×
27.09.2013
216.012.7095

Результат интеллектуальной деятельности: ДРАЙВЕР ПИКСЕЛЬНОЙ ЯЧЕЙКИ OLED ДИСПЛЕЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к микроэлектронным устройствам визуализации изображений, а именно - к микродисплеям, более конкретно - к сверхбольшим интегральным схемам управления дисплеев с активными матрицами OLED (матрицами светоизлучающих диодов на основе органических полупроводников), сформированными на общей кремниевой подложке со схемами драйверов пиксельных ячеек. Техническим результатом является повышение быстродействия, контрастности, однородности и стабильности яркости микродисплея. Устройство содержит источник тока на первом МОП транзисторе, подключенном к первой шине источника напряжения питания и к светоизлучающему диоду на основе органических полупроводников, конденсатор, запоминающий текущее значение сигнала, преобразователь напряжения сигнала в напряжение на конденсаторе при программировании пиксельной ячейки, состоящий из второго и третьего МОП транзисторов, ключевые четвертый и пятый МОП транзисторы. Второй МОП транзистор подключен к шине напряжения сигнала и ко второй шине источника напряжения питания. Ключевые четвертый и пятый МОП транзисторы подключены к шине разрешения записи напряжения сигнала в пиксельную ячейку при ее программировании. 2 ил.
Основные результаты: Драйвер пиксельной ячейки OLED дисплея, содержащий для светоизлучающего диода на основе органических полупроводников источник тока на первом МОП-транзисторе, подключенном к первой шине источника напряжения питания и к светоизлучающему диоду на основе органических полупроводников и подключенном затвором к первой обкладке конденсатора, запоминающего текущее значение сигнала, вторая обкладка которого подключена к первой шине источника напряжения питания, отличающийся тем, что в него дополнительно введен преобразователь напряжения сигнала в напряжение на конденсаторе при программировании пиксельной ячейки (записи информации в нее), который состоит из второго и третьего МОП-транзисторов и который подключен через ключевые четвертый и пятый МОП-транзисторы к первой обкладке конденсатора, второй МОП-транзистор подключен затвором к шине напряжения сигнала и подключен ко второй шине источника напряжения питания, а через ключевой четвертый МОП-транзистор к третьему МОП-транзистору, который подключен к первой шине источника напряжения питания, а его затвор подключен к первой обкладке конденсатора, ключевой пятый МОП-транзистор соединяет первую обкладку конденсатора с третьим МОП-транзистором, затворы ключевых четвертого и пятого МОП-транзисторов подключены к шине разрешения записи напряжения сигнала в пиксельную ячейку при ее программировании.

Изобретение относится к микроэлектронным устройствам визуализации изображений, а именно - к микродисплеям, более конкретно - к сверхбольшим интегральным схемам управления дисплеев с активными матрицами OLED (матрицами светоизлучающих диодов на основе органических полупроводников), сформированными на общей кремниевой подложке со схемами драйверов пиксельных ячеек.

Известен драйвер пиксельной ячейки дисплеев с активными матрицами OLED (G. Levy et. al. An 852×600 Pixel OLED-on-Silicon Color Microdisplay Using CMOS Subthreshol-Voltage-Scaling Current Drivers. IEEE J. Of Solid-State Circuits, vol.37, #12, Dec. 2002, pp. 1879-1889), содержащий источник тока на МОП транзисторе, задающем рабочий ток в светоизлучающий диод на основе органических полупроводников, МОП транзисторный ключ выборки из матрицы данной пиксельной ячейки и для программирования пиксельной ячейки, МОП транзисторный ключ ввода информации о текущем уровне яркости в виде напряжения на запоминающем конденсаторе, который подключен к затвору МОП транзистора источника тока. (Кроме того, в эту схему включены ключевой МОП транзистор отключения светоизлучающего диода на основе органических полупроводников в режиме программирования и ключевой МОП транзистор в диодном включении для ограничения до допустимого уровня напряжение на электрической схеме при отключении светоизлучающего диода на основе органических полупроводников.) Для достижения достаточно высокого быстродействия при программировании пиксельной ячейки ток из информационной шины в запоминающий конденсатор и в драйверный МОП транзистор в диодном включении существенно увеличен (например, в 100 раз). В рабочем состоянии ток через драйверный МОП транзистор соответственно во столько же раз уменьшается подачей запирающего напряжения смещения через запоминающий конденсатор на затвор МОП транзистора источника тока. Для этой цели в ячейку введена дополнительная шина масштабирования тока.

