×
27.09.2013
216.012.7047

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЕДИНИЧНОГО ИМПУЛЬСА ТВЕРДОГО ТОПЛИВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерению характеристик твердых топлив для ракетных двигателей. Способ включает измерение реактивной силы продуктов газификации при сжигании образца твердого топлива, бронированного по боковой поверхности, причем измеряют реактивную силу и время полного сгорания образца твердого топлива, помещенного в бомбу постоянного объема, при давлении в диапазоне (0.5÷15)МПа, создаваемом инертным газом, например азотом или аргоном, причем объем бомбы и масса образца находятся в заданном соотношении, а величину единичного импульса определяют по расчетной формуле. Достигается возможность определения единичного импульса при использовании малоразмерных образцов топлива в лабораторных условиях без использования крупногабаритного стендового оборудования и взрывозащищенных боксов. 2 ил.
Основные результаты: Способ определения единичного импульса твердого топлива, включающий измерение реактивной силы продуктов газификации при сжигании образца твердого топлива, бронированного по боковой поверхности, отличающийся тем, что измеряют реактивную силу и время полного сгорания образца твердого топлива, помещенного в бомбу постоянного объема, при давлении в диапазоне (0,5÷15)МПа, создаваемом инертным газом, например азотом или аргоном, причем объем бомбы и масса образца находятся в соотношении а величину единичного импульса определяют по формуле где V - объем бомбы;R=8,31441 Дж/(моль·К) - универсальная газовая постоянная;Т - температура окружающей среды;m, ρ, h, S - масса, плотность, высота и площадь торцевой поверхности горения образца топлива;М - молекулярная масса инертного газа;p - минимальное давление из исследуемого диапазона;J - единичный импульс твердого топлива;τ - время сгорания образца;F- реактивная сила оттекающих продуктов сгорания;p - давление в бомбе постоянного объема;k - показатель адиабаты продуктов сгорания топлива;р - наружное (атмосферное) давление.

Изобретение относится к области ракетной техники, в частности к способам измерения характеристик твердых топлив для ракетных двигателей. Изобретение может быть использовано для определения единичного (удельного) импульса новых композиций твердых топлив.

Единичный импульс J1 является основной энергетической характеристикой топлива. По определению, единичный импульс - это отношение тяги двигателя к секундному массовому расходу продуктов сгорания. Величина единичного импульса определяется зависимостью [1]:

где ua, pa - скорость истечения и давление продуктов сгорания в выходном сечении сопла площадью Sa;

pн - давление окружающей среды (наружное давление);

G - массовый секундный расход продуктов сгорания.

Для "расчетного" сопла (pa=pн) из (1) следует

где R=cp-cυ, k=cp/cυ - газовая постоянная и показатель адиабаты продуктов сгорания;

cp, cυ - изобарическая и изохорическая теплоемкости продуктов сгорания;

pк - давление в камере сгорания ракетного двигателя;

Tк - температура продуктов сгорания в камере двигателя (температура торможения), равная температуре горения топлива (Tк=Tg).

Известен расчетно-теоретический метод определения термодинамического единичного импульса с использованием уравнений (1, 2) и расчета Tg, cp, cυ, R, k по методике [1] с использованием, например, алгоритма "Астра-4" [2]. Под термодинамическим значением J1 понимается значение единичного импульса при полном отсутствии потерь и условии завершения химических превращений. Для реализации этого способа необходимо знать компонентный состав твердого топлива или его эквивалентную химическую формулу [1], которые в ряде случаев неизвестны для новых твердотопливных композиций.

Известен способ определения единичного импульса, основанный на измерении диаграмм тяги P(t) и давления pк(t) в камере сгорания модельного ракетного двигателя при сжигании исследуемого образца топлива. При этом величина J1 находится по отношению полного импульса тяги за время τ работы двигателя к массе израсходованного за это время топлива [1]:

где G(t) - массовый секундный расход продуктов сгорания, определяемый по измеренной зависимости pк(t) из уравнения

где φ, Sкp - коэффициент расхода и площадь критического сечения сопла.

