×
10.10.2013
216.012.74a5

Результат интеллектуальной деятельности: ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к антенно-фидерным устройствам, а именно к бортовым антеннам спутниковой навигации. Техническим результатом является создание малогабаритной микрополосковой двухдиапазонной антенны с круговой поляризацией, пригодной для работы с одиовходовым приемником. Двухдиапазонная микрополосковая антенна круговой поляризации содержит металлический экран, два излучающих элемента в виде прямоугольных металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи с одной точкой возбуждения, линейные размеры сторон пластин определяются соотношениями X=(0,94÷0,97)×Y; X=(0,94÷0,97)×Y, где Х, Y, и Х, Y - размеры сторон нижней и верхней пластины, а место расположения точки возбуждения определяется из следующих соотношений: N=(0,35÷0,40)×X; M=(0,25÷0,30)×Y; N=(0,32÷0,36)×X; M=(0,23÷0,28)×Y, где N, M, и N, M - координаты расположения точки возбуждения относительно ребер нижней и верхней пластины соответственно. 5 ил.
Основные результаты: Двухдиапазонная микрополосковая антенна круговой поляризации, содержащая металлический экран, два излучающих элемента в виде металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи с одной точкой возбуждения, отличающаяся тем, что пластины выполнены прямоугольными, линейные размеры сторон которых определяются соотношениямиX=(0,94÷0,97)·Y;X=(0,94÷0,97)·Y,где X, Y, - размеры сторон нижней пластины,X, Y - размеры сторон верхней пластины,а место расположения точки возбуждения определяется из следующих соотношений:N=(0,35÷0,40)·X;M=(0,25÷0,30)·Y;N=(0,32÷0,36)·X;M=(0,23÷0,28)·Y где N, M - координаты расположения точки возбуждения относительно ребер нижней пластины,N, M - координаты расположения точки возбуждения относительно ребер верхней пластины соответственно.

Изобретение относится к антенно-фидерным устройствам, в частности, к бортовым антеннам спутниковой навигации.

Для антенн, размещаемых на летательных аппаратах, предъявляются требования по габариту. Они должны иметь минимальные массогабаритные характеристики и быть невыступающими или маловыступающими для сохранения аэродинамических свойств объекта. Кроме того, для приема радиосигналов, имеющих круговую или произвольно ориентированную линейную поляризацию необходимо иметь приемную антенну также круговой (эллиптической) поляризации.

Известна двухдиапазонная антенна, содержащая металлический экран, расположенные друг над другом параллельно металлическому экрану нижний и верхний излучающие элементы в виде дисков, разделенные диэлектрическими подложками, и коаксиальную линию передачи [патент РФ №2089017, МПК H01Q 1/28, опубл. 27.08.1997]. Для обеспечения круговой поляризации излучения оба излучающих элемента замкнуты на экран токопроводящими опорными стойками (короткозамыкающими штырями), сформированными в две группы. Стойки расположены между нижним излучающим элементом и металлическим экраном, и между верхним и нижним излучающими элементами. Данное устройство предназначено для использования в качестве бортовой антенны, обладающей ненаправленным равномерным излучением в горизонтальной (азимутальной) плоскости, и может быть использовано в системах радиосвязи между подвижными объектами, в частности, для передачи и приема в системе радиотелефонной сотовой связи на двух разнесенных частотах.

Однако данная антенна является двухдиапазонной с линейной поляризацией, т.е. такая антенна не может работать с круговой поляризацией, что особенно важно при использовании микрополосковой двухчастотной антенны на летательных аппаратах.

Известна двухдиапазонная микрополосковая антенна с круговой поляризацией, содержащая металлический экран, два излучающих элемента в виде квадратных металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи (коаксиальный фидер) с двумя точками возбуждения [авторское свидетельство СССР №1771016, МПК H01Q 1/38, опубл. 23.10.1992]. Для увеличения ширины полосы рабочих частот и сектора сканирования по коэффициенту эллиптичности пластины имеют неоднородности в виде щелей, прорезанных с углов пластин по диагонали и неоднородности в виде выступов, предназначенных для подстройки рабочих частот.

Однако выполнение неоднородностей в пластинах данной антенны усложняет ее изготовление. Кроме этого, данная антенна содержит две точки возбуждения и соответствующие этим точкам два входа, что делает невозможным ее применение при работе с одновходовым приемником.

