×
10.10.2013
216.012.74a5

Результат интеллектуальной деятельности: ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к антенно-фидерным устройствам, а именно к бортовым антеннам спутниковой навигации. Техническим результатом является создание малогабаритной микрополосковой двухдиапазонной антенны с круговой поляризацией, пригодной для работы с одиовходовым приемником. Двухдиапазонная микрополосковая антенна круговой поляризации содержит металлический экран, два излучающих элемента в виде прямоугольных металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи с одной точкой возбуждения, линейные размеры сторон пластин определяются соотношениями X=(0,94÷0,97)×Y; X=(0,94÷0,97)×Y, где Х, Y, и Х, Y - размеры сторон нижней и верхней пластины, а место расположения точки возбуждения определяется из следующих соотношений: N=(0,35÷0,40)×X; M=(0,25÷0,30)×Y; N=(0,32÷0,36)×X; M=(0,23÷0,28)×Y, где N, M, и N, M - координаты расположения точки возбуждения относительно ребер нижней и верхней пластины соответственно. 5 ил.
Основные результаты: Двухдиапазонная микрополосковая антенна круговой поляризации, содержащая металлический экран, два излучающих элемента в виде металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи с одной точкой возбуждения, отличающаяся тем, что пластины выполнены прямоугольными, линейные размеры сторон которых определяются соотношениямиX=(0,94÷0,97)·Y;X=(0,94÷0,97)·Y,где X, Y, - размеры сторон нижней пластины,X, Y - размеры сторон верхней пластины,а место расположения точки возбуждения определяется из следующих соотношений:N=(0,35÷0,40)·X;M=(0,25÷0,30)·Y;N=(0,32÷0,36)·X;M=(0,23÷0,28)·Y где N, M - координаты расположения точки возбуждения относительно ребер нижней пластины,N, M - координаты расположения точки возбуждения относительно ребер верхней пластины соответственно.

Изобретение относится к антенно-фидерным устройствам, в частности, к бортовым антеннам спутниковой навигации.

Для антенн, размещаемых на летательных аппаратах, предъявляются требования по габариту. Они должны иметь минимальные массогабаритные характеристики и быть невыступающими или маловыступающими для сохранения аэродинамических свойств объекта. Кроме того, для приема радиосигналов, имеющих круговую или произвольно ориентированную линейную поляризацию необходимо иметь приемную антенну также круговой (эллиптической) поляризации.

Известна двухдиапазонная антенна, содержащая металлический экран, расположенные друг над другом параллельно металлическому экрану нижний и верхний излучающие элементы в виде дисков, разделенные диэлектрическими подложками, и коаксиальную линию передачи [патент РФ №2089017, МПК H01Q 1/28, опубл. 27.08.1997]. Для обеспечения круговой поляризации излучения оба излучающих элемента замкнуты на экран токопроводящими опорными стойками (короткозамыкающими штырями), сформированными в две группы. Стойки расположены между нижним излучающим элементом и металлическим экраном, и между верхним и нижним излучающими элементами. Данное устройство предназначено для использования в качестве бортовой антенны, обладающей ненаправленным равномерным излучением в горизонтальной (азимутальной) плоскости, и может быть использовано в системах радиосвязи между подвижными объектами, в частности, для передачи и приема в системе радиотелефонной сотовой связи на двух разнесенных частотах.

Однако данная антенна является двухдиапазонной с линейной поляризацией, т.е. такая антенна не может работать с круговой поляризацией, что особенно важно при использовании микрополосковой двухчастотной антенны на летательных аппаратах.

Известна двухдиапазонная микрополосковая антенна с круговой поляризацией, содержащая металлический экран, два излучающих элемента в виде квадратных металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи (коаксиальный фидер) с двумя точками возбуждения [авторское свидетельство СССР №1771016, МПК H01Q 1/38, опубл. 23.10.1992]. Для увеличения ширины полосы рабочих частот и сектора сканирования по коэффициенту эллиптичности пластины имеют неоднородности в виде щелей, прорезанных с углов пластин по диагонали и неоднородности в виде выступов, предназначенных для подстройки рабочих частот.

Однако выполнение неоднородностей в пластинах данной антенны усложняет ее изготовление. Кроме этого, данная антенна содержит две точки возбуждения и соответствующие этим точкам два входа, что делает невозможным ее применение при работе с одновходовым приемником.