Известен также способ измерения единичного импульса при помощи баллистического маятника, являющегося "абсолютным" прибором [3-5]. Импульс силы, действующей на маятник при сжигании топлива в двигателе, пропорционален длине хорды отклонения центра масс маятника (считая от положения равновесия).

Для измерения единичного импульса в [3] предложен "импульсомер-вертушка", который представляет собой равноплечую балку, с малым трением вращающуюся вокруг вертикальной оси. На одном конце балки установлен модельный ракетный двигатель, а на другом - инертный груз эквивалентной массы. При известном моменте инерции системы величина импульса реактивной силы определяется по измеренной угловой скорости вращения балки.

Наиболее близким по технической сущности является способ, предложенный в [6]. Этот способ основан на измерении реактивной силы F оттекающих от поверхности горения топлива продуктов газификации. Величина F связана с энергетическими характеристиками топлива (в частности, с его массовой скоростью горения).

Недостатками данных способов является необходимость использования модельных двигателей с зарядом твердого топлива не менее (0.2÷0.5) кг и специального стендового оборудования, размещенного во взрывозащитных боксах.

Техническим результатом настоящего изобретения является разработка способа определения единичного импульса твердого топлива в широком диапазоне давлений, основанного на непосредственном измерении комплекса его термодинамических характеристик при сжигании в лабораторных условиях образцов топлива массой (0.5÷10) г.

Технический результат изобретения достигается тем, что разработан способ определения единичного импульса твердого топлива, включающий измерение реактивной силы продуктов газификации при сжигании образца твердого топлива, бронированного по боковой поверхности, и времени его полного сгорания в бомбе постоянного объема при давлении в диапазоне (0.5÷15) МПа, создаваемом инертным газом, например, азотом или аргоном.

Объем бомбы V определяют из соотношения

а величину единичного импульса определяют по формуле

где

R0=8.31441 Дж/(моль·К) - универсальная газовая постоянная;

Tн - температура окружающей среды;

mm, ρm, hm, Sm - масса, плотность, высота и площадь торцевой поверхности горения образца топлива;

М - молекулярная масса инертного газа;

pmin - минимальное давление из исследуемого диапазона;

τ - время сгорания образца;

F - реактивная сила оттекающих продуктов сгорания;

pк - давление в бомбе постоянного объема.

Полученный положительный эффект изобретения достигается тем, что при сжигании образцов небольшого размера массой (0.5÷10) г в бомбе постоянного объема при заданном давлении pк измеряется реактивная сила оттекающих от торцевой поверхности горящего образца продуктов газификации [6, 7]. В соответствии с третьим законом Ньютона, эта сила равна

где ρk, u - плотность и скорость отекания продуктов газификации.

Из закона сохранения массы следует

где um - линейная скорость горения топлива.

Из (5) и (6) и уравнения состояния для идеального газа

можно получить выражение для реактивной силы в виде

где R - газовая постоянная продуктов сгорания.

Из уравнения (8) можно определить комплекс (RTg) - "силу пороха" [1], который входит в уравнение для расчета единичного импульса (2):

Все входящие в (9) величины непосредственно измеряют в эксперименте (F, pк, Sm, ρm). Линейная скорость горения также определяется экспериментально по времени сгорания τ образца заданной высоты hm

Подставляя (9), (10) в (2) получим формулу для определения J1 (4).

Значение показателя адиабаты k берется из термодинамического расчета или выбирается его среднее значение для близких по составу топлив. Эта величина слабо изменяется при широкой вариации исходного состава топлива.

Выбор диапазона давлений pk=(0.5÷15) МПа, для которого проводят определение единичного импульса топлива, соответствует реальным условиям использования топлива в двигателях [1, 3].

Объем бомбы, в которой проводят сжигание образца твердого топлива, выбирают из условия pk=const. Увеличение давления в бомбе постоянного объема за счет газоприхода от сгорания образца топлива должно быть незначительным. Используя уравнение состояния (7) и полагая, что прирост давления не превышает 1%, можно получить соотношение для определения требуемого объема бомбы (3).