Основные причины необходимости введения масштабирования состоят в увеличении быстродействия драйвера и уменьшении влияния технологических разбросов параметров МОП транзисторов на разбросы по яркости пиксельных ячеек дисплея. При масштабировании тока используется экспоненциальная зависимость ток стока МОП транзистора в предпороговом режиме от напряжения на его затворе, что позволяет математическую операцию умножения на коэффициент масштабирования заменить на операцию сложения на затворе Моп транзистора источника тока напряжения программирования и напряжения смещения на дополнительной шине масштабирования тока. Коэффициент масштабирования постоянен для всей матрицы и не меняется в рабочем режиме. (G. Levy et. al. An 852×600 Pixel OLED-on-Silicon Color Microdisplay Using CMOS Subthreshol-Voltage-Scaling Current Drivers. IEEE J. Of Solid-State Circuits, vol.37, #12, Dec. 2002, pp.1879-1889).

Такой драйвер имеет следующие недостатки:

- недостаточный динамический диапазон рабочих сигналов (в микродисплее это ограничивает его контрастность, например, порядка 100:1) из-за сравнительно небольшого диапазона рабочих токов источника тока на МОП транзисторе в предпороговом режиме;

- высокий уровень шумов (по отношению к номинальному уровню сигнала), большая температурная и временная нестабильность токовых характеристик источника тока на МОП транзисторе и разброс яркости по экрану дисплея (в микродисплее это проявляется в неравномерной яркости по экрану и мерцанию изображения, а также в требующей корректировки меняющейся яркости во время эксплуатации и изменении температуры);

- наличие дополнительных элементов (в ячейке - дополнительной шины, по которой передается масштабирующее напряжение смещения, вне матрицы -схемы управления масштабированием).

Известен драйвер пиксельной ячейки OLED дисплея (патент США №2007/0273622 A1, опубл. 29.11.07), наиболее близкий к предлагаемому и содержащий для светоизлучающего диода на основе органических полупроводников источник тока на первом МОП транзисторе (Т4 на чертеже 2), подключенном к первой шине источника напряжения питания (VDD на чертеже 2), и к светоизлучающему диоду на основе органических полупроводников и подключенном затвором к первой обкладке конденсатора (С на чертеже 2), запоминающего текущее значение сигнала, вторая обкладка которого подключена к первой шине источника напряжения питания. Второй МОП транзистор (Т3 на чертеже 2), преобразующий при программировании пиксельной ячейки сигнальный входной ток в напряжение на конденсаторе С и подключенный истоком к источнику напряжения питания, затвором подключен к первой обкладке конденсатора С, вторая обкладка которого подключена к источнику напряжения питания. Кроме того, драйвер содержит первый ключевой МОП транзистор (Т1 на чертеже 2), соединяющий шину программируемого сигнального тока (Data) со стоком Т3, и содержащей второй ключевой МОП транзистор (Т2 на чертеже 2), соединяющий сток второго МОП транзистора (Т3 на чертеже 2) с первой обкладкой конденсатора С, затворы первого и второго ключевых МОП транзисторов соединены с шиной выборки пиксельной ячейки (Scan) при ее программировании. В отличие от электрической схемы драйвера пиксельной ячейки вышеприведенного аналога, для достижения требуемого при программировании достаточно высокого быстродействия масштабирование токов возможно лишь за счет увеличения размеров второго МОП транзистора, тогда коэффициент масштабирования будет равен отношению W/L второго к W/L первого МОП транзисторов, где W- ширина, L - длина канала. Чтобы получить достаточно большой коэффициент масштабирования (например, 100:1) размеры второго МОП транзистора становятся столь велики, что он может, не поместится в габаритах пиксельной ячейки, а при малом коэффициенте масштабирования для полноформатных микродисплеев невозможно достигнуть достаточного быстродействия.