Известна микрополосковая антенна с круговой поляризацией, реализуемая в патенте под названием «Микрополосковая антенна, в частности, для спутниковых телефонных передач» [патент РФ №2117366, МПК H01Q 1/38, опубл. 10.08.1998]. Данное устройство выбрано в качестве прототипа предлагаемого изобретения, как наиболее близкое по совокупности признаков. Данная микрополосковая антенна, содержащая металлический экран (плоскость заземления), два излучающих элемента в виде квадратных металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи (линию питания) с одной точкой возбуждения, имеет делитель мощности (делитель Уилкинсона) с дополнительной платой для его размещения.

Для обеспечения эллиптической (круговой) поляризации при одной коаксиальной линии передач (одновходовый приемник) в данное устройство введен делитель мощности в микрополосковом исполнении с дополнительной платой для его размещения. Нижняя пластина запитывается с помощью зондов в двух выбранных точках. Вторая пластина возбуждается полем излучения первой. В конструкцию антенны введена дополнительная подложка с разделением возбуждающего элемента.

Однако построение микрополосковой антенны по такой конструктивной схеме приводит к увеличению ее габаритов (толщины) ввиду появления дополнительной платы делителя мощности и зондов, усложняя ее конструкцию и изготовление.

Задачей изобретения является создание малогабаритной микрополосковой двухдиапазонной антенны с круговой поляризацией, пригодной для работы с одновходовым приемником.

Технический результат, на достижение которого направлено предполагаемое изобретение, заключается в достижении круговой поляризации (коэффициент эллиптичности не менее 0,5) в двух частотных диапазонах L1 (1575÷1610 МГц) и L2 (1245÷1257 МГц), в которых коэффициент стоячей волны по напряжению (КСВН) не более 2, при использовании одной коаксиальной линии передачи и, соответственно, одной точки возбуждения двух излучающих элементов за счет внесения незначительной асимметрии в конструкцию и выбора определенного местоположения точки возбуждения относительно ребер излучающих элементов.

Технический результат достигается тем, что в двухдиапазонной микрополосковой антенне с круговой поляризацией, содержащей металлический экран, два излучающих элемента в виде металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи с одной точкой возбуждения, согласно изобретению, пластины выполнены прямоугольными, линейные размеры сторон которых определяются соотношениями Xн=(0,94÷0,97)×Yн; Xв=(0,94÷0,97)×Yв, где Xн, Yн, - размеры сторон нижней пластины, Xв, Yв - размеры сторон верхней пластины, а место расположения точки возбуждения определяется из следующих соотношений: Nн=(0,35÷0,40)×Xн; Mн=(0,25÷0,30)×Yн; Nв=(0,32÷0,36)×Xв; Mв=(0,23÷0,28)×Yв, где Nн, Mн - координаты расположения точки возбуждения относительно ребер нижней пластины, а Nв, Mв - координаты расположения точки возбуждения относительно ребер верхней пластины соответственно.

Выполнение излучающих пластин прямоугольными с размерами сторон в определенном соотношении и выбор места расположения точки возбуждения определенным образом относительно ребер излучающих пластин дает возможность произвести возбуждение двух ортогональных вырожденных типов колебаний, обеспечивающих сдвиг по фазе ±90° в одной точке. Местоположение точки возбуждения выбрано так, чтобы амплитуды возбуждаемых полей были одинаковы, а вырождение «снимается» внесением незначительной асимметрии в конструкцию антенны. Это дает возможность, имея небольшие габариты антенны и простую геометрию, принимать сигналы, работающие на двух частотных диапазонах систем ГЛОНАСС и GPS L1 (1575÷1610 МГц) и L2 (1245÷1257 МГц), обеспечивая круговую поляризацию в обоих частотных диапазонах при использовании одной коаксиальной линии передачи.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

Новые признаки не были выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

Предполагаемое изобретение поясняется чертежами:

на фиг.1 приведено изображение конструкции двухдиапазонной микрополосковой антенны с круговой поляризацией (вид сверху);

на фиг.2 приведено сечение A-A на фиг.1;

на фиг.3 приведена зависимость коэффициента стоячей волны по напряжению (КСВН) от частоты для двух антенн с разными материалами диэлектрических подложек, где кривая а - антенна, использующая в качестве материала диэлектрических подложек ФФ-4; кривая б - антенна, использующая в качестве материала диэлектрических подложек ФЛАН-5.0 (выделенная область соответствует частотным диапазонам L1 и L2);