Сущность изобретения поясняется чертежами:

Фиг.1 - схема экспериментальной установки для определения единичного импульса твердого топлива.

Фиг.2 - экспериментальные (точки) и расчетные (сплошная линия) значения единичного импульса в зависимости от давления.

Схема экспериментальной лабораторной установки приведена на Фиг.1 Цилиндрический образец исследуемого твердого топлива 1, забронированный по боковой поверхности 2 с помощью кварцевого (или углеродного) стакана, размещен в бомбе постоянного объема 3. На основании 4 бомбы 3 жестко закреплен емкостной датчик 5 для измерения реактивной силы оттекающих от горящей торцевой поверхности образца 1 продуктов сгорания. Электрический сигнал от датчика реактивной силы 5 через электронный преобразователь сигнала датчика в напряжение 6 и аналогово-цифровой преобразователь напряжения в цифровой код 7 поступает на регистрирующий компьютер 8. Перед проведением эксперимента бомба 3 заполняется инертным газом (азотом) из батареи баллонов 9 до заданного давления, которое регистрируется образцовым манометром 10. Выпуск продуктов сгорания образца после проведения эксперимента осуществляется через вентиль 11.

Перед проведением эксперимента образец взвешивают на аналитических весах с погрешностью ±0.01 г и измеряют его высоту hm и диаметр dm. По этим данным рассчитывают плотность топлива рот и площадь торцевой поверхности Sm. При заданном давлении pk образец воспламеняется с помощью нагретой спирали и в процессе его горения измеряют реактивную силу F с помощью датчика 5 и время сгорания образца τ по диаграммам давления pk(t), измеренным с помощью тензометрического датчика давления типа ЛХ-412 (спираль и датчик давления на схеме не показаны).

Измерение единичного импульса проведено для модельной композиции смесевого твердого топлива, содержащего 81 мас.% мелкодисперсного перхлората аммония, 14 мас.% горючего-связующего марки НТРВ, 1.5 мас.% нанопорошка алюминия марки ALEX [7], 1.5 мас.% Fe2O3 и 2 мас.% технологических добавок. Исследовали образцы топлива диаметром dm=10 мм и высотой hm=20 мм, масса каждого образца (без бронировки) составляла 2.5 г, плотность топлива ρm=1.60 г/см3.

Результаты определения единичного импульса для трех значений pk, осредненные по пяти дублирующим опытам, представлены на Фиг.2. Здесь же приведены результаты термодинамического расчета J1 по программе "Астра-4" (сплошная линия).

Анализ полученных данных показывает, что расчетные значения J1 на (10÷15)% превышают измеренные. Это связано, по-видимому, с тем, что расчетные данные соответствуют полностью завершенным химическим реакциям. При проведении эксперимента время реагирования газофазных продуктов в бронирующей трубке ограничено, что является более близким приближением к условиям горения топлива в камере сгорания ракетного двигателя, чем в термодинамических расчетах.

Таким образом, экспериментально показано, что при реализации заявляемого способа достигнутый положительный эффект заключается в следующем.

1. Способ позволяет определять единичный импульс топлив, содержащих новые компоненты с неизученными свойствами. Для таких составов полный термодинамический расчет не обеспечивает приемлемой точности. Кроме того, при реализации заявляемого способа реакции в газовой фазе происходят в течение конечного промежутка времени (в отличие от термодинамического расчета), который соответствует времени пребывания газообразных продуктов сгорания топлива в двигателе.

2. Определение единичного импульса проводится в условиях лабораторных испытаний с использованием минимальной массы образца топлива (0.5÷10 г), что особенно важно при исследовании компонентов топлива, имеющихся в ограниченном количестве (новые синтезированные вещества).