Известна микрополосковая антенна с круговой поляризацией, реализуемая в патенте под названием «Микрополосковая антенна, в частности, для спутниковых телефонных передач» [патент РФ №2117366, МПК H01Q 1/38, опубл. 10.08.1998]. Данное устройство выбрано в качестве прототипа предлагаемого изобретения, как наиболее близкое по совокупности признаков. Данная микрополосковая антенна, содержащая металлический экран (плоскость заземления), два излучающих элемента в виде квадратных металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи (линию питания) с одной точкой возбуждения, имеет делитель мощности (делитель Уилкинсона) с дополнительной платой для его размещения.

Для обеспечения эллиптической (круговой) поляризации при одной коаксиальной линии передач (одновходовый приемник) в данное устройство введен делитель мощности в микрополосковом исполнении с дополнительной платой для его размещения. Нижняя пластина запитывается с помощью зондов в двух выбранных точках. Вторая пластина возбуждается полем излучения первой. В конструкцию антенны введена дополнительная подложка с разделением возбуждающего элемента.

Однако построение микрополосковой антенны по такой конструктивной схеме приводит к увеличению ее габаритов (толщины) ввиду появления дополнительной платы делителя мощности и зондов, усложняя ее конструкцию и изготовление.

Задачей изобретения является создание малогабаритной микрополосковой двухдиапазонной антенны с круговой поляризацией, пригодной для работы с одновходовым приемником.

Технический результат, на достижение которого направлено предполагаемое изобретение, заключается в достижении круговой поляризации (коэффициент эллиптичности не менее 0,5) в двух частотных диапазонах L1 (1575÷1610 МГц) и L2 (1245÷1257 МГц), в которых коэффициент стоячей волны по напряжению (КСВН) не более 2, при использовании одной коаксиальной линии передачи и, соответственно, одной точки возбуждения двух излучающих элементов за счет внесения незначительной асимметрии в конструкцию и выбора определенного местоположения точки возбуждения относительно ребер излучающих элементов.

Технический результат достигается тем, что в двухдиапазонной микрополосковой антенне с круговой поляризацией, содержащей металлический экран, два излучающих элемента в виде металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи с одной точкой возбуждения, согласно изобретению, пластины выполнены прямоугольными, линейные размеры сторон которых определяются соотношениями Xн=(0,94÷0,97)×Yн; Xв=(0,94÷0,97)×Yв, где Xн, Yн, - размеры сторон нижней пластины, Xв, Yв - размеры сторон верхней пластины, а место расположения точки возбуждения определяется из следующих соотношений: Nн=(0,35÷0,40)×Xн; Mн=(0,25÷0,30)×Yн; Nв=(0,32÷0,36)×Xв; Mв=(0,23÷0,28)×Yв, где Nн, Mн - координаты расположения точки возбуждения относительно ребер нижней пластины, а Nв, Mв - координаты расположения точки возбуждения относительно ребер верхней пластины соответственно.

Выполнение излучающих пластин прямоугольными с размерами сторон в определенном соотношении и выбор места расположения точки возбуждения определенным образом относительно ребер излучающих пластин дает возможность произвести возбуждение двух ортогональных вырожденных типов колебаний, обеспечивающих сдвиг по фазе ±90° в одной точке. Местоположение точки возбуждения выбрано так, чтобы амплитуды возбуждаемых полей были одинаковы, а вырождение «снимается» внесением незначительной асимметрии в конструкцию антенны. Это дает возможность, имея небольшие габариты антенны и простую геометрию, принимать сигналы, работающие на двух частотных диапазонах систем ГЛОНАСС и GPS L1 (1575÷1610 МГц) и L2 (1245÷1257 МГц), обеспечивая круговую поляризацию в обоих частотных диапазонах при использовании одной коаксиальной линии передачи.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

Новые признаки не были выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

Предполагаемое изобретение поясняется чертежами:

на фиг.1 приведено изображение конструкции двухдиапазонной микрополосковой антенны с круговой поляризацией (вид сверху);

на фиг.2 приведено сечение A-A на фиг.1;

на фиг.3 приведена зависимость коэффициента стоячей волны по напряжению (КСВН) от частоты для двух антенн с разными материалами диэлектрических подложек, где кривая а - антенна, использующая в качестве материала диэлектрических подложек ФФ-4; кривая б - антенна, использующая в качестве материала диэлектрических подложек ФЛАН-5.0 (выделенная область соответствует частотным диапазонам L1 и L2);

