×
10.10.2013
216.012.733d

Результат интеллектуальной деятельности: СПОСОБ МОДИФИКАЦИИ ЭЛЕКТРОХИМИЧЕСКИХ КАТАЛИЗАТОРОВ НА УГЛЕРОДНОМ НОСИТЕЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом. Описан способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Технический эффект - повышение эффективности модификации электрохимических катализаторов и их эксплуатационных характеристик. 1. з.п. ф-лы.

Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых в различных электрохимических системах, и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом.

Известно, что эффективность работы и стоимость электрохимических систем, используемых в различных электрохимических установках, во многом зависит от особенностей применяемых электрокатализаторов. Широкое распространение в различных электрохимических системах, например, в электролизерах и топливных элементах с твердополимерным электролитом, получили электрокатализаторы на углеродном носителе (Н.В. Кулешов, В.Н. Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М.: МЭИ, 2010 г., с.8-19). К числу таких катализаторов, изготовленных по различным технологиям, относятся платина, а также металлы платиновой группы. В качестве углеродного носителя используются различные углеродные материалы, обладающие высокой дисперсностью, электропроводностью, термо- и коррозионно-устойчивостью. К ним относятся различные виды сажи, мезоуглеродные микрошарики, фуллерены, углеродные нанотрубки, нановолокна и тп. (Н.В. Кулешов, В.Н. Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М.: МЭИ, 2010 г., с.9-11). Целесообразность и эффективность применения тех или иных катализаторов определяется конкретными особенностями эксплуатации электрохимических систем, в которых они используются. Например, причиной использования именно платины или ее сплавов с другими благородными металлами в низкотемпературных электролизерах и топливных элементах с твердополимерным электролитом является то, что протонообменная мембрана имеет ярко выраженные кислотные свойства, а такие металлы, как никель, хром, кобальт и т.п., в чистом виде оказываются химически нестойкими. В то же время, при использовании топливных элементов, работающих на воздухе и водороде, бинарные системы на основе Pd могут оказаться более перспективными, чем катализаторы на основе Pt (International Scientific Journal for Alternative Energy and Ecology ISJAEE 2(46) (2007) p.118-123).

Одним из возможных путей снижения стоимости электрокатализаторов на углеродном носителе является разработка и применение многокомпонентных электрокатализаторов, которые в перспективе могут обеспечить снижение использования платины (или металлов платиновой группы) без снижения активности катализатора и уменьшения ресурса его работы. Например, одним из направлений является создание на углеродном носителе бинарных наноразмерных электрокаталитических систем на основе платины и так называемых базовых металлов: Fe, Co, Ni, Cr, а также введение добавок тугоплавких металлов (например, Mo) или замена (полная или частичная) Pt на Pd, Ru или Ir (СИ. Козлов, В.И. Фатеев Водородная энергетика: современное состояние, проблемы, перспективы. М. ООО «Газпром ВНИИГАЗ», 2009, с.338-339).

Известны различные методы синтеза многокомпонентных катализаторов на углеродной основе для различных электрохимических систем.

Известен способ химической модификации иридиевого катализатора на углеродной основе (Vulcan XC-72R) селеном с различным соотношением IrxSey (Gang Liu, Huamin Zhang. Facile Synthesis of Carbon-Supported IrxSey Chalcogenide Nanoparticles and Their Electrocatalytic Activity for the Oxygen Reduction Reaction J. Phys. Chem. С 2008, 112, 2058-2065). Для осуществления способа был применен метод полиольного синтеза с использованием H6IrCl6 и Na2SeO3 в качестве прекурсоров с нагревом в микроволновой печи, добавлением в процессе синтеза порошка углеродного носителя, с последующей отмывкой полученного продукта в дистиллированной воде, длительной сушкой (при 60°C в течение 8 часов) и окончательной термообработкой в атмосфере водорода (при 400°C в течение 1 часа). К недостаткам данного способа относятся его сложность, большие затраты времени, низкая экологичность, а также сложность предварительного прогнозирования структуры и свойств полученного катализатора при необходимости изменения его стехиометрического состава. Кроме того, в случае появления необходимости легирования иридия иными элементами, возникает необходимость существенной коррекции элементов рассматриваемого способа.