Такой драйвер имеет следующие недостатки:

- для полноформатных микродисплеев недостижимо достаточного высокое быстродействие при программировании пиксельной ячейки (из-за необходимости достижения достаточного коэффициента масштабирования, например равного 100);

- введение масштабирования тока приводит к соответственному увеличению энергопотребления схем, программирующих пиксельные ячейки микродисплея;

- из-за существенно различных размеров первого и второго МОП транзисторов существенно увеличивается погрешность преобразования входного (программирующего) тока в рабочий ток.

Предлагаемым изобретением решается задача достижения достаточного быстродействия при программировании пиксельных ячеек без необходимости масштабирования тока при программировании пиксельной ячейки и уменьшения погрешности преобразования и энергопотребления схем, программирующих пиксельные ячейки.

Для достижения этого технического результата в драйвер пиксельной ячейки OLED дисплея, содержащий для светоизлучающего диода на основе органических полупроводников источник тока на первом МОП транзисторе, подключенном к первой шине источника напряжения питания и к светоизлучающему диоду на основе органических полупроводников и подключенном затвором к первой обкладке конденсатора, запоминающего текущее значение сигнала, вторая обкладка которого подключена к первой шине источника напряжения питания, дополнительно введен преобразователь напряжения сигнала в напряжение на конденсаторе при программировании пиксельной ячейки (записи информации в нее), который состоит из второго и третьего МОП транзисторов и который подключен через ключевые четвертый и пятый МОП транзисторы к первой обкладке конденсатора, второй МОП транзистор подключен затвором к шине напряжения сигнала и подключен ко второй шине источника напряжения питания, а через ключевой четвертый МОП транзистор к третьему МОП транзистору, который подключен к первой шине источника напряжения питания, а его затвор подключен к первой обкладке конденсатора, ключевой пятый МОП транзистор соединяет первую обкладку конденсатора с третьим МОП транзистором, затворы ключевых четвертого и пятого МОП транзисторов подключены к шине разрешения записи напряжения сигнала в пиксельную ячейку при ее программировании.

Признаки, отличающие предлагаемый драйвер пиксельной ячейки OLED дисплея от наиболее близкого к нему известному по патенту США №2007/0273622 А1 (прототип), характеризуют наличие преобразователя напряжения сигнала в напряжение на конденсаторе при программировании пиксельной ячейки (записи информации в нее), который состоит из второго и третьего МОП транзисторов и который подключен через ключевые четвертый и пятый МОП транзисторы к первой обкладке конденсатора, второй МОП транзистор подключен затвором к шине напряжения сигнала и подключен ко второй шине источника напряжения питания, а через ключевой четвертый МОП транзистор к третьему МОП транзистору, который подключен к первой шине источника напряжения питания, а его затвор подключен к первой обкладке конденсатора, ключевой пятый МОП транзистор соединяет первую обкладку конденсатора с третьим МОП транзистором, затворы ключевых четвертого и пятого МОП транзисторов подключены к шине разрешения записи напряжения сигнала в пиксельную ячейку при ее программировании.

