения 210, а второй частичный трубопровод 202 - во втором месте присоединения 211. Во второй частичный трубопровод 202 первичной стороной встроен теплообменник 160.

К десорбционному блоку 130 подключен конденсатор 170, который соединен с ним конденсатопроводом 220.

Десорбционный блок 130 соединен абсорбентопроводом 230 с абсорбционным блоком 120 и нагревательным устройством 180. В абсорбентопровод 230 встроен напорный резервуар 140. Последний рассчитан на разрежение и соединен с десорбционным блоком 130 паропроводом 231. В паропровод 231 встроен компрессор 150. Здесь не показаны дополнительные устройства для создания и регулирования разрежения в напорном резервуаре 140. Кроме того, десорбционный блок 130 соединен абсорбентопроводом 230 с нагревательным устройством 180.

Абсорбентопровод 230 соединен с вторичной стороны с теплообменником 160, так что тепло отбирается от направляемого по абсорбентопроводу 230 абсорбента и передается на абсорбент, направляемый по второму частичному трубопроводу 202.

Дополнительно в абсорбентопровод 230 могут быть встроены дополнительные устройства, например теплообменник или насос для абсорбента. Нагревательное устройство 180 соответствует теплообменнику и встроено в пароводяной контур 90. Последний может содержать дополнительные устройства, например охладители или насосы.

На фиг.3 изображена газопаротурбинная электростанция 56 с интегрированным сепарационным устройством 70 для диоксида углерода. Электростанция 56 включает в себя, в основном, газовую турбину 101, которая через вал приводит в действие компрессор 102 и генератор 111, подключенный к газовой турбине 101 со стороны отходящего газа утилизационный парогенератор 112, питаемый газовой турбиной 101 и выполненный для производства пара, паровую турбину 100, посредством вала соединенную с генератором 110, а посредством паропровода - с утилизационным парогенератором 112. Последний, направляя отходящий газ, соединен с сепарационным устройством 70. Подключенное сепарационное устройство 70 выполнено аналогично сепарационному устройству 70 пароэлектростанции 55 на фиг.2.

Преимущества изобретения следует пояснить на примере работающей на Bitumen-Kohle электростанции мощностью 800 МВт. В таких процессах сжигания ископаемого топлива возникает отходящий газ с содержанием диоксида углерода от 10 до 15 об.%. При достигаемой степени отделения содержащегося в отходящем газе диоксида углерода 90% для отделения одной тонны CO2 требуется тепловая энергия 3,5 ГДж со стандартной схемой процесса. Стандартная схема процесса отделения диоксида углерода является эталоном для последующего расчета.

За счет применения способа «Split-Feed» потребность в тепловой энергии для отделения одной тонны CO2 можно снизить до 3,1 ГДж. По сравнению с эталоном за счет этого можно уменьшить потери общей электрической мощности на 7,5%. Эта мера позволяет сократить относительные расходы на снижение уровня загрязнения окружающей среды в процессе отделения CO2 на 9,9%.

Интеграция способа «Lean-Solvent-Flash» позволяет снизить потребность в энергии для отделения одной тонны CO2 до 2,3 ГДж. За счет этого потери общей электрической мощности можно уменьшить на 9,2%, так что относительные расходы на снижение уровня загрязнения окружающей среды в процессе отделения CO2 сокращаются на 8,2%.

Благодаря изобретению преимущества обоих способов можно почти суммировать. Так, комбинация обоих способов негативно не сказывается на потребности в энергии, в результате чего в этом примере для отделения одной тонны CO2 требуется 2,3 ГДж. Потери общей электрической мощности можно уменьшить на 15%, а относительные расходы на снижение уровня загрязнения окружающей среды в процессе отделения CO2 сократить даже на 16,9%.

Таким образом, благодаря изобретению может быть создан энергетический процесс с интегрированным процессом отделения диоксида углерода, при котором за счет целенаправленной комбинации способов «Split-Feed» и «Lean-Solvent-Flash» можно достичь заметного возрастания произведенного электростанцией количества электроэнергии. Это возможно потому, что потребность в собственной энергии процесса отделения при такой комбинации неожиданным образом существенно ниже, чем потребность в собственной энергии отдельных схем. За счет одновременно снижения инвестиций можно резко сократить расходы на отделение диоксида углерода.