3. В отличие от известных способов экспериментального измерения J1, данный способ не требует дорогостоящего громоздкого оборудования и специальных взрывозащитных стендов для испытания модельных ракетных двигателей массой (0.2÷0.5) кг и более.

ЛИТЕРАТУРА

1. Соркин Р.Е. Газотермодинамика ракетных двигателей на твердом топливе. - М.: Наука, 1967. - 368 с.

2. Синярев Г.Б., Ватолин Н.А., Трусов Б.Г., Мисеев Г.К. Применение ЭВМ для термодинамических расчетов металлургических процессов. - М.: Наука, 1982. - 263 с.

3. Зельдович Я.Б., Ривин М.А., Франк-Каменецкий Д.А. Импульс реактивной силы пороховых ракет. - М.: Оборонгиз, 1963. - 191 с.

4. Рогулин В.В., Гергель В.Г., Лях Ю.А., Оглих В.В. О методах определения полного импульса тяги РДТТ специального назначения импульсного типа // Космическая техника. Ракетное вооружение: Сборник научно-технических статей. - Днепропетровск: ГП "КБ "Южное", 2009, Вып.2. - С.80-91.

5. Бескровный И.Б., Рогулин В.В., Микуляк М.В., Лях Ю.А., Льняной В.Н. Выбор стендовых устройств для испытаний импульсных РДТТ // Космическая техника. Ракетное вооружение: Сборник научно-технических статей. - Днепропетровск: ГП "КБ "Южное", 2010. - С.63-70.

6. Симоненко В.Н., Зарко В.Е. Реактивная сила продуктов сгорания как мера нестационарной скорости горения пороха // Физика горения и взрыва. 1981. Т.17, №3. - С.129-132.

7. Архипов В.А., Бондарчук С.С., Коротких А.Г., Лернер М.И. Технология получения и дисперсные характеристики нанопорошков алюминия // Горный журнал. Спец. выпуск. Цветные металлы. 2006, №4. - С.58-64.

Способ определения единичного импульса твердого топлива, включающий измерение реактивной силы продуктов газификации при сжигании образца твердого топлива, бронированного по боковой поверхности, отличающийся тем, что измеряют реактивную силу и время полного сгорания образца твердого топлива, помещенного в бомбу постоянного объема, при давлении в диапазоне (0,5÷15)МПа, создаваемом инертным газом, например азотом или аргоном, причем объем бомбы и масса образца находятся в соотношении а величину единичного импульса определяют по формуле где V - объем бомбы;R=8,31441 Дж/(моль·К) - универсальная газовая постоянная;Т - температура окружающей среды;m, ρ, h, S - масса, плотность, высота и площадь торцевой поверхности горения образца топлива;М - молекулярная масса инертного газа;p - минимальное давление из исследуемого диапазона;J - единичный импульс твердого топлива;τ - время сгорания образца;F- реактивная сила оттекающих продуктов сгорания;p - давление в бомбе постоянного объема;k - показатель адиабаты продуктов сгорания топлива;р - наружное (атмосферное) давление.
СПОСОБ ОПРЕДЕЛЕНИЯ ЕДИНИЧНОГО ИМПУЛЬСА ТВЕРДОГО ТОПЛИВА
СПОСОБ ОПРЕДЕЛЕНИЯ ЕДИНИЧНОГО ИМПУЛЬСА ТВЕРДОГО ТОПЛИВА
СПОСОБ ОПРЕДЕЛЕНИЯ ЕДИНИЧНОГО ИМПУЛЬСА ТВЕРДОГО ТОПЛИВА
СПОСОБ ОПРЕДЕЛЕНИЯ ЕДИНИЧНОГО ИМПУЛЬСА ТВЕРДОГО ТОПЛИВА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 72.
10.03.2014
№216.012.a8f1

Способ распыления расплавленных металлов

Изобретение относится к области порошковой металлургии, в частности к способам получения порошков распылением расплавленных металлов газовым потоком. Распыление проводят путем диспергирования расплава металла подаваемым через кольцевое сопло внешним потоком сжатого газа, концентричным струе...
Тип: Изобретение
Номер охранного документа: 0002508964
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.acf9

