×
10.10.2013
216.012.7285

УСТРОЙСТВО ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ ДЕОКСИГЕНАЦИИ ВЫСОКОЧИСТОЙ ВОДЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к электрохимическим устройствам очистки воды, а именно к устройствам деоксигенации высокочистой воды. Устройство для электрохимической деоксигенации высокочистой воды содержит мембранный электролизер 1, состоящий по крайней мере из одной ячейки для мембранного электролиза, содержащей катодную камеру 3 с катодом 7, анодную камеру 4 с анодом 8, разделяющую катод и анод катионообменную мембрану 2 и каталитический реактор 16, соединенный с мембранным электролизером. Катодная камера образована сеткой из никеля или нержавеющей стали, прижатой к поверхности катода, анодная камера образована пористой пластиной из титана или никеля, прижатой к поверхности анода. Катод выполнен в виде электронопроводящего слоя палладия, нанесенного на поверхность катионообменной мембраны, обращенную к катодной камере. Анод выполнен в виде электронопроводящего слоя платины, нанесенного на противоположную поверхность катионообменной мембраны, обращенную к анодной камере. Сетка из никеля или нержавеющей стали покрыта слоем палладия. Пористая пластина из титана или никеля покрыта слоем платины или окислов рутения или иридия. Изобретение позволяет упростить конструкцию электродов и технологию деоксигенации воды, повысить степень деоксигенации высокочистой воды, снизить энергозатраты на проведение процесса. 2 з.п. ф-лы, 1 ил., 2 пр.
Реферат Свернуть Развернуть

Изобретение относится к электрохимическим устройствам очистки воды, а именно к устройствам деоксигенации воды.

Содержание растворенного кислорода в воде в равновесии с воздухом зависит от температуры, атмосферного давления и находится на уровне 8 мг/л. Растворенный в воде кислород вызывает интенсивную коррозию железа и его сплавов. Ощутимого снижения скорости коррозии технологического оборудования удается достичь при содержании растворенного кислорода в воде на уровне 50 мкг/л и менее. Поэтому деоксигенация воды является одной из важнейших стадий водоподготовки практически во всех технологических процессах с использованием воды.

Деоксигенацию воды можно проводить физическими, химическими или электрохимическими методами [А.В. Кожевников. Удаление кислорода из питательной воды пароэнергетических установок. Ленинград, СЗПИ, 1981, 56 с.].

Известны устройства для электрохимической деоксигенации воды, представляющие собой электрохимическую ячейку, катод и анод в которой разделены ионообменной мембраной. Подлежащая деоксигенации вода непрерывно протекает через катодную камеру. Катод ячейки выполнен из металла с высоким перенапряжением выделения водорода - меди (заявка WO 9324412 (А1), дата публикации 09.12.1993 г.) или из серебра (заявка WO 0064816 (А1), дата публикации 02.11.2000 г.). Анод в обоих устройствах выполнен из инертного металла (платина, платинированный титан). При наложении электрического поля на катоде протекает реакция ионизации растворенного кислорода с образованием молекул воды. Ионообменная мембрана, разделяющая анодное и катодное пространства ячейки, препятствует проникновению выделяющегося на аноде кислорода в деоксигенируемую воду. Для повышения производительности деоксигенацию проводят на трехмерных катодах с развитой поверхностью. Недостатком рассмотренных выше электрохимических устройств является достаточно низкая скорость деоксигенации воды, связанная с замедленностью стадии ионизации растворенного кислорода.

Наиболее близким к заявляемому изобретению является устройство для электрохимической деоксигенации деионизованной воды (патент США №4830721 дата публикации: 16.05.1989 г., патент-аналог ЕР 0276789 дата публикации 03.08.1988 г.).