СПОСОБ И УСТРОЙСТВО ДЛЯ ОТДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА ОТ ОТХОДЯЩЕГО ГАЗА РАБОТАЮЩЕЙ НА ИСКОПАЕМОМ ТОПЛИВЕ ЭЛЕКТРОСТАНЦИИ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОТДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА ОТ ОТХОДЯЩЕГО ГАЗА РАБОТАЮЩЕЙ НА ИСКОПАЕМОМ ТОПЛИВЕ ЭЛЕКТРОСТАНЦИИ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОТДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА ОТ ОТХОДЯЩЕГО ГАЗА РАБОТАЮЩЕЙ НА ИСКОПАЕМОМ ТОПЛИВЕ ЭЛЕКТРОСТАНЦИИ
Источник поступления информации: Роспатент

Показаны записи 581-590 из 1 427.
10.06.2016
№216.015.4a08

Тормозная система рельсового транспортного средства

Группа изобретений относится к электродинамическим тормозным системам для транспортных средств. Тормозная система рельсового транспортного средства содержит по меньшей мере один первый электродинамический тормоз (24; 80), который включает в себя приводной агрегат (16), имеющий приводной...
Тип: Изобретение
Номер охранного документа: 0002586943
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a12

Система контроля и диагностики для основанной на энергии текучей среды машинной системы, а также основанная на энергии текучей среды машинная система

Изобретение относится к системе (1) контроля и диагностики для основанной на энергии текучей среды машинной системы (30). Основанная на энергии текучей среды машинная система (30) содержит множество различных подсистем (16, 17, 18, 19, 20, 21, 22, 25, 26) и компонентов (13, 14, 15, 23, 24)...
Тип: Изобретение
Номер охранного документа: 0002587122
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a22

Система рельсовых транспортных средств

Изобретение относится к электровозам и моторным вагонам. Система рельсовых транспортных средств включает набор вагонов (12.1-12.7), которые предусмотрены для перевозки пассажиров. Набор вагонов имеет два головных вагона (12.1, 12.7), по меньшей мере один безмоторный промежуточный вагон (12.3,...
Тип: Изобретение
Номер охранного документа: 0002587133
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a24

Газотранспортная система и способ эксплуатации газотранспортной системы

Группа изобретений относится к трубопроводному транспорту. Для защиты от коррозии в трубопроводе используется катодная защитная система, которая содержит множество расположенных в почве стержней заземления, которые электрически соединены каждый с почвой и электрически связаны с находящимся в...
Тип: Изобретение
Номер охранного документа: 0002587024
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a62

Система управления накопителями текучей среды и способ контроля объемов текучей среды и управления передачей объемов текучей среды внутри сети текучей среды

Изобретение относится к контролю текучей среды и управлению передачей объемов текучей среды внутри сети текучей среды. Система (1а, 1b) управления накопителями текучей среды для контроля объемов текучей среды и для управления передачей объемов текучей среды внутри сети текучей среды содержит...
Тип: Изобретение
Номер охранного документа: 0002587001
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a63

Турбинный узел, соответствующая трубка соударительного охлаждения и газотурбинный двигатель

Турбинный узел содержит полую аэродинамическую часть, имеющую по меньшей мере одну полость с по меньшей мере одной трубкой соударительного охлаждения, предназначенную для введения внутрь полости полой аэродинамической части и используемую для соударительного охлаждения, по меньшей мере,...
Тип: Изобретение
Номер охранного документа: 0002587032
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4b08

Высокочастотное энергоснабжение нагрузки без согласования импедансов

Устройство энергоснабжения для нагрузки (1) имеет источник (2) постоянного напряжения, некоторое число ступеней (3) переключения и управляющее устройство (4). Ступени (3) переключения соединены с источником (2) постоянного напряжения, нагрузкой (1) и управляющим устройством (4), так что...
Тип: Изобретение
Номер охранного документа: 0002594748
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4d68

Способ переключения в компоновке силовых переключателей и компоновка из множества силовых переключателей

Группа изобретений относится к переключающим устройствам. Технический результат - создание средств переключения, обеспечивающих то, что отдельные ветви оборудования распределения энергии надежно подключаются или отключаются. Для этого предложен способ переключения в компоновке силовых...
Тип: Изобретение
Номер охранного документа: 0002595600
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.4dea

Система рециркуляции воздуха оболочки камер сгорания в газотурбинном двигателе

Газотурбинный двигатель, имеющий продольную ось, определяющую аксиальное направление двигателя, содержит компрессорную секцию, секцию сжигания, содержащую множество устройств для сжигания, турбинную секцию, кожух и систему рециркуляции воздуха оболочки. Кожух имеет часть, расположенную вокруг...
Тип: Изобретение
Номер охранного документа: 0002595465
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.4dfd