На фиг.1 приведена принципиальная электрическая схема драйвера пиксельной ячейки OLED дисплея, содержащая: Д - светоизлучающий диод на основе органических полупроводников, МОПТ1 - МОП транзистор источника тока для светоизлучающего диода на основе органических полупроводников, К - конденсатор, запоминающий текущее значение сигнала, МОПТ2 и МОПТ3 - МОП транзисторы преобразователя напряжения сигнала в напряжение на конденсаторе при программировании пиксельной ячейки, МОПТ4 и МОПТ5 - ключевые МОП транзисторы, обеспечивающие запись информации в конденсатор К при программировании, Е11 и Е12 - первая шина источника напряжения питания МОП транзистора МОПТ1 и преобразователя напряжения сигнала, Е21 - вторая шина источника напряжения питания преобразователя напряжения сигнала, Е22 - вторая шина источника напряжения питания Д, Ш1 - шина напряжения сигнала, Ш2 - шина разрешения записи напряжения сигнала в пиксельную ячейку при ее программировании. При использовании МОП транзисторов одного типа проводимости канала (р- или n-типа) истоки МОПТ1 и МОПТ3 соединены с первой шиной источника напряжения питания, сток МОПТ2 - со второй шиной источника напряжения питания. В этом случае преобразователь напряжения сигнала на МОП транзисторах МОПТ2 и МОПТ3 работает как истоковый повторитель напряжения. Если типы проводимости канала МОП транзисторов МОПТ2 и МОПТ3 разные, то в этом случае преобразователь напряжения сигнала на МОП транзисторах МОПТ2 и МОПТ3 работает как усилитель напряжения сигнала.

На фиг.2 (прототип) приведена принципиальная электрическая схема драйвера пиксельной ячейки OLED дисплея прототипа содержащая: T1 - первый ключевой МОП транзистор, Т2 - второй ключевой МОП транзистор, Т3 - второй МОП транзистор, Т4 - первый МОП транзистор, С - конденсатор, VDD - источник напряжения питания. Data - шина программируемого тока, Scan - шина выборки пиксельной ячейки.

Драйвер пиксельной ячейки OLED дисплея работает следующим образом. В режиме программирования ячейки (записи информации) на шину Ш2 подается управляющий импульс, открывающий ключевые МОП транзисторы МОПТ4 и МОПТ5, напряжение сигнала, поданное на шину Ш1 через преобразователь напряжения сигнала на МОП транзисторах МОПТ2 и МОПТ3 подается на конденсатор К. После окончания режима программирования ключевые МОП транзисторы МОПТ4 и МОПТ5 отсоединяют конденсатор К от преобразователя напряжения сигнала на МОП транзисторах МОПТ2 и МОПТ3 и на нем сохраняется заряд, соответствующий напряжению сигнала, в течение всего рабочего режима. Поскольку в пиксельную ячейку подается не ток как в прототипе, а напряжение сигнала (от низкоомного источника напряжения сигнала), то не требуется проводить масштабирование тока (вводить в пиксельную ячейку многократно увеличенный ток) для достижения требуемого быстродействия. При этом может быть использован весь диапазон рабочих токов МОП транзистора МОПТ1, а не только предпороговые токи стока, что позволяет значительно расширить динамический диапазон и коэффициент контрастности. Соответственно, уменьшается влияние внешних и собственных шумов, а также влияние разброса пороговых напряжений МОП транзисторов МОПТ1 и МОПТ3 на разброс яркости по полю дисплея.

Предлагаемая электрическая схема светоизлучающей ячейки обеспечивает:

- высокое быстродействие без необходимости масштабирования тока при программировании пиксельной ячейки (соответственно, без необходимости увеличения энергопотребления схем, программирующих пиксельные ячейки, и обеспечения масштабирования, например увеличением размеров соответствующих МОП транзисторов);

- большую контрастность;

- однородность и стабильность яркости микродисплея.