В соответствии с описанием устройства-прототипа, процесс деоксигенации проводят путем последовательной подачи исходной воды в мембранный электролизер и далее в каталитический реактор. Мембранный электролизер включает по меньшей мере одну ячейку, содержащую катод и анод, разделенные катионообменной мембраной. Катод и анод имеют многослойную структуру. Каждый электрод представляет собой набор контактирующих между собой металлических сеток. Сетчатые электроды прижимаются к катионообменной мембране. Как отмечается в описании патента-прототипа, использование таких сетчатых электродов приводит к более однородному распределению тока на мембране, что минимизирует омические потери в высокочистой воде. Высокочистая вода, содержащая растворенный кислород, поступает в проточную катодную камеру ячейки. Вспомогательный электролитический раствор или деионизованная вода циркулирует с периодическим обновлением через анодную камеру ячейки. При наложении электрического поля в указанном устройстве на катоде реализуются как реакция ионизации растворенного кислорода, так и реакция выделения водорода в результате электролиза воды. Ток в системе устанавливается таким образом, чтобы обеспечить на выходе из ячейки стехиометрическое соотношение в воде растворенных кислорода и водорода. В результате реакции ионизации кислорода на катоде происходит снижение концентрации кислорода в воде до уровня, определяемого скоростью ионизации растворенного кислорода. Выходящая из электролизера вода, содержащая остаточное количество растворенных кислорода и водорода (в стехиометрическом соотношении), направляется в каталитический реактор, в котором происходит их количественное взаимодействие с образованием молекул воды. Каталитический реактор представляет собой проточную емкость, заполненную катализатором для инициирования рекомбинации кислорода и водорода.

Конструкция электродов устройства-прототипа повышает эффективность работы устройства за счет того, что электрод дополнительно выполняет функцию распределителя потока и, тем самым, обеспечивает более эффективную доставку деоксигенируемой воды к поверхности электрода, к тому же такая конструкция позволяет снизить омические потери при электролизе воды за счет минимизации расстояния между мембраной и поверхностью электродов. При этом сложность конструкции таких электродов является одним из недостатков такого устройства, так как не решает в полной мере проблему омических потерь при электролизе. Это связано с тем, что между мембраной и электродами остается слой высокочистой воды с высоким электрическим сопротивлением, что и приводит к существенному росту энергозатрат процесса. При этом также на поверхности электродов устройства-прототипа происходит интенсивное выделение газообразных кислорода и водорода и, соответственно, газонаполнение катодной и анодной камер, в результате чего происходит еще более заметный рост электрического сопротивления воды и, соответственно, рост энергозатрат процесса.

Также к недостаткам устройства следует отнести сложность проведения технологического процесса, заключающуюся в необходимости организации (периодического или постоянного) протока промывочного раствора через анодную камеру. При отсутствии или остановке протока в этой камере может наблюдаться концентрирование ионных примесей, уменьшение уровня жидкости вплоть до полного осушения камеры и прекращения электролиза из-за электролизного разложения воды в этой камере.

Задачей изобретения является создание более простого и менее энергозатратного устройства, обеспечивающего более высокую степень деоксигенации высокочистой воды.

Технический результат заключается в упрощении конструкции электродов и технологии деоксигенации воды, отсутствии омических потерь, и, как следствие, снижении энергозатрат, повышении степени деоксигенации высокочистой воды.

Указанный технический результат достигается тем, что в устройстве для электрохимической деоксигенации высокочистой воды, включающем мембранный электролизер, состоящий по крайней мере из одной ячейки для мембранного электролиза, содержащей катодную камеру с катодом, анодную камеру с анодом, разделяющую катод и анод катионообменную мембрану, и каталитический реактор, заполненный каталитическим сорбентом и соединенный с мембранным электролизером, согласно изобретению, катодная камера образована сеткой из никеля или нержавеющей стали, прижатой к поверхности катода, анодная камера образована пористой пластиной из титана или никеля, прижатой к поверхности анода, катод выполнен в виде электронопроводящего слоя палладия, нанесенного на обращенную к катодной камере поверхность катионообменной мембраны, а анод выполнен в виде электронопроводящего слоя платины, нанесенного на противоположную, обращенную к анодной камере поверхность катионообменной мембраны. Сетка из никеля или нержавеющей стали может быть покрыта слоем палладия, а пластина из пористого металла может быть покрыта слоем платины или окислов рутения или иридия.