Устройство сгорания с импульсным разделением топлива

Дано описание управляющего блока устройства сгорания и устройства сгорания, например, газовой турбины, который на основе по меньшей мере одного рабочего параметра определяет, находится ли устройство сгорания в заданной рабочей фазе. В ответ на это генерируется управляющий сигнал,...
Тип: Изобретение
Номер охранного документа: 0002595292
Дата охранного документа: 27.08.2016
Показаны записи 581-590 из 943.
20.04.2016
№216.015.368c

Газовая турбина и способ изготовления такой газовой турбины

Газовая турбина содержит устройство с внешним и внутренним корпусами и уплотнительным кольцом, а также дополнительное устройство с дополнительным внутренним и дополнительным внешним корпусами. Внешний и внутренний корпуса устройства расположены с образованием между ними канала охлаждения....
Тип: Изобретение
Номер охранного документа: 0002581287
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.372c

Способ изготовления турбинного диска и турбина

Турбина включает турбинный диск и другую турбинную часть, между которыми образована полость. Турбинный диск содержит первый и второй выступы. Первый и второй выступы образованы так, что обеспечивается возможность закрепления балансировочного грузика между первым выступом и вторым выступом....
Тип: Изобретение
Номер охранного документа: 0002581296
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37e3

Миниатюрная магнитная проточная цитометрия

Группа изобретений относится к области магнитного обнаружения клеток, а именно к магнитной проточной цитометрии. Устройство для магнитной проточной цитометрии включает в себя магниторезестивный датчик, проточную камеру, которая предназначена для прохождения потока клеточной суспензии, и участок...
Тип: Изобретение
Номер охранного документа: 0002582391
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.384a

Усовершенствованная группа отверстий футеровок камеры сгорания газотурбинного двигателя с низкими динамикой горения и выделениями

Камера сгорания для газовой турбины содержит внутренний корпус и наружный корпус. Внутренний корпус содержит внутренний стеночный элемент, который содержит группу первых отверстий и группу вторых отверстий. Внутренний стеночный элемент охватывает объем горения камеры сгорания. Группа первых...
Тип: Изобретение
Номер охранного документа: 0002582378
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38cd

Устройство и способ позиционирования, по меньшей мере, одного из двух литейных роликов в непрерывном процессе литья для получения металлической полосы

Изобретение относится к непрерывному литью металлических полос в двухвалковом разливочном устройстве. В процессе непрерывного литья осуществляют позиционирование двух литейных роликов посредством пары рычажных элементов 12a,12b, 12c, 12d на каждый ролик 2a и 2b, установленных с возможностью...
Тип: Изобретение
Номер охранного документа: 0002582410
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3a4f

Разрядник для защиты от перенапряжений

Изобретение касается разрядника (1) для защиты от перенапряжений, имеющего трубчатый корпус (2), соединенную с одним концом корпуса (2) концевую арматуру (3), расположенный в корпусе (2) варисторный блок и расположенный в области концевой арматуры (3) опорный элемент (4), который имеет...
Тип: Изобретение
Номер охранного документа: 0002583046
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c0e

Высокочастотный объемный резонатор и ускоритель

Изобретение относится к высокочастотному объемному резонатору для ускорения заряженных частиц (15), при этом предусмотрена возможность введения в высокочастотный объемный резонатор (11) электромагнитного высокочастотного поля, которое при работе воздействует на пучок (15) частиц, который...
Тип: Изобретение
Номер охранного документа: 0002583048
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c1f

Устройство для обработки данных в логической системе с компьютерной поддержкой и соответствующий способ

Изобретение относится к устройству для обработки данных в логической системе с компьютерной поддержкой. Техническим результатом является обеспечение возможности создания или выполнения критичных к времени запросов и логических выводов без увеличения объема требуемой памяти. Устройство (V) для...
Тип: Изобретение
Номер охранного документа: 0002583720
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c4d

Компонент турбины с листовыми уплотнениями и способ уплотнения от утечки между лопаткой и несущим элементом

Компонент турбины содержит лопатку, несущий элемент и четыре поверхности раздела между лопаткой и несущим элементом. Каждая из поверхностей раздела уплотнена с помощью листовых уплотнений. Первая поверхность раздела расположена на стороне передней кромки радиально наружной платформы лопатки,...
Тип: Изобретение
Номер охранного документа: 0002583487
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c61

Корпус камеры сгорания

Изобретение относится к энергетике. Корпус камеры сгорания, образованный внешним кожухом камеры сгорания с внутренней полостью и внутренним кожухом камеры сгорания с внутренней полостью, причем внешний кожух камеры сгорания и внутренний кожух камеры сгорания содержат каждый по одному открытому...
Тип: Изобретение
Номер охранного документа: 0002583327
Дата охранного документа: 10.05.2016
+ добавить свой РИД