Известен способ изготовления бинарных электрокатализаторов на основе палладия на углеродном носителе для водородных топливных элементов с твердополимерным электролитом (С.А. Григорьев, Е.К. Лютикова, Е.Г. Притуленко, Д.П. Самсонов, В.Н.Фатеев «Разработка и исследования наноструктурных анодных электрокатализатов на основе палладия для водородных топливных элементов с твердополимерным электролитом» Электрохимия, 2006, том 42, №11, с.1393-1396). При этом синтез катализаторов проводился без и с предварительной сорбцией палладия на углеродный носитель Vulcan ХС-72. Для синтеза электрокатализатора Pt0,5Pd0,5/ Vulcan ХС-72 к 0,1М растворов H2PtCl6 и PdCl2 добавляется суспензия углеродного носителя и 2-пропанаола. Затем смесь диспергируют в течение 10 минут и доводят pH до 8 (раствором Na2CO3). После этого полученная смесь добавляется в этиленгликоль при поддержании температуры 70°C. Добавляется формальдегид и поливинилпиролидон, препятствующий агломерации частиц. Затем полученная суспензия выдерживается в течение 1,5 час. при температуре 90-105°C. Смесь выдерживается 12 час, а затем проводится отмывка катализатора (4-5 раз) в бидистиллированной воде. К недостаткам данного способа относятся его сложность, большие затраты времени, низкая экологичность, а также неэффективный расход платины (На активность катализатора основное влияние оказывают свойства поверхности частиц катализатора, платина же при данном способе химического синтеза бинарного катализатора находится не только в активном поверхностном слое, но во всем объеме частиц катализатора). При модификации поверхностного слоя на предварительно высаженный палладий наблюдалось агрегирование частиц, существенно ухудшающее эксплуатационные свойства катализатора.

Известен способ получения модифицированного электрохимического катализатора на углеродной основе, принятый за прототип (A. Caillard, С. Coutanceau, P. Brault, J. Mathias, J.-M. L'Eger. Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC). Journal of Power Sources 162 (2006) 66-73). При этом модифицируют поверхностный слой предварительно полученного катализатора (в данном случае - платины), высаженного на углеродную пленку. Модифицируемый катализатор также как и саму модификацию производят методом плазменного напыления. Плазменное напыление проводят при низком давлении, в вакуумной установке, снабженной системой вакуумирования, устройством подачи инертного газа, и регулируемым источником потока атомов (в данном случае - плазменной системой распыления мишеней, выполненных из платины - основного элемента катализатора и рубидия - модифицирующего элемента), а также держателем углеродной подложки с катализатором. При этом пленку углеродного носителя закрепляют в держателе, вакуумируют рабочую камеру, создают остаточное низкое давление инертного газа, величина которого определяется рабочими параметрами источника потока напыляемых атомов, активируют источник напыляемых атомов материала катализатора и производят напыление катализатора на углеродный носитель (В данном конкретном случае - возбуждают плазму, распыляют материал мишени и напыляют катализатор на углеродный носитель). Затем активируют источник потока атомов или атомарных ионов модифицирующего материала и производят обработку поверхности полученного катализатора. Способ позволяет производить модификацию поверхностного слоя предварительно полученного катализатора на углеродной основе. При этом возможно широкое варьирование структуры и свойств поверхностного слоя получаемого модифицированного катализатора при малом расходе модифицирующего материала. Недостатком данного способа является ограниченность области его эффективного использования. В частности, способ малоэффективен в случае необходимости проведения модификации катализаторов предварительно высаженных на высокодисперсные углеродные материалы, такие как сажа, нанотрубки, нановолокна и т.п., обладающие высоко развитой поверхностью (при этом катализаторы могут быть предварительно получены как физическими, так и химическими методами синтеза). Способ обеспечивает проведение модификации поверхностного слоя частиц предварительно синтезированного катализатора на мелкодисперсном углеродном носителе, расположенных только по направлению потока модифицирующих атомов. Другие частицы катализатора остаются недоступными.

Техническим результатом, на который направлено изобретение, является обеспечение возможности эффективной модификации поверхностных слоев широкого класса катализаторов, полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.

Для достижения указанного технического результата предложен способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала.

При этом производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.