Упрощение конструкции достигается тем, что вместо многослойных сетчатых электродов в мембранном электролизере предлагаемого устройства используются электроды в виде металлических слоев, нанесенных на поверхность катионообменной мембраны.

Снижение омических потерь и, как следствие, энергозатрат процесса достигается тем, что электроды в предлагаемом устройстве нанесены непосредственно на катионообменную мембрану и электродные процессы происходят непосредственно на границе фаз мембрана - пористый металлический слой. В результате между мембраной и электродом отсутствует слой воды с высоким электрическим сопротивлением и газовыделение на электродах не изменяет электрического сопротивления границ фаз мембрана - электрод.

Упрощение технологии деоксигенации воды и удобство эксплуатации достигается за счет того, что анодная камера в предлагаемом устройстве конструктивно обеспечивает отсутствие загрязнений и, как следствие, не нуждается в промывке.

Кроме того, в заявляемом устройстве достигается технический результат, заключающийся в повышении степени деоксигенации исходной воды за счет взаимодействия кислорода с атомарным водородом, растворенным в палладиевом электроде ячейки мембранного электролизера.

На фигуре 1 изображен схематический вид заявляемого устройства - ячейки мембранного электролизера с последовательно подключенным каталитическим реактором.

Ячейка мембранного электролизера 1 включает катионообменную мембрану 2, катодную камеру 3, образованную сеткой из нержавеющей стали или никеля, анодную камеру 4, образованную пористой пластиной из никеля или титана, поджимные пластины 5 и 6 из инертного непроводящего материала. Поверхность катионообменной мембраны 2 с двух сторон покрыта электронопроводящими пористыми слоями 7 и 8, выполняющими функцию катода и анода соответственно. Слои выполнены из палладия (слой 7) и платины (слой 8) методом осаждения на поверхность катионообменной мембраны 2. Сетка катодной камеры 3 по своему периметру изолирована слоем 9 герметика, например силиконовой композицией. В поджимной пластине 5 установлены два штуцера - штуцер 10 для ввода воды и штуцер 11 для вывода воды. С помощью поджимных пластин 5, 6 и шпилек 12 к слою 7 поверхности катионообменной мембраны 2 прижата катодная камера 3, выполняющая также функции токосъема и турбулизатора потока, а к слою 8 поверхности катионообменной мембраны 2 прижата анодная камера 4, выполняющая также функции токосъема и отвода кислорода от поверхности катионообменной мембраны 2 в объем анодной камеры 4. Проводники тока 13 и 14 от катодной камеры 3 и анодной камеры 4, соответственно, выведены наружу через поджимные пластины 5 и 6.

Для улучшения электрического контакта между слоем палладия 7 и сеткой катодной камеры 3 поверхность сетки платинируется.

Для улучшения электрического контакта между слоем платины 8 и пористой пластиной анодной камеры 4 поверхность пластины платинируется или покрывается слоем оксидов рутения или иридия.

Для увеличения производительности процесса в заявляемом устройстве мембранный электролизер может содержать несколько ячеек, подключенных параллельно.

Выход воды из ячейки мембранного электролизера 1 осуществляется через штуцер 11, который соединен с штуцером 15, являющимся входом каталитического реактора 16, заполненного каталитическим сорбентом 17. В качестве последнего могут использоваться промышленно выпускаемые ионообменные смолы, поверхность которых покрыта слоем палладия (типа Lewatit МС 145, Amberlyst CH28) и широко использующиеся для реализации каталитических процессов. Деоксигенированная вода выходит из каталитического реактора 16 через штуцер 18.