на фиг.4 приведена зависимость коэффициента эллиптичности (КЭ) антенны от частоты в максимуме диаграммы направленности (ДН) в нижнем диапазоне частот для двух антенн с разными материалами диэлектрических подложек, где кривая а - антенна, использующая в качестве материала диэлектрических подложек ФФ-4; кривая б - антенна, использующая в качестве материала диэлектрических подложек ФЛАН-5.0 (выделенная область соответствует частотному диапазону L2);

на фиг.5 приведена зависимость КЭ антенны от частоты в максимуме ДН в верхнем диапазоне частот для двух антенн с разными материалами диэлектрических подложек, где кривая а - антенна, использующая в качестве материала диэлектрических подложек ФФ-4; кривая б - антенна, использующая в качестве материала диэлектрических подложек ФЛАН-5.0 (выделенная область соответствует частотному диапазону L1).

Предлагаемая микрополосковая антенна (фиг.1, 2) содержит металлический экран 1 и расположенные друг над другом параллельно экрану 1 нижний излучающий элемент 2 и верхний излучающий элемент 3 на диэлектрических подложках 4, 5 соответственно. В коаксиальной линии передачи 6 внешний проводник подсоединен к экрану 1, а центральная жила 7 соединена с излучающим элементом 3 в точке возбуждения О. В нижнем излучающем элементе 2, в точке пересечения с центральной жилой 7 выполнено отверстие 8 для прохождения жилы 7 к верхнему излучающему элементу 3. Снаружи антенна снабжена защитным радиопрозрачным обтекателем (не показан). Излучающие элементы 2, 3 представляют собой тонкие прямоугольные фольгированные пластины с линейными размерами сторон согласно соответствующим соотношениям Xн=(0,94÷0,97)×Yн; Xв=(0,94÷0,97)×Yв, где Xн, Yн, - ширина и длина излучающего элемента 2, а Xв, Yв - ширина и длина излучающего элемента 3. Размеры каждого излучающего элемента 2, 3 рассчитаны на работу в своем диапазоне частот: излучающий элемент 2 работает в диапазоне частот L2, а излучающий элемент 3 работает в диапазоне частот L1.

Принцип работы предлагаемой антенны заключается в следующем.

Возбуждение осуществляется коаксиальной линией передачи 6, внешний проводник которой подсоединен к экрану 1, а центральная жила 7 электрически соединена с излучающим элементом 3 в точке возбуждения О, тем самым происходит его возбуждение. Излучающий элемент 2 возбуждается полем излучения верхнего излучающего элемента 3. Круговая поляризация достигается за счет незначительной асимметрии в конструкции (соотношения сторон прямоугольных излучающих элементов) и определенного выбора местоположения точки возбуждения О по отношению к ребрам излучающих элементов 2, 3.

Возможность промышленной реализации и практической возможности достижения требуемого технического результата при использовании изобретения иллюстрируется следующими примерами.

Пример 1

В качестве примера конкретного выполнения предлагаемой антенны была изготовлена антенна, использующая в качестве диэлектрических подложек ФФ-4 с относительной диэлектрической проницаемостью ε=2,05. Металлический экран 1 был выполнен из проводящего материала алюминий толщиной 1 мм. Антенна имела следующие геометрические размеры: толщина диэлектрических подложек 4, 5 составляла 4 мм, линейные размеры сторон нижнего излучающего элемента 2 составляли 76 мм × 78,5 мм (Xн×Yн), линейные размеры сторон верхнего излучающего элемента 3 составляли 60,5 мм × 62,5 мм (Xв×Yв). Внешний проводник коаксиальной линии передачи 6 подсоединялся к экрану 1. Центральная жила 7 линии передачи 6 электрически соединялась с элементом 3 в точке возбуждения O. Расстояние от точки возбуждения О до ближайших ребер верхнего излучающего элемента 3 составляло 20,5 мм (Nв) и 16,5 мм (Mв), а расстояние от точки возбуждения О до ближайших ребер нижнего излучающего элемента 2 составляло 29 мм (Nн) и 23 мм (Mн).