на фиг.4 приведена зависимость коэффициента эллиптичности (КЭ) антенны от частоты в максимуме диаграммы направленности (ДН) в нижнем диапазоне частот для двух антенн с разными материалами диэлектрических подложек, где кривая а - антенна, использующая в качестве материала диэлектрических подложек ФФ-4; кривая б - антенна, использующая в качестве материала диэлектрических подложек ФЛАН-5.0 (выделенная область соответствует частотному диапазону L2);

на фиг.5 приведена зависимость КЭ антенны от частоты в максимуме ДН в верхнем диапазоне частот для двух антенн с разными материалами диэлектрических подложек, где кривая а - антенна, использующая в качестве материала диэлектрических подложек ФФ-4; кривая б - антенна, использующая в качестве материала диэлектрических подложек ФЛАН-5.0 (выделенная область соответствует частотному диапазону L1).

Предлагаемая микрополосковая антенна (фиг.1, 2) содержит металлический экран 1 и расположенные друг над другом параллельно экрану 1 нижний излучающий элемент 2 и верхний излучающий элемент 3 на диэлектрических подложках 4, 5 соответственно. В коаксиальной линии передачи 6 внешний проводник подсоединен к экрану 1, а центральная жила 7 соединена с излучающим элементом 3 в точке возбуждения О. В нижнем излучающем элементе 2, в точке пересечения с центральной жилой 7 выполнено отверстие 8 для прохождения жилы 7 к верхнему излучающему элементу 3. Снаружи антенна снабжена защитным радиопрозрачным обтекателем (не показан). Излучающие элементы 2, 3 представляют собой тонкие прямоугольные фольгированные пластины с линейными размерами сторон согласно соответствующим соотношениям Xн=(0,94÷0,97)×Yн; Xв=(0,94÷0,97)×Yв, где Xн, Yн, - ширина и длина излучающего элемента 2, а Xв, Yв - ширина и длина излучающего элемента 3. Размеры каждого излучающего элемента 2, 3 рассчитаны на работу в своем диапазоне частот: излучающий элемент 2 работает в диапазоне частот L2, а излучающий элемент 3 работает в диапазоне частот L1.

Принцип работы предлагаемой антенны заключается в следующем.

Возбуждение осуществляется коаксиальной линией передачи 6, внешний проводник которой подсоединен к экрану 1, а центральная жила 7 электрически соединена с излучающим элементом 3 в точке возбуждения О, тем самым происходит его возбуждение. Излучающий элемент 2 возбуждается полем излучения верхнего излучающего элемента 3. Круговая поляризация достигается за счет незначительной асимметрии в конструкции (соотношения сторон прямоугольных излучающих элементов) и определенного выбора местоположения точки возбуждения О по отношению к ребрам излучающих элементов 2, 3.

Возможность промышленной реализации и практической возможности достижения требуемого технического результата при использовании изобретения иллюстрируется следующими примерами.

Пример 1

В качестве примера конкретного выполнения предлагаемой антенны была изготовлена антенна, использующая в качестве диэлектрических подложек ФФ-4 с относительной диэлектрической проницаемостью ε=2,05. Металлический экран 1 был выполнен из проводящего материала алюминий толщиной 1 мм. Антенна имела следующие геометрические размеры: толщина диэлектрических подложек 4, 5 составляла 4 мм, линейные размеры сторон нижнего излучающего элемента 2 составляли 76 мм × 78,5 мм (Xн×Yн), линейные размеры сторон верхнего излучающего элемента 3 составляли 60,5 мм × 62,5 мм (Xв×Yв). Внешний проводник коаксиальной линии передачи 6 подсоединялся к экрану 1. Центральная жила 7 линии передачи 6 электрически соединялась с элементом 3 в точке возбуждения O. Расстояние от точки возбуждения О до ближайших ребер верхнего излучающего элемента 3 составляло 20,5 мм (Nв) и 16,5 мм (Mв), а расстояние от точки возбуждения О до ближайших ребер нижнего излучающего элемента 2 составляло 29 мм (Nн) и 23 мм (Mн).