Способ испытаний электронных плат на механические воздействия

Изобретение относится к измерительной технике и может использоваться для проведения испытаний на устойчивость электронных плат (ЭП) и их компонентов к механическим воздействиям, например, в космической промышленности. Сущность: осуществляют закрепление платы в оснастке, приложение к ней...
Тип: Изобретение
Номер охранного документа: 0002509996
Дата охранного документа: 20.03.2014
20.04.2014
№216.012.bb14

Композиция для фотоактивированного травления пленок диоксида кремния

Изобретение может быть использовано при производстве интегральных микросхем и других электронных устройств, использующих планарную технологию их изготовления, основанную на фотолитографических процессах. Композиция для фотоактивированного травления пленок диоксида кремния включает полимерную...
Тип: Изобретение
Номер охранного документа: 0002513620
Дата охранного документа: 20.04.2014
27.04.2014
№216.012.bf05

Способ стабилизации транскрипции хлоропластных генов рапса в условиях хлоридного засоления

Изобретение относится к области биотехнологии и сельского хозяйства. В способе растения обрабатывают раствором биологически активного вещества, в качестве которого используют 24-эпибрассинолид. При этом через 3 недели культивирования растений рапса на жидкой питательной среде последующие две...
Тип: Изобретение
Номер охранного документа: 0002514641
Дата охранного документа: 27.04.2014
20.05.2014
№216.012.c32f

Способ повышения устойчивости растений рапса к хлоридному засолению

Изобретение относится к сельскому хозяйству. Согласно предложенному способу перед посевом в почву с засоленностью 50-250 мМ NaCl семена рапса однократно замачивают в растворе концентрацией брассинолида 10-10М, или концентрацией эпибрассинолида 10-10М, или концентрацией гомобрассинолида 10-10М....
Тип: Изобретение
Номер охранного документа: 0002515726
Дата охранного документа: 20.05.2014
20.06.2014
№216.012.d279

Способ получения клеточной суспензионной культуры трансгенного табака nicotiana tabacum l., содержащего ген uida

Изобретение относится к области генной инженерии и биотехнологии. Изобретение представляет собой способ получения клеточной суспензионной культуры трансгенного табака N. tabacum L., содержащей ген uidA, включающий получение эксплантов, индукцию каллусогенеза и последующее субкультивирование....
Тип: Изобретение
Номер охранного документа: 0002519652
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d826

Способ определения максимального размера и концентрации субмикронных аэрозольных частиц

Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам
Тип: Изобретение
Номер охранного документа: 0002521112
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.dd9d

Способ повышения устойчивости растений рапса к интенсивному хлоридному засолению

Изобретение относится к биотехнологии и может быть использовано в сельском хозяйстве при химической защите растений от неблагоприятных факторов. Растения рапса в течение трех недель культивируют на питательной среде Хогланда-Снейдера. Далее растения подвергают засолению хлоридом натрия при...
Тип: Изобретение
Номер охранного документа: 0002522519
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de38

Способ газовой центробежной классификации и измельчения порошков

Изобретение относится к области порошковой технологии и может быть использовано в металлургической, машиностроительной, химической и других отраслях промышленности, связанных с переработкой порошкообразных материалов, особенно порошков с размерами частиц меньше 100 мкм, склонных к слипанию и...
Тип: Изобретение
Номер охранного документа: 0002522674
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.debb

Способ определения смачиваемости мелкодисперсных порошков

Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Целью изобретения является разработка более точного способа определения смачиваемости порошков. Сущность изобретения заключается в том, что в кювете с прозрачными плоско-параллельными...
Тип: Изобретение
Номер охранного документа: 0002522805
Дата охранного документа: 20.07.2014
Показаны записи 21-30 из 109.
20.04.2014
№216.012.bb14