При этом происходило возбуждение верхнего излучающего элемента 3. Нижний излучающий элемент 2 возбуждался полем излучения верхнего 3, достигая круговую поляризацию. Результаты экспериментов представлены на фиг.3-5 (кривая а), где показаны частотная зависимость коэффициента стоячей волны по напряжению (КСВН) и зависимости коэффициента эллиптичности (КЭ) в максимуме диаграммы направленности (ДН) в нижнем и верхнем диапазоне частот данной антенны. Как видно при данных размерах антенны величина КСВН выхода не более 2 в диапазонах частот 1230÷1269 МГц и 1557÷1635 МГц; КЭ больше 0,5 в диапазонах частот 1232÷1253 МГц и 1575÷1615 МГц. То есть в данные диапазоны частот входят рабочие частоты L2 и L1 соответственно.

Пример 2

В качестве примера конкретного выполнения предлагаемой антенны была изготовлена антенна, использующая в качестве диэлектрических подложек ФЛАН с относительной диэлектрической проницаемостью ε=5. Металлический экран 1 был выполнен из проводящего материала алюминий толщиной 1 мм. Антенна имела следующие геометрические размеры: толщина диэлектрических подложек 4, 5 составляла 3 мм, линейные размеры сторон нижнего излучающего элемента 48,5 мм × 50,5 мм (Xн×Yн), линейные размеры сторон верхнего излучающего элемента составляли 39 мм × 41 мм (Xв×Yв). Внешний проводник коаксиальной линией передачи 6 подсоединялся к экрану 1, а центральная жила 7 линии передачи 6 электрически соединялась с верхним излучающим элементом 3 в точке возбуждения O. Расстояние от точки возбуждения О до ребер верхнего излучающего элемента составляло 12 мм (Nв) и 10,5 мм (Mв), а расстояние от точки возбуждения О до ребер нижнего излучающего элемента составляло 17,5 мм (Nн) и 13 мм (Mн).

При этом происходило возбуждение верхнего излучающего элемента 3. Нижний излучающий элемент 2 возбуждался полем излучения верхнего 3. Результаты экспериментов представлены на фиг.3-5 (кривая б), где показаны частотная зависимость коэффициента стоячей волны по напряжению (КСВН) и зависимости коэффициента эллиптичности (КЭ) в максимуме диаграммы направленности (ДН) в нижнем и верхнем диапазоне частот данной антенны. Так при данных размерах антенны величина КСВН не более 1,4 и 1,6 в диапазонах частот L2 и L1 соответственно; КЭ больше 0,5 в диапазонах частот L2 и L1. То есть в данные диапазоны частот входят рабочие частоты L2 и L1 соответственно.

Таким образом, результаты экспериментов подтверждают решение поставленной задачи и достижение требуемого технического результата, а именно создание малогабаритной двухчастотной микрополосковой антенны с круговой поляризацией с КСВН≤2 и КЭ≥0,5 в требуемых диапазонах частот L1 и L2.

Итак, представленные сведения свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

- создание малогабаритной двухчастотной микрополосковой антенны с круговой поляризацией;

- для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления с помощью описанных в заявке и известных до даты приоритета средств и методов.

Следовательно, заявленное изобретение соответствует условию "промышленная применимость".

Двухдиапазонная микрополосковая антенна круговой поляризации, содержащая металлический экран, два излучающих элемента в виде металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи с одной точкой возбуждения, отличающаяся тем, что пластины выполнены прямоугольными, линейные размеры сторон которых определяются соотношениямиX=(0,94÷0,97)·Y;X=(0,94÷0,97)·Y,где X, Y, - размеры сторон нижней пластины,X, Y - размеры сторон верхней пластины,а место расположения точки возбуждения определяется из следующих соотношений:N=(0,35÷0,40)·X;M=(0,25÷0,30)·Y;N=(0,32÷0,36)·X;M=(0,23÷0,28)·Y где N, M - координаты расположения точки возбуждения относительно ребер нижней пластины,N, M - координаты расположения точки возбуждения относительно ребер верхней пластины соответственно.
ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ
ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ
ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ
ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ
ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 521-530 из 706.
01.11.2019
№219.017.dc0c

Оптический волоконный датчик

Изобретение относится к оптическим элементам, в частности к компактным элементам фокусировки и сбора лазерного излучения. Оптический волоконный датчик включает фокусирующий и собирающий элемент, которые сформированы из оптического волокна датчика путем оплавления торца с приданием ему...
Тип: Изобретение
Номер охранного документа: 0002704560
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dc35