Отличительной особенностью изобретения является то, что для размещения катализатора, предварительно синтезированного на мелкодисперсном углеродном носителе используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Кроме того, при этом производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.

Использование в предложенном способе модификации электрохимических катализаторов на углеродном носителе установленной в держателе пористой подложки с открытой пористостью, пневматически связанной с устройством автономной подачи газа, при плавном увеличении потока инертного газа, пропускаемого через поры подложки приводит к возникновению псевдокипящего слоя в объеме расположенных на подложке частиц высокодисперсного углеродного носителя с предварительно синтезированными на них частицами катализатора. При этом, благодаря малым размерам и весу частиц высокодисперсного углеродного носителя с нанесенными на них частицами катализатора, а также разделению восходящих газовых потоков порами подложки, происходит интенсивное перемешивание углеродных частиц с приданием им дополнительного крутящего момента. В результате этого практически все модифицируемые частицы катализатора оказываются доступными для облучения потоком подающих модифицирующих атомов или атомарных ионов. Таким образом, обеспечивается возможность эффективной модификации поверхностных слоев широкого класса катализаторов, предварительно полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.

Проведение модификации поверхности частиц катализатора, предварительно высаженных на высокодисперсном углеродном носителе, потоком падающих атомов или атомарных ионов модифицирующего материала требует обеспечения большой плотности модифицирующих частиц, облучающих поверхность частиц модифицируемого катализатора. При этом поток модифицирующих атомов или атомарных ионов помимо частиц катализатора воздействует на поверхностные слои углеродного носителя. Облучение углеродного носителя частицами с большой энергией вызывает нарушение структуры его поверхностных слоев, что при большой плотности потока облучающих частиц приводит к частичной аморфизации углерода и ухудшению его электропроводности. Хорошая электропроводность является одним из основных требований, предъявляемых к носителю электрокатализатора. Ее снижение приводит к ухудшению эксплуатационных характеристик электрокатализатора на углеродном носителе. Ограничение энергии падающих атомов или атомарных ионов модифицирующего материала диапазоном до 70 эВ/атом позволяет существенно уменьшить или полностью исключить возможную аморфизацию поверхностных слоев углеродного носителя (зависящую от конкретных требований к виду и степени проводимой модификации катализатора). При этом возможные нарушения структуры поверхностного слоя углеродного носителя не превышают 2-3 атомных слоев углерода. Таким образом, повышается эффективность модификации поверхностных слоев широкого класса катализаторов на высокодисперсном углеродном носителе (типа сажи, нанотрубок, нановолокон и т.п.) и улучшаются эксплуатационные свойства полученного катализатора.

Способ осуществляется следующим образом. Модификацию электрохимических катализаторов на высокодисперсном углеродном носителе производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, держателем обрабатываемого катализатора с подложкой, выполненной из пористого инертного материала с открытой пористостью (например, из пористого титана, полученного методом порошковой металлургии), а также устройством подачи инертного газа, пневматически связанным с пористой подложкой. На пористой подложке послойно размещают порошок обрабатываемого электрокатализатора на углеродном носителе (Дополнительно, для исключения рассыпания обрабатываемого порошка с модифицируемым катализатором, держатель может быть снабжен выступающим буртиком). Производят откачку вакуумной камеры до значений вакуума, определяемых эксплуатационными характеристиками источника облучения (В качестве такого источника может быть использован, например, источник, выполненный на основе магнетронного, плазменного или лазерного распыления материалов, или иной источник ионов модифицирующего материала). Через пористую подложку пропускают инертный газ, плавно увеличивая подачу газа, до образования устойчивого псевдокипения слоя частиц углеродного носителя с модифицируемым катализатором. Момент возникновения псевдокипящего слоя можно наблюдать визуально через смотровое окно вакуумной камеры. В случае превышения допустимого давления в вакуумной камере производят необходимую дополнительную откачку газа (при помощи штатных средств, обеспечивающих вакуумирование рабочей камеры). Затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Дополнительно, для повышения эффективности модификации путем уменьшения влияния облучения на электропроводные свойства углеродного носителя обработку катализатора производят потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.

