×
20.09.2013
216.012.6d12

Результат интеллектуальной деятельности: ДЕТЕКТОР ИЗЛУЧЕНИЙ И СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТЕКТОРА ИЗЛУЧЕНИЙ

Вид РИД

Изобретение

№ охранного документа
0002493573
Дата охранного документа
20.09.2013
Аннотация: Изобретение относится к детектору излучений и способу изготовления детектора излучений. Детектор излучений (10), содержащий массив пикселей (1), в котором каждый пиксель (1) содержит конверсионный слой из полупроводникового материала (4) для преобразования падающего излучения в электрические сигналы и в котором каждый пиксель (1) окружен канавкой (3), которая, по меньшей мере, частично заполнена барьерным материалом, который поглощает, по меньшей мере, часть фотонов, генерируемых падающим излучением, причем коэффициент заполнения канавки (3) барьерным материалом программируемо изменяется поперек детектора (10). Технический результат - снижение перекрестных наводок между детекторами излучений и пикселями каждого детектора излучений. 4 н. и 7 з.п. ф-лы, 3 ил.

Область техники, к которой относится изобретение

Изобретение относится к детектору излучений и способу изготовления детектора излучений. Кроме того, оно относится к детектору рентгеновского излучения и системе формирования изображения, содержащей такой детектор излучений.

Уровень техники

Детекторы излучений, обладающие массивом элементов изображения, применяют, например, в системе формирования изображения в компьютерной томографии, для обеспечения достаточно точного измерения излучения, падающего на детектор, после того, как он был удален со сканируемого объекта. Использование легкого в изготовлении полупроводникового материала, такого как кремний, для детектора излучений обладает преимуществом с точки зрения, например, затрат, по сравнению, например, с Cd(Zn)Te в качестве сенсорного материала. Хотя Cd(Zn)Te обладает намного более высокой тормозящей способностью, чем кремний, и демонстрирует намного меньшее комптоновское рассеяние, что приводит к межпиксельным перекрестным наводкам, Cd(Zn)Te проявляет значительную K-флуоресценцию, которая ухудшает разрешение по энергии и может также вызвать межпиксельные перекрестные наводки. Кроме того, Cd(Zn)Te - это дорогостоящий материал, сложный в изготовлении при больших размерах, и, из-за его ломкости, имеет ограничения по толщине слоя. Напротив, K-флуоресценция в детекторах излучений на основе полупроводникового материала, такого как кремний, ничтожно мала. Тогда как кремний является практически прозрачным для верхних энергетических уровней рентгеновского излучения (примерно 100 кэВ), фотонная энергия на уровне 35 кэВ хорошо поглощается. Однако, для средней фотонной энергии есть высокая вероятность существования комптоновского рассеяния, которое изменяет направление фотона, а также его энергию, что приводит к усилению пространственных и спектральных перекрестных наводок между соседними и даже удаленными пикселями. Также, в противоположность Cd(Zn)Te, полупроводниковые детекторы излучений могут быть выгодными с точки зрения продвинутой и широко известной полупроводниковой технологии, повседневно используемой в промышленности.

Один существенный недостаток такого полупроводникового детектора излучений состоит в величине перекрестных наводок между пикселями, в основном из-за комптоновского рассеяния, что снижает качество изображения. Так дело обстоит для любого соответствующего размера в пикселях, поскольку фотоны, подвергнутые комптоновскому рассеянию, преодолевают большие расстояния в кремнии, вплоть до уровня сантиметров, и поэтому легко вызывают пространственные перекрестные наводки между пикселями, которые не являются смежными.

В JP59064587 раскрыт детектор излучений для снижения перекрестных наводок между соседними детекторами излучений, вызванных радиоактивными лучами, рассеивающимися на детекторах излучений в рентгеновском блоке CT (Computed Tomography, компьютерной томографии). Полупроводниковые детекторы излучений фиксируют пики выходных сигналов на панели коллиматора, изготовленной из металла с высокой способностью к торможению радиоактивных лучей. Панель коллиматора, при ослаблении эффекта рассеяния радиоактивных лучей между соседними детекторами излучений, функционирует как отрицательный электрод, который сильно снижает перекрестные наводки между соседними детекторами излучений, вызванные рассеянными радиоактивными лучами. Недостаток этого детектора излучений состоит в том, что перекрестные наводки снижаются лишь между соседними детекторами излучений, а не между пикселями каждого детектора излучений. Кроме того, для этого требуется усложненный процесс изготовления, в котором детекторы излучений крепятся на панели коллиматора, который снижает перекрестные наводки между детекторами излучений.