Способ калибровки и стабилизации параметров спектрометра γ-излучения

Использование: для калибровки и стабилизации параметров спектрометра γ-излучения. Сущность изобретения заключается в том, что калибровку и стабилизацию осуществляют от одного и того же встроенного в блок реперного источника γ-излучения, в качестве которого используют радионуклид Th с...
Тип: Изобретение
Номер охранного документа: 0002704564
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dc6a

Способ установки термоэлектрических модулей

Изобретение относится к приборостроению и может быть использовано для разработки устройств, в том числе лазерных, особенно при их серийном производстве и эксплуатируемых в условиях ударных и вибрационных нагрузок. Технический эффект, заключающийся в исключении влияния динамических нагрузок на...
Тип: Изобретение
Номер охранного документа: 0002704568
Дата охранного документа: 29.10.2019
07.11.2019
№219.017.dedd

Взрывное устройство

Изобретение относится к области боеприпасов и взрывной техники, используемой в мирных целях. Взрывное устройство содержит корпус с прижимной крышкой, размещенный между ними заряд взрывчатого вещества, систему инициирования и пружинную систему температурной компенсации, установленную между...
Тип: Изобретение
Номер охранного документа: 0002705122
Дата охранного документа: 05.11.2019
08.11.2019
№219.017.df6e

Ускоритель электронов на основе сегнетоэлектрического плазменного катода

Изобретение относится к области ускорительной техники, физике плазмы, радиационной физике, и может быть использовано в атомной физике, медицине, химии, физике твердого тела, где важным является получение пучков заряженных частиц с необходимыми энергетическими параметрами и регулируемой...
Тип: Изобретение
Номер охранного документа: 0002705207
Дата охранного документа: 06.11.2019
13.11.2019
№219.017.e107

Устройство разделения плавучего прибора на герметичные отсеки

Изобретение относится к области подводной техники и может быть использовано в составе дрейфующего автономного гидроакустического прибора. Устройство разделения плавучего прибора на герметичные отсеки содержит герметичный силовой корпус, состоящий из отсеков - аппаратурного и буйкового, поршня,...
Тип: Изобретение
Номер охранного документа: 0002705722
Дата охранного документа: 11.11.2019
14.11.2019
№219.017.e19d

Способ нанесения покрытий на изделия из материалов, интенсивно окисляющихся в атмосфере воздуха, и установка для его реализации

Изобретение может быть использовано для нанесения функциональных и защитных металлических покрытий, а именно Cu, Ti, Zn, Nb, Mo, W, Sn, Cr, V, Cd, Zr, и может быть использовано в машиностроительной промышленности. Способ нанесения металлического покрытия на изделия из материала, интенсивно...
Тип: Изобретение
Номер охранного документа: 0002705834
Дата охранного документа: 12.11.2019
15.11.2019
№219.017.e2f8

Низковольтный электродетонатор

Изобретение относится к области безопасных средств взрывания, а именно к низковольтным мостиковым электродетонаторам с использованием вторичных (бризантных) взрывчатых веществ (ВВ), и может быть применено в качестве малогабаритного средства инициирования зарядов ВВ промышленного назначения,...
Тип: Изобретение
Номер охранного документа: 0002706151
Дата охранного документа: 14.11.2019
16.11.2019
№219.017.e30b

Коллиматор для жесткого рентгеновского излучения

Изобретение относится к коллиматору для жесткого рентгеновского излучения. Тело коллиматора сформировано набором пластин толщиной d, выполненных из материала с высоким коэффициентом поглощения рентгеновского излучения, к каждой такой пластине с одной стороны прикреплены 2i+1, где i от 1 до n -...
Тип: Изобретение
Номер охранного документа: 0002706219
Дата охранного документа: 15.11.2019
19.11.2019
№219.017.e3a1

Способ изготовления, хранения и применения мобильного портативного модуля для ремонта повреждений в транспортируемых контейнерах с токсичными материалами

Группа изобретений относится к области технологий обеспечения безопасных методов хранения и транспортировки опасных материалов. Способ изготовления портативного модуля для ремонта повреждений включает первоначальное раздельное размещение реагентов в индивидуальных герметичных объемах для...
Тип: Изобретение
Номер охранного документа: 0002706336
Дата охранного документа: 18.11.2019
Показаны записи 261-261 из 261.
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
+ добавить свой РИД