Заявленное устройство работает следующим образом. Высокочистая вода через штуцер 10 поступает в ячейку мембранного электролизера 1 и заполняет катодную камеру 3. При наложении электрического поля между катодом и анодом на пористом слое палладия 7 происходят катодные электрохимические реакции:

- ионизации кислорода:

- выделения водорода:

В результате ионизации растворенного кислорода по реакции (1) его концентрация в воде снижается. Степень снижения концентрации растворенного кислорода по реакции (1), как и в случае устройства-прототипа, во многом определяется интенсивностью перемешивания потока воды, которое в предлагаемом устройстве обеспечивается сеткой катодной камеры 3.

Выделяющийся по реакции (2) на катодной поверхности слоя 7 водород растворяется в палладии в атомарном виде. Атомарный водород в палладии взаимодействует с растворенным кислородом с образованием молекул воды, тем самым дополнительно снижая концентрацию растворенного кислорода. Данный процесс деоксигенации воды в устройстве-прототипе не реализуется.

Водород, выделившийся по реакции (2) на катодной поверхности слоя 7 и не успевший прореагировать с растворенным кислородом, переходит в высокочистую воду в молекулярном виде. Далее водород вместе с остаточным количеством растворенного в воде кислорода выносится с потоком из ячейки мембранного электролизера 1 и поступает в каталитический реактор 16, в котором на поверхности каталитического сорбента 17 происходит взаимодействие растворенных в воде кислорода и водорода.

Ток в ячейке мембранного электролизера 1 выбирается исходя из условия образования стехиометрического количества водорода по отношению к содержанию кислорода в исходной воде.

На пористом слое платины 8 происходит анодная электрохимическая реакция выделения газообразного кислорода:

При этом электролизу подвергается вода, диффундирующая из катодной камеры 3 через катионообменную мембрану 2 и находящаяся на границе фаз мембрана 2 - пористый слой платины 8. Газообразный кислород выделяется в объем анодной камеры 4, не влияя при этом на омическое сопротивление устройства, что обеспечивает отсутствие газонаполнения, характерного для устройства-прототипа.

Нанесение электронопроводящих слоев палладия 7 и платины 8 на поверхность катионообменной мембраны 2 проводилось методом химического осаждения. Выбор указанных материалов слоев обусловлен высокой химической стойкостью платины и палладия при их работе в качестве анодов и катодов в высокочистой воде, а также высокой растворимостью водорода в палладии. Для нанесения электронопроводящего слоя платины или палладия использовалась следующая методика, состоящая из двух стадий - нанесение каталитического подслоя и нанесение электронопроводящего слоя.

Для нанесения каталитического подслоя катионообменная мембрана вымачивалась в течение 1-2 часов в воде для набухания. После этого на поверхность мембраны наносился каталитический подслой. Для этого поверхность мембраны на 20 минут приводилась в контакт с раствором следующего состава:

хлористый палладий - 5 г/л;

гидроксид аммония - 100 г/л.

После чего поверхность мембраны промывалась водой и приводилась на 1 минуту в контакт с раствором гидразина (100 г/л), нагретым до 80°С. В результате на поверхности мембраны образовывался каталитический подслой.

Для нанесения пористого электронопроводящего слоя палладия поверхность мембраны с нанесенным каталитическим подслоем приводилась в контакт с раствором следующего состава:

хлористый палладий - 4 г/л;

гидроксид аммония (25%) - 300 мл/л;

трилон Б - 12 г/л;

гидразин - 2 г/л (вводился в раствор непосредственно перед его применением).

Температура раствора - 20°С. Время контакта поверхности мембраны с раствором - 2-4 часа. Меньшее время контакта приводит к образованию электронопроводящего слоя с высоким электрическим сопротивлением. Большее время контакта приводит к образованию непористого слоя палладия, который препятствует переносу ионов через мембрану.

Для нанесения пористого электронопроводящего слоя платины поверхность мембраны с нанесенным каталитическим подслоем палладия приводилась в контакт с раствором следующего состава:

гексахлорплатинат аммония - 40 г/л;

аммоний хлористый - 320 г/л.

Температура раствора - 50°С. Время контакта поверхности мембраны с раствором - 2-4 часа. Меньшее время контакта приводит к образованию электронопроводящего слоя с высоким электрическим сопротивлением. Большее время контакта приводит к образованию непористого слоя платины, который препятствует переносу ионов через мембрану.