В WO 2008/004547 A1 раскрыта фотодиодная матрица, имеющая множество каналов детектирования света для пропускания света, подлежащего обнаружению при проникновении на детектор, сформированных на структуре n-типа, которая содержит полупроводниковый слой n-типа. Фотодиодная матрица снабжена полупроводниковым слоем p-типа, сформированным на полупроводниковом слое n-типа на подложке, а между каналами обнаружения света сформирована изоляционная секция n-типа. Полупроводниковый слой p-типа задает конфигурацию p-n-перехода на межфазной границе с подложкой и соответствует каналам обнаружения света, причем полупроводниковый слой p-типа имеет множество усилительных областей для лавинообразного усиления тока носителей заряда, генерируемых за счет вхождения света, подлежащего обнаружению. Изоляционные области сформированы таким образом, чтобы каждая усилительная область полупроводникового слоя p-типа соответствовала каждому каналу обнаружения.

Сущность изобретения

Целью настоящего изобретения является обеспечение детектора излучений, в котором перекрестные наводки снижаются не только между различными детекторами, но также и между различными пикселями каждого детектора излучений, изготовление которого можно легко сделать неотъемлемой частью действующего процесса изготовления. Изобретение задано независимыми пунктами формулы изобретения. Предпочтительные варианты воплощения заданы зависимыми пунктами формулы изобретения.

Данная цель достигается обеспечением канавки в полупроводниковом материале, где данная канавка окружает каждый пиксель и, по меньшей мере, частично заполнена защитным материалом, который поглощает, по меньшей мере, часть фотонов, генерируемых падающим излучением. Таким образом, канавка, окружающая каждый пиксель, обладает таким свойством, что она способна поглощать часть излучения, генерируемого фотонами, что, таким образом, снижает перекрестное рассеяние падающего излучения между пикселями. Таким образом, степень перекрестных наводок излучения, которое попадает из пикселя в соседний пиксель, снижается. Кроме того, создание канавки может быть составной частью простого пути в стандартной технологии полупроводниковых приборов для изготовления детектора излучений согласно изобретению. Например, технология КМОП (комплементарного металло-оксидного полупроводника) для изготовления детектора излучений согласно изобретению предусматривает простое и дешевое изготовление детектора излучений согласно изобретению, в котором изготовление канавки является составной частью в простом способе. Является предпочтительным, чтобы полупроводниковый материал содержал кремний, который для такой стандартной и дешевой технологии изготовления является приемлемым. Согласно изобретению, коэффициент заполнения канавок барьерным материалом программируемо изменяется поперек детектора. Таким путем достигается то, что первая часть канавки имеет такой фактор заполнения или объем заполнения барьерным материалом, который отличен от коэффициента заполнения объема второй части канавки. Например, первая часть канавки окружает пиксель, а вторая часть канавки окружает подпиксель или кластер подпикселей. Это обстоятельство успешно обеспечивает проведение оптимизации между материалом, используемым для заполнения, размером канавки и итоговым качеством технологии заполнения.

В варианте воплощения детектор излучений согласно изобретению, каждый пиксель содержит массив подпикселей, а каждый подпиксель окружен канавкой. Это дополнительно снижает степень перекрестных наводок в детекторе излучений. В другом варианте воплощения кластер смежных подпикселей окружен канавкой. Это предусматривает оптимизацию размера полезной площади подпикселей и снижение перекрестных наводок, поскольку канавка занимает площадь, которая снижает активную площадь пикселей и подпикселей, но, с другой стороны, снижает перекрестные наводки. Это, например, предусматривает повышенное покрытие полезной площади массива подпикселей при приемлемых затратах на некоторые пространственные перекрестные наводки между подпикселями массива.

В варианте воплощения детектора излучений согласно изобретению, барьерный материал содержит материал, который не проявляет K-флюоресценцию выше уровня энергии 35 кэВ. Таким образом, нежелательные эффекты перекрестных наводок могут быть минимизированы.

В варианте воплощения детектора излучений согласно изобретению, барьерный материал представляет собой материал со средним атомным номером Z. Это предусмотрено для эффективного поглощения фотонов в канавке, которое генерируется падающим излучением. Предпочтительными материалами для барьерного материала являются молибден, серебро или вольфрам.

В варианте воплощения детектора излучений согласно изобретению, канавка имеет глубину в конверсионном слое в диапазоне 20-600 мкм. Это предусматривает такую глубину канавки, которая соответствует такой максимальной глубине, при которой фотоны проникают в слой проводящего материала, минимизируя, таким образом, перекрестные наводки.

Цель также достигается с помощью способа изготовления детектора излучений согласно изобретению, в котором канавка обеспечена в подложке полупроводникового материала, после которой поверхности канавки покрыты слоем изоляции. Затем, на подложке изготавливают массив пикселей таким образом, чтобы каждый пиксель был окружен канавкой. Наконец, канавку, по меньшей мере, частично заполняют барьерным материалом, который поглощает, по меньшей мере, часть фотонов, генерируемым падающим излучением. Этапы, которые требуются для обеспечения канавки и, по меньшей мере, частичного заполнения канавки, включает в себя все этапы обработки, которые могут быть объединены в стандартной технологии изготовления полупроводников, что, таким образом, приводит к простому и дешевому изготовлению детектора излучений согласно изобретению.