Предложенный способ модификации электрохимических катализаторов на углеродном носителе был опробован при проведении модификации платиной палладиевого электрокатализатора, предварительно синтезированного методом химического восстановления палладия из хлорида палладия с использованием этиленгликоля и добавлением формальдегида на высокодисперсном углеродном носителе Vulcan ХС-72. Целью проведения модификации являлось изучение возможности повышения эксплуатационных характеристик катализатора при малом расходе платины (~0,1 мг/см2 рабочей поверхности катода) при его использовании в качестве катодного катализатора в электролизерах с твердополимерным электролитом. При этом в качестве пористой подложки использовалась пластинка из пористого титана диаметром 70 мм, толщиной 0,9 мм, с пористостью 28% и средними размерами пор ~10 мкм, изготовленная из порошкообразного титана. Дополнительно, для исключения рассыпания сажи с катализатором подложка из пористого титана была снабжена защитным бортиком. Толщина слоя частиц катализатора на углеродном носителе составляла ~2 мм. Для образования псевдокипящего слоя углеродного носителя с модифицируемым катализатором через пористую подложку продувался аргон. При этом после вакуумирования рабочей камеры плавно увеличивали подачу аргона через пористую подложку. Момент образования псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором наблюдался визуально через смотровое стекло вакуумной камеры. Обработка псевдокипящего слоя углеродного носителя с модифицируемым катализаторов производилась потоком распыленных атомов платины (полученных методом магнетронного распыления) с энергией ~18 эВ/атом. Время обработки составляло 25 минут. Эффективность произведенной модификации палладиевого катализатора платиной проверялась в реальных условиях использования палладиевого и модифицированного Pd/Pt катализаторов на углеродном носителе (Vulcan ХС-72) в качестве катодного катализатора в ячейке электролизера с твердополимерным электролитом (Nation-117) с площадью рабочей поверхности 7 см2 и иридиевым анодным катализатором. Оценка эффективности производилась по выходу водорода при равном напряжении на рабочей ячейке электролизера (1,75 В). Результаты проведенных сравнительных испытаний выявили 20% увеличение выхода водорода после проведения указанной модификации катодного катализатора.

Таким образом, предложенный способ модификации электрохимических катализаторов обеспечивает возможность проведения эффективной модификации поверхностных слоев широкого класса катализаторов, полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.

Источник поступления информации: Роспатент

Показаны записи 171-180 из 266.
03.10.2018
№218.016.8cf6

Система управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа токамак

Изобретение относится к cистеме управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа Токамак. Система содержит автоматизированное рабочее место АРМ оператора 13, соединенное с комплексом СВЧ-нагрева плазмы 6, вакуумную камеру 1 с установленными в ней...
Тип: Изобретение
Номер охранного документа: 0002668231
Дата охранного документа: 27.09.2018
03.10.2018
№218.016.8d27

Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем

Изобретение относится к области атомной энергии и может быть использовано в реакторах на быстрых нейтронах с жидкометаллическим теплоносителем. Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем содержит вертикально установленные тепловыделяющие сборки активной зоны и...
Тип: Изобретение
Номер охранного документа: 0002668230
Дата охранного документа: 27.09.2018
08.11.2018
№218.016.9acc

Способ оценки риска хронических аутоиммунных воспалительных процессов

Изобретение относится к биофизике, биологии и медицине, а именно к диагностике обменных нарушений, интоксикации организма при различных заболеваниях, в том числе наследственных, генетических, экологических, аутоиммунных. Изобретение представляет собой способ оценки риска хронических...
Тип: Изобретение
Номер охранного документа: 0002671641
Дата охранного документа: 06.11.2018
30.11.2018
№218.016.a220

Способ пуска ядерного реактора космического назначения

Изобретение относится к атомной энергетике и может быть использовано при эксплуатации ядерных реакторов космических установок. Способ пуска ядерного реактора космического назначения содержит этапы, на которых определяют зависимость эффективного коэффициента размножения от температуры при...
Тип: Изобретение
Номер охранного документа: 0002673564
Дата охранного документа: 28.11.2018
05.12.2018
№218.016.a3b7

Способ получения комплексного соединения состава 2xefxmnf

Изобретение относится к способу получения комплексного соединения гексафторида ксенона с тетрафторидом марганца состава 2XeF×MnF и может применяться для синтеза кислородных соединений ксенона как основа средств для дезинфекции, стерилизации и детоксикации в области санитарии и медицины. Способ...
Тип: Изобретение
Номер охранного документа: 0002673844
Дата охранного документа: 30.11.2018
06.12.2018
№218.016.a40f