Эффективность работы предлагаемого устройства подтверждена следующими примерами. Следует отметить, что возможность использования предлагаемого устройства не ограничивается условиями, реализованными в примерах.

Пример 1. Ячейка мембранного электролизера, приведенная на фигуре 1, включала перфторированную катионообменную мембрану МФ-4СК (толщина 0.15 мм, рабочие размеры 40×200 мм). На мембрану нанесены электронопроводящие пористые слои: палладия (со стороны катодной камеры) и платины (со стороны анодной камеры). Катодная камера (рабочие размеры 1.7×40×200 мм) образовывалась сеткой из нержавеющей стали (размер 40×200 мм, толщина 1.7 мм, размер ячейки сетки 1×1 мм), периметр которой герметизировался силиконовой композицией. Анодная камера образовывалась пластиной из пористого титана (размер 40×200 мм, толщина 1 мм). Ячейка мембранного электролизера собиралась путем стягивания с помощью инертных пластин сетки из нержавеющей стали (катодная камера), катионообменной мембраны и пластины из пористого титана (анодная камера).

В катодную камеру с расходом 110 л/час подавалась высокочистая вода с удельной электропроводностью 0,075 мкСм/см и концентрацией растворенного кислорода 8.3 мг/л. На ячейку подавался ток 4.1 А. Напряжение на ячейке составляло 2.2 В. Через 30 минут после включения тока концентрация кислорода, измеренная на выходе из ячейки, стабилизировалась и составила 5,0 мг/л. В результате проведенного эксперимента концентрация растворенного кислорода уменьшилась на 40%. Удельная электропроводность финишной воды - 0,075 мкСм/см.

Пример 2. В условиях эксперимента 1: высокочистая вода (со следующими параметрами: удельная электропроводность 0,075 мкСм/см, концентрация растворенного кислорода 8.3 мг/л, расход 110 л/ч) последовательно подавалась на мембранный электролизер, аналогичный описанному в примере 1, и на каталитический реактор, представляющий собой цилиндрическую колонку (диаметр 50 мм, высота 400 мм), заполненную ионообменной смолой типа Lewatit MC. Объем смолы в реакторе - 0,8 л. Через 120 минут после включения тока (сила тока 4.1 А, напряжение 2.2 В) концентрация растворенного кислорода, измеренная на выходе из каталитического реактора, стабилизировалась и не превышала 0,010 мг/л. Таким образом при реализации Примера 2 концентрация растворенного кислорода в финишной воде снижалась более чем на 99,9%, при этом удельная электропроводность осталась на уровне 0,075 мкСм/см.


УСТРОЙСТВО ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ ДЕОКСИГЕНАЦИИ ВЫСОКОЧИСТОЙ ВОДЫ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 50.
20.01.2013
№216.012.1c25

Способ обезвреживания токсичных промышленных отходов

Изобретение относится к области химии. Отработанные растворы антифриза, содержащие этиленгликоль, и сернокислотного электролита смешивают при весовом отношении этиленгликоля к серной кислоте от 1,0:0,1 до 1,0:1,5, в пересчете на безводные компоненты. После чего полученную смесь подвергают...
Тип: Изобретение
Номер охранного документа: 0002472699
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d5f

Способ обезвреживания минерализованных сточных вод атомных и тепловых электрических станций

Изобретение относится к способам переработки (обезвреживания) сбросных минерализованных вод атомных и тепловых электростанций, содержащих этаноламин. Способ обезвреживания включает предварительную дистилляцию указанных вод с получением конденсата и кубового остатка, концентрирование кубового...
Тип: Изобретение
Номер охранного документа: 0002473013
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2871

Способ измерения реактивности ядерного реактора

Изобретение относится к области реакторных измерений, а именно к способу измерения реактивности ядерного реактора, при котором сигналы с камеры деления преобразуют в физический параметр. По изменению во времени величины этого параметра, путем решения обращенного уравнения кинетики реактора, с...
Тип: Изобретение
Номер охранного документа: 0002475873
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.287a