При этом происходило возбуждение верхнего излучающего элемента 3. Нижний излучающий элемент 2 возбуждался полем излучения верхнего 3, достигая круговую поляризацию. Результаты экспериментов представлены на фиг.3-5 (кривая а), где показаны частотная зависимость коэффициента стоячей волны по напряжению (КСВН) и зависимости коэффициента эллиптичности (КЭ) в максимуме диаграммы направленности (ДН) в нижнем и верхнем диапазоне частот данной антенны. Как видно при данных размерах антенны величина КСВН выхода не более 2 в диапазонах частот 1230÷1269 МГц и 1557÷1635 МГц; КЭ больше 0,5 в диапазонах частот 1232÷1253 МГц и 1575÷1615 МГц. То есть в данные диапазоны частот входят рабочие частоты L2 и L1 соответственно.

Пример 2

В качестве примера конкретного выполнения предлагаемой антенны была изготовлена антенна, использующая в качестве диэлектрических подложек ФЛАН с относительной диэлектрической проницаемостью ε=5. Металлический экран 1 был выполнен из проводящего материала алюминий толщиной 1 мм. Антенна имела следующие геометрические размеры: толщина диэлектрических подложек 4, 5 составляла 3 мм, линейные размеры сторон нижнего излучающего элемента 48,5 мм × 50,5 мм (Xн×Yн), линейные размеры сторон верхнего излучающего элемента составляли 39 мм × 41 мм (Xв×Yв). Внешний проводник коаксиальной линией передачи 6 подсоединялся к экрану 1, а центральная жила 7 линии передачи 6 электрически соединялась с верхним излучающим элементом 3 в точке возбуждения O. Расстояние от точки возбуждения О до ребер верхнего излучающего элемента составляло 12 мм (Nв) и 10,5 мм (Mв), а расстояние от точки возбуждения О до ребер нижнего излучающего элемента составляло 17,5 мм (Nн) и 13 мм (Mн).

При этом происходило возбуждение верхнего излучающего элемента 3. Нижний излучающий элемент 2 возбуждался полем излучения верхнего 3. Результаты экспериментов представлены на фиг.3-5 (кривая б), где показаны частотная зависимость коэффициента стоячей волны по напряжению (КСВН) и зависимости коэффициента эллиптичности (КЭ) в максимуме диаграммы направленности (ДН) в нижнем и верхнем диапазоне частот данной антенны. Так при данных размерах антенны величина КСВН не более 1,4 и 1,6 в диапазонах частот L2 и L1 соответственно; КЭ больше 0,5 в диапазонах частот L2 и L1. То есть в данные диапазоны частот входят рабочие частоты L2 и L1 соответственно.

Таким образом, результаты экспериментов подтверждают решение поставленной задачи и достижение требуемого технического результата, а именно создание малогабаритной двухчастотной микрополосковой антенны с круговой поляризацией с КСВН≤2 и КЭ≥0,5 в требуемых диапазонах частот L1 и L2.

Итак, представленные сведения свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

- создание малогабаритной двухчастотной микрополосковой антенны с круговой поляризацией;

- для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления с помощью описанных в заявке и известных до даты приоритета средств и методов.

Следовательно, заявленное изобретение соответствует условию "промышленная применимость".

Двухдиапазонная микрополосковая антенна круговой поляризации, содержащая металлический экран, два излучающих элемента в виде металлических пластин, расположенных одна над другой параллельно металлическому экрану и разделенных диэлектрическими подложками, и коаксиальную линию передачи с одной точкой возбуждения, отличающаяся тем, что пластины выполнены прямоугольными, линейные размеры сторон которых определяются соотношениямиX=(0,94÷0,97)·Y;X=(0,94÷0,97)·Y,где X, Y, - размеры сторон нижней пластины,X, Y - размеры сторон верхней пластины,а место расположения точки возбуждения определяется из следующих соотношений:N=(0,35÷0,40)·X;M=(0,25÷0,30)·Y;N=(0,32÷0,36)·X;M=(0,23÷0,28)·Y где N, M - координаты расположения точки возбуждения относительно ребер нижней пластины,N, M - координаты расположения точки возбуждения относительно ребер верхней пластины соответственно.
ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ
ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ
ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ
ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ
ДВУХДИАПАЗОННАЯ МИКРОПОЛОСКОВАЯ АНТЕННА КРУГОВОЙ ПОЛЯРИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 361-370 из 706.
21.11.2018
№218.016.9f7d

Устройство для определения положения в пространстве и скорости движущейся плоской поверхности