Драйвер пиксельной ячейки OLED дисплея, содержащий для светоизлучающего диода на основе органических полупроводников источник тока на первом МОП-транзисторе, подключенном к первой шине источника напряжения питания и к светоизлучающему диоду на основе органических полупроводников и подключенном затвором к первой обкладке конденсатора, запоминающего текущее значение сигнала, вторая обкладка которого подключена к первой шине источника напряжения питания, отличающийся тем, что в него дополнительно введен преобразователь напряжения сигнала в напряжение на конденсаторе при программировании пиксельной ячейки (записи информации в нее), который состоит из второго и третьего МОП-транзисторов и который подключен через ключевые четвертый и пятый МОП-транзисторы к первой обкладке конденсатора, второй МОП-транзистор подключен затвором к шине напряжения сигнала и подключен ко второй шине источника напряжения питания, а через ключевой четвертый МОП-транзистор к третьему МОП-транзистору, который подключен к первой шине источника напряжения питания, а его затвор подключен к первой обкладке конденсатора, ключевой пятый МОП-транзистор соединяет первую обкладку конденсатора с третьим МОП-транзистором, затворы ключевых четвертого и пятого МОП-транзисторов подключены к шине разрешения записи напряжения сигнала в пиксельную ячейку при ее программировании.
ДРАЙВЕР ПИКСЕЛЬНОЙ ЯЧЕЙКИ OLED ДИСПЛЕЯ
ДРАЙВЕР ПИКСЕЛЬНОЙ ЯЧЕЙКИ OLED ДИСПЛЕЯ
Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
10.06.2015
№216.013.50b4

Устройство защиты от контрафакта и фальсификации интегральных схем

Изобретение относится к полупроводниковым микроэлектронным устройствам, а именно - к устройствам защиты от контрафакта и фальсификации интегральных схем (ИС), которые встраиваются в кристалл ИС. Технический результат - проверка подлинности ИС (т.е. ИС является либо подлинной, либо контрафактной...
Тип: Изобретение
Номер охранного документа: 0002552181
Дата охранного документа: 10.06.2015
20.05.2016
№216.015.3fb9

Способ получения электролюминесцентного материала 1,10-фенантролин-три-(теноилтрифторацетоната) европия (iii) для использования в производстве органических светоизлучающих диодов (осид) и структур на их основе

Изобретение относится к способу получения органических электролюминесцентных материалов на основе координационных соединений европия для последующего использования в технологии органических светоизлучающих диодов и устройств (ОСИД или OLED). Описывается способ получения органического...
Тип: Изобретение
Номер охранного документа: 0002584208
Дата охранного документа: 20.05.2016
13.01.2017
№217.015.8351

Светоизлучающая матрица микродисплея на органических светодиодах и способ ее изготовления

Изобретение относится к микродисплею на основе органического светоизлучающего светодиода и способу его получения. Светоизлучающая матрица, использующая в качестве элементов матрицы пиксели на основе светоизлучающих органических диодов белого цвета свечения для применения в составе микродисплея,...
Тип: Изобретение
Номер охранного документа: 0002601771
Дата охранного документа: 10.11.2016
Показаны записи 1-3 из 3.
10.06.2015
№216.013.50b4

Устройство защиты от контрафакта и фальсификации интегральных схем

Изобретение относится к полупроводниковым микроэлектронным устройствам, а именно - к устройствам защиты от контрафакта и фальсификации интегральных схем (ИС), которые встраиваются в кристалл ИС. Технический результат - проверка подлинности ИС (т.е. ИС является либо подлинной, либо контрафактной...
Тип: Изобретение
Номер охранного документа: 0002552181
Дата охранного документа: 10.06.2015
20.05.2016
№216.015.3fb9

Способ получения электролюминесцентного материала 1,10-фенантролин-три-(теноилтрифторацетоната) европия (iii) для использования в производстве органических светоизлучающих диодов (осид) и структур на их основе

Изобретение относится к способу получения органических электролюминесцентных материалов на основе координационных соединений европия для последующего использования в технологии органических светоизлучающих диодов и устройств (ОСИД или OLED). Описывается способ получения органического...
Тип: Изобретение
Номер охранного документа: 0002584208
Дата охранного документа: 20.05.2016
13.01.2017
№217.015.8351

Светоизлучающая матрица микродисплея на органических светодиодах и способ ее изготовления

Изобретение относится к микродисплею на основе органического светоизлучающего светодиода и способу его получения. Светоизлучающая матрица, использующая в качестве элементов матрицы пиксели на основе светоизлучающих органических диодов белого цвета свечения для применения в составе микродисплея,...
Тип: Изобретение
Номер охранного документа: 0002601771
Дата охранного документа: 10.11.2016
+ добавить свой РИД