Биполярный ионизационный источник

Изобретение относится к газовому анализу и может быть использовано для одновременной ионизации в положительной и отрицательной модах частиц веществ, находящихся в газе, в том числе в воздухе. Сущность изобретения: биполярный ионизационный источник включает камеру ионизации, продуваемую потоком...
Тип: Изобретение
Номер охранного документа: 0002475882
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2c4f

Способ разделения и регистрации ионов в газе (варианты)

Изобретение относится к области газового анализа и может быть использовано для решения задач разделения и регистрации ионов в газе, например ионов взрывчатых или наркотических веществ в воздухе. Изобретение может быть также использовано как основа для газохроматографического детектирования. В...
Тип: Изобретение
Номер охранного документа: 0002476870
Дата охранного документа: 27.02.2013
10.07.2013
№216.012.5509

Система дистанционного радиационного контроля

Изобретение относится к средствам дистанционного контроля радиационного состояния объекта. Система содержит пульт оператора с персональной ЭВМ с автономным блоком питания и средствами отображения информации и две подсистемы, каждая из которых включает: блок сбора, первичной обработки и анализа...
Тип: Изобретение
Номер охранного документа: 0002487372
Дата охранного документа: 10.07.2013
20.11.2013
№216.012.8362

Способ контроля содержания урана в технологических средах ядерных энергетических установок

Изобретение относится к области аналитической радиохимии и обеспечения безопасности эксплуатации ядерных энергетических установок (ЯЭУ). Контроль содержания урана в технологических средах ЯЭУ осуществляют следующим образом: отбирают пробу технологической среды, подщелачивают ее до рН 9-11...
Тип: Изобретение
Номер охранного документа: 0002499310
Дата охранного документа: 20.11.2013
27.03.2014
№216.012.af18

Способ обезвреживания жидких радиоактивных отходов ядерных энергетических установок, загрязненных нефтепродуктами, продуктами коррозии и синтетическими поверхностно-активными веществами, в полевых условиях

Заявленное изобретение относится к способам обезвреживания жидких радиоактивных отходов ядерных энергетических установок, загрязненных нефтепродуктами, продуктами коррозии и синтетическими поверхностно-активными веществами, в полевых условиях. В заявленном способе предусмотрено отстаивание...
Тип: Изобретение
Номер охранного документа: 0002510539
Дата охранного документа: 27.03.2014
20.04.2014
№216.012.bb35

Способ автоматического измерения активности радионуклидов в газообразных средах и устройство для его реализации

Изобретение относится к средствам спектрометрических измерений и может быть использовано в атомной энергетике для измерения активности радионуклидов в высокоактивных газообразных средах. Сущность изобретения заключается в том, что контролируемую среду перед направлением в измерительную камеру...
Тип: Изобретение
Номер охранного документа: 0002513653
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c553

Способ определения оптимальных параметров растворения оксидов переходных металлов в растворах, содержащих комплексообразующий агент

Изобретение относится к способу определения оптимальных параметров растворения оксидов переходных металлов в растворах, содержащих комплексообразующий агент, и может быть использовано в атомной энергетике. В качестве показателей используют объемные коэффициенты распределения радиоактивных...
Тип: Изобретение
Номер охранного документа: 0002516274
Дата охранного документа: 20.05.2014
Показаны записи 1-10 из 25.
20.01.2013
№216.012.1c25

Способ обезвреживания токсичных промышленных отходов

Изобретение относится к области химии. Отработанные растворы антифриза, содержащие этиленгликоль, и сернокислотного электролита смешивают при весовом отношении этиленгликоля к серной кислоте от 1,0:0,1 до 1,0:1,5, в пересчете на безводные компоненты. После чего полученную смесь подвергают...
Тип: Изобретение
Номер охранного документа: 0002472699
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d5f

Способ обезвреживания минерализованных сточных вод атомных и тепловых электрических станций