Способ перевода сверхпроводника в элементах логики наноразмерных электронных устройств из сверхпроводящего состояния в нормальное

Использование: для создания функциональных переключаемых электронных устройств различного назначения. Сущность изобретения заключается в том, что способ перевода сверхпроводника в электронных функциональных наноразмерных устройствах из сверхпроводящего состояния в нормальное осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002674063
Дата охранного документа: 04.12.2018
26.12.2018
№218.016.ab98

Полимерный комплекс для молекулярно-прицельной терапии и способ его получения

Группа изобретений относится к фармацевтике и медицине и раскрывает полимерный комплекс для молекулярно-прицельной терапии и способ получения указанного комплекса. Полимерный комплекс характеризуется тем, что представлен в виде лиофилизата для приготовления суспензии, содержит частицы с...
Тип: Изобретение
Номер охранного документа: 0002675810
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b124

Способ постоянного поэлементного дублирования в цифровых транзисторных микросхемах

Изобретение относится к способам поэлементного дублирования в нано- и микроцифровых транзисторных микросхемах, подвергающихся воздействию радиации. Технический результат: существенное повышение отказоустойчивости микросхем по сравнению со способом дублирования без использования четырехкратного...
Тип: Изобретение
Номер охранного документа: 0002677359
Дата охранного документа: 16.01.2019
26.01.2019
№219.016.b451

Способ получения тетрафторида ксенона

Изобретение относится к технологии получения тетрафторида ксенона, используемого в медицине в качестве дезинфицирующего средства, в синтезе кислородных соединений ксенона. Для получения тетрафторида ксенона в предварительно вакуумированный реакционный сосуд из никеля или нержавеющей стали...
Тип: Изобретение
Номер охранного документа: 0002678270
Дата охранного документа: 24.01.2019
15.02.2019
№219.016.ba88

Система энергоснабжения локальных потребителей

Изобретение относится к области создания и эксплуатации энергетических систем. Система энергоснабжения локальных потребителей состоит из генераторов на основе возобновляемых источников электроэнергии и генератора на основе невозобновляемого источника энергии, топливного элемента, управляющего...
Тип: Изобретение
Номер охранного документа: 0002679685
Дата охранного документа: 12.02.2019
Показаны записи 161-164 из 164.
08.05.2019
№219.017.490f

Автономная энергетическая установка

Изобретение относится энергетике, а именно к автономным системам энергоснабжения объектов, удаленных от центрального энергоснабжения. Автономная энергетическая установка содержит аппаратный и топливный отсек, расположенные внутри корпуса, первичный источник энергии в виде источника...
Тип: Изобретение
Номер охранного документа: 0002686844
Дата охранного документа: 06.05.2019
14.06.2019
№219.017.8311

Зарядная станция для электрического транспорта

Изобретение относится к области электротехники, в частности к системам зарядки гибридного и/или электрического транспорта. Техническим результатом является возможность зарядить несколько электрических легковых и грузовых автомобилей, а также автобусов/электробусов, без подключения к воздушным...
Тип: Изобретение
Номер охранного документа: 0002691386
Дата охранного документа: 13.06.2019
11.05.2023
№223.018.5423

Способ стендовой калибровки трехканального блока акселерометров

Изобретение относится к области гироскопической техники. Технический результат - повышение точности определения паспортных параметров блока акселерометров (БА). В способе стендовой калибровки трехканального блока акселерометров, блок акселерометров, предназначенный для использования в морских...
Тип: Изобретение
Номер охранного документа: 0002795393
Дата охранного документа: 03.05.2023
05.06.2023
№223.018.77b2

Хранилище отработавшего ядерного топлива

Изобретение относится к пунктам сухого хранения отработавшего ядерного топлива (ОЯТ) камерного типа и предназначено для временного хранения отработавшего ядерного топлива. Хранилище отработавшего ядерного топлива содержит камеру хранения с монолитными железобетонными защитными стенами, пеналы,...
Тип: Изобретение
Номер охранного документа: 0002796637
Дата охранного документа: 29.05.2023
+ добавить свой РИД