Композиция для фотоактивированного травления пленок диоксида кремния

Изобретение может быть использовано при производстве интегральных микросхем и других электронных устройств, использующих планарную технологию их изготовления, основанную на фотолитографических процессах. Композиция для фотоактивированного травления пленок диоксида кремния включает полимерную...
Тип: Изобретение
Номер охранного документа: 0002513620
Дата охранного документа: 20.04.2014
27.04.2014
№216.012.bf05

Способ стабилизации транскрипции хлоропластных генов рапса в условиях хлоридного засоления

Изобретение относится к области биотехнологии и сельского хозяйства. В способе растения обрабатывают раствором биологически активного вещества, в качестве которого используют 24-эпибрассинолид. При этом через 3 недели культивирования растений рапса на жидкой питательной среде последующие две...
Тип: Изобретение
Номер охранного документа: 0002514641
Дата охранного документа: 27.04.2014
20.05.2014
№216.012.c32f

Способ повышения устойчивости растений рапса к хлоридному засолению

Изобретение относится к сельскому хозяйству. Согласно предложенному способу перед посевом в почву с засоленностью 50-250 мМ NaCl семена рапса однократно замачивают в растворе концентрацией брассинолида 10-10М, или концентрацией эпибрассинолида 10-10М, или концентрацией гомобрассинолида 10-10М....
Тип: Изобретение
Номер охранного документа: 0002515726
Дата охранного документа: 20.05.2014
20.06.2014
№216.012.d279

Способ получения клеточной суспензионной культуры трансгенного табака nicotiana tabacum l., содержащего ген uida

Изобретение относится к области генной инженерии и биотехнологии. Изобретение представляет собой способ получения клеточной суспензионной культуры трансгенного табака N. tabacum L., содержащей ген uidA, включающий получение эксплантов, индукцию каллусогенеза и последующее субкультивирование....
Тип: Изобретение
Номер охранного документа: 0002519652
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d826

Способ определения максимального размера и концентрации субмикронных аэрозольных частиц

Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам
Тип: Изобретение
Номер охранного документа: 0002521112
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.dd9d

Способ повышения устойчивости растений рапса к интенсивному хлоридному засолению

Изобретение относится к биотехнологии и может быть использовано в сельском хозяйстве при химической защите растений от неблагоприятных факторов. Растения рапса в течение трех недель культивируют на питательной среде Хогланда-Снейдера. Далее растения подвергают засолению хлоридом натрия при...
Тип: Изобретение
Номер охранного документа: 0002522519
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de38

Способ газовой центробежной классификации и измельчения порошков

Изобретение относится к области порошковой технологии и может быть использовано в металлургической, машиностроительной, химической и других отраслях промышленности, связанных с переработкой порошкообразных материалов, особенно порошков с размерами частиц меньше 100 мкм, склонных к слипанию и...
Тип: Изобретение
Номер охранного документа: 0002522674
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.debb

Способ определения смачиваемости мелкодисперсных порошков

Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Целью изобретения является разработка более точного способа определения смачиваемости порошков. Сущность изобретения заключается в том, что в кювете с прозрачными плоско-параллельными...
Тип: Изобретение
Номер охранного документа: 0002522805
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df43

Устройство для подключения к магнитотерапевтическому прибору нескольких индуктивных катушек

Изобретение относится к электротехнике. Конкретно - к устройствам, предназначенным для соединения нескольких индуктивных катушек с общим источником переменного тока, и может использоваться для подключения нескольких катушек к магнитотерапевтическому прибору, имеющему одно выходное гнездо....
Тип: Изобретение
Номер охранного документа: 0002522941
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dffb

Способ нитрования 2-метилимидазола

Изобретение относится к способу получения 2-метил-4(5)-нитроимидазола, включающему нитрование 2-метилимидазола азотнокислым натрием в присутствии серной кислоты при нагревании, охлаждение с последующей нейтрализацией реакционной смеси и выделением целевого продукта, отличающемуся тем, что...
Тип: Изобретение
Номер охранного документа: 0002523125
Дата охранного документа: 20.07.2014
+ добавить свой РИД