Использование: для применения в испытаниях на ударное воздействие. Сущность изобретения заключается в том, что устройство для определения положения в пространстве и скорости движущейся плоской поверхности содержит группу установленных на общей платформе электрических контактных датчиков,...
Тип: Изобретение
Номер охранного документа: 0002672808
Дата охранного документа: 19.11.2018
23.11.2018
№218.016.9fc7

Способ определения наличия подрыва взрывчатого вещества, содержащегося в объекте испытания, при его взаимодействии с преградой

Изобретение относится к области испытательной и измерительной техники, а именно к испытаниям и проверке боеприпасов. Заявляемый способ включает получение при помощи высокоскоростной видеокамеры серии изображений распространения воздушной ударной волны (ВУВ), созданной движением объекта...
Тип: Изобретение
Номер охранного документа: 0002672922
Дата охранного документа: 21.11.2018
23.11.2018
№218.016.9fed

Шихта для получения горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе

Изобретение относится к получению горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе. Шихта содержит нанопорошки никеля (Ni) и молибдена (Мо), порошок дисульфида молибдена (MoS) и порошок меди (Cu). При этом частицы порошка дисульфида...
Тип: Изобретение
Номер охранного документа: 0002672975
Дата охранного документа: 21.11.2018
30.11.2018
№218.016.a25e

Устройство для защиты ядерного реактора по превышению мощности

Изобретение относится к ядерной технике, в частности к области контроля функционирования и защиты ядерных установок. Устройство для зашиты ядерного реактора по превышению мощности содержит измеритель мощности, задатчик уставок предупредительных и аварийных сигналов, два блока сравнения сигнала...
Тип: Изобретение
Номер охранного документа: 0002673448
Дата охранного документа: 27.11.2018
13.12.2018
№218.016.a5cf

Волноводная антенна

Изобретение относится к области радиотехники, а именно к области волноводных антенн, и может быть использовано в качестве приемопередающих антенн различных радиотехнических систем, например, на подвижных объектах или в качестве облучателя зеркальных антенн. Волноводная антенна содержит круглый...
Тип: Изобретение
Номер охранного документа: 0002674564
Дата охранного документа: 11.12.2018
13.12.2018
№218.016.a628

Измеритель средней температуры

Изобретение относится к информационно-измерительной технике и может быть использовано для преобразования температуры в напряжение. Измеритель содержит не менее двух термопреобразователей, аналоговый мультиплексор с шиной управления, стабилитрон, источник постоянного напряжения, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002674558
Дата охранного документа: 11.12.2018
14.12.2018
№218.016.a6d9

Устройство согласования замедляющей системы

Изобретение относится к области электронной техники, в частности к устройствам согласования замедляющих систем сверхвысокочастотных приборов О-типа с длительным взаимодействием. Устройство согласования замедляющей системы содержит металлический цилиндрический корпус с расположенной внутри него...
Тип: Изобретение
Номер охранного документа: 0002674750
Дата охранного документа: 13.12.2018
14.12.2018
№218.016.a72c

Устройство для подачи текучей рабочей среды

Устройство предназначено для подачи в глухие полости механизмов и систем заданного количества различных жидкостей. Устройство содержит корпус с входным патрубком для подвода рабочего газа и выходным патрубком для вывода текучей рабочей среды. Внутри корпуса размещены: камера из эластичного...
Тип: Изобретение
Номер охранного документа: 0002674818
Дата охранного документа: 13.12.2018
15.12.2018
№218.016.a7bd

Термостойкий электровоспламенитель

Изобретение относится к средствам инициирования. Термостойкий электровоспламенитель содержит корпус, гермоввод со встроенными электровводами, основной воспламенительный и инициирующий заряды из термостойкого высококалорийного пиротехнического состава, инициатор, прикрепленный к электровводам....
Тип: Изобретение
Номер охранного документа: 0002675001
Дата охранного документа: 14.12.2018
15.12.2018
№218.016.a7c9

Индукционный воспламенитель

Изобретение относится к области электрических средств воспламенения, а именно к средствам инициирования взрывчатых веществ (ВВ), пиротехнических составов (ПТС), порохов, и может быть использовано в устройствах взрывной автоматики. Индукционный воспламенитель состоит из корпуса 1 и вкладыша 2,...
Тип: Изобретение
Номер охранного документа: 0002675000
Дата охранного документа: 14.12.2018
Показаны записи 261-261 из 261.
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
+ добавить свой РИД