Изобретение относится к способам переработки (обезвреживания) сбросных минерализованных вод атомных и тепловых электростанций, содержащих этаноламин. Способ обезвреживания включает предварительную дистилляцию указанных вод с получением конденсата и кубового остатка, концентрирование кубового...
Тип: Изобретение
Номер охранного документа: 0002473013
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2871

Способ измерения реактивности ядерного реактора

Изобретение относится к области реакторных измерений, а именно к способу измерения реактивности ядерного реактора, при котором сигналы с камеры деления преобразуют в физический параметр. По изменению во времени величины этого параметра, путем решения обращенного уравнения кинетики реактора, с...
Тип: Изобретение
Номер охранного документа: 0002475873
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.287a

Биполярный ионизационный источник

Изобретение относится к газовому анализу и может быть использовано для одновременной ионизации в положительной и отрицательной модах частиц веществ, находящихся в газе, в том числе в воздухе. Сущность изобретения: биполярный ионизационный источник включает камеру ионизации, продуваемую потоком...
Тип: Изобретение
Номер охранного документа: 0002475882
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2c4f

Способ разделения и регистрации ионов в газе (варианты)

Изобретение относится к области газового анализа и может быть использовано для решения задач разделения и регистрации ионов в газе, например ионов взрывчатых или наркотических веществ в воздухе. Изобретение может быть также использовано как основа для газохроматографического детектирования. В...
Тип: Изобретение
Номер охранного документа: 0002476870
Дата охранного документа: 27.02.2013
10.07.2013
№216.012.5509

Система дистанционного радиационного контроля

Изобретение относится к средствам дистанционного контроля радиационного состояния объекта. Система содержит пульт оператора с персональной ЭВМ с автономным блоком питания и средствами отображения информации и две подсистемы, каждая из которых включает: блок сбора, первичной обработки и анализа...
Тип: Изобретение
Номер охранного документа: 0002487372
Дата охранного документа: 10.07.2013
20.11.2013
№216.012.8362

Способ контроля содержания урана в технологических средах ядерных энергетических установок

Изобретение относится к области аналитической радиохимии и обеспечения безопасности эксплуатации ядерных энергетических установок (ЯЭУ). Контроль содержания урана в технологических средах ЯЭУ осуществляют следующим образом: отбирают пробу технологической среды, подщелачивают ее до рН 9-11...
Тип: Изобретение
Номер охранного документа: 0002499310
Дата охранного документа: 20.11.2013
27.03.2014
№216.012.af18

Способ обезвреживания жидких радиоактивных отходов ядерных энергетических установок, загрязненных нефтепродуктами, продуктами коррозии и синтетическими поверхностно-активными веществами, в полевых условиях

Заявленное изобретение относится к способам обезвреживания жидких радиоактивных отходов ядерных энергетических установок, загрязненных нефтепродуктами, продуктами коррозии и синтетическими поверхностно-активными веществами, в полевых условиях. В заявленном способе предусмотрено отстаивание...
Тип: Изобретение
Номер охранного документа: 0002510539
Дата охранного документа: 27.03.2014
20.04.2014
№216.012.bb35

Способ автоматического измерения активности радионуклидов в газообразных средах и устройство для его реализации

Изобретение относится к средствам спектрометрических измерений и может быть использовано в атомной энергетике для измерения активности радионуклидов в высокоактивных газообразных средах. Сущность изобретения заключается в том, что контролируемую среду перед направлением в измерительную камеру...
Тип: Изобретение
Номер охранного документа: 0002513653
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c553

Способ определения оптимальных параметров растворения оксидов переходных металлов в растворах, содержащих комплексообразующий агент

Изобретение относится к способу определения оптимальных параметров растворения оксидов переходных металлов в растворах, содержащих комплексообразующий агент, и может быть использовано в атомной энергетике. В качестве показателей используют объемные коэффициенты распределения радиоактивных...
Тип: Изобретение
Номер охранного документа: 0002516274
Дата охранного документа: 20.05.2014
+ добавить свой РИД