Создание канавки в подложке можно осуществить, например, с помощью глубокого реактивного ионного травления (Deep Reactive Ion Etching, DRIE), при котором форма или геометрия канавки в основном вертикальная. В качестве альтернативы, можно использовать технологии влажного травления для создания канавки в подложке. Эти различные технологии травления можно применять для регулирования формы канавки для достижения оптимального заполнения канавки барьерным материалом.

Согласно изобретению, этап, по меньшей мере, частичного заполнения канавки включает в себя этап селективного размещения барьерного материала в канавке с помощью дозирующего устройства. Таким образом, барьерный материал можно последовательно наносить на внутреннюю поверхность канавки. Например, струйное печатающее устройство вводит материал внутрь канавки. Это пример простого способа нанесения барьерного материала в канавки. Кроме того, это предусматривает селективное заполнение части канавок различными объемами барьерного материала. Например, первую часть канавки можно заполнять при объемах заполнения барьерным материалом, отличным от второй части канавки.

В качестве примера, в способе согласно изобретению в качестве барьерного материала можно применять металлический порошок, введенный в эпоксидный клей. Эпоксидный клей можно успешно использовать одновременно и в качестве клея для прикрепления другого устройства, например, поверх канавки, например, антирассеивающей решетки.

В другом варианте воплощения способа согласно изобретению, этап, по меньшей мере, частичного заполнения канавки включает в себя нанесение маскирующего слоя, который содержит отверстия для тех частей канавки, которые должны быть заполнены, по меньшей мере, частично. Это делается с учетом введения барьерного материала в канавку по всей подложке в ходе одной технологической операции.

Задача также достигается с помощью детектора рентгеновского излучения, содержащего детектор излучений согласно изобретению, и системы формирования изображения, в частности, рентгеновской системы формирования изображения, системы формирования изображения на основе компьютерной томографии (CT, Computed Tomography), позитронно-эмиссионной томографии (PET, positron emission tomography), однофотонной эмиссионной компьютерной томографии (SPECT, single-photon emission computed tomography) или радионуклидной системы формирования изображения, содержащей детектор рентгеновского излучения согласно изобретению.

Детектор излучения согласно настоящему изобретению может служить для количественного и/или качественного обнаружения электромагнитного излучения, в частности, рентгеновского излучения или γ-излучения.

Детектор излучения будет, как правило, иметь дополнительные компоненты, такие как оптические затворы, антирассеивающие решетки, электронные цепи, кожухи, и т. п., которые не были точно указаны, поскольку они очевидны для специалистов в данной области техники, причем эти компоненты обычно устанавливают таким образом, чтобы это было нужным лишь для облучения фотонами детектора по конкретному направлению входа по отношению к детектору.

Краткое описание чертежей

Фиг.1 показывает схематически вид сверху части детектора излучений согласно изобретению;

Фиг.2a-c схематически иллюстрируют способ изготовления детектора излучений согласно изобретению, показывая поперечные разрезы части детектора излучений; и

Фиг.3 схематически иллюстрирует детектор излучений согласно изобретению, показывая поперечные разрезы части детектора излучений.

Одинаковые номера ссылок на Фигурах относятся к идентичным или сходным компонентам.

Подробное описание вариантов воплощения

Считается, что «спектральная компьютерная томография» обладает потенциалом революционизирования настоящих систем компьютерной томографии таким образом, чтобы можно было использовать спектральную информацию, содержащуюся в полихроматическом рентгеновском пучке, генерированном рентгеновской трубкой и проходящем через сканируемый объект, для обеспечения новой информации, важной для диагностики. Эффективная технология для системы формирования изображений на основе спектральной компьютерной томографии представляет собой детектор, который может обеспечить достаточно точную оценку энергетического спектра фотонов, соударяющихся с детектором позади сканируемого объекта. Поскольку в целях реконструкции изображения детектор также подвергают воздействию прямого пучка, скорости счета излучения фотонов, воспринимаемые пикселем детектора как прямой пучок, огромны (приблизительно 109 фотонов на мм2 в секунду, т.е. 1000 мегагерц на мм2). Однако, ожидается, что считывающие электронные устройства смогут справляться не более чем с 10 МГц. Для ограничения скорости считывания излучения, можно разделить сенсорную часть детектора (в которой рентгеновские фотоны взаимодействуют с ней и генерируют импульс заряда, который в дальнейшем оценивается считывающим устройством) на мелкие подпиксели (например, 300×300 мкм), а также на несколько различных сенсорных слоев (трехмерных подструктур), в которых каждый подпиксель в сенсорном слое имеет свой собственный электронный канал с разрешением по энергии, с подканалами для каждого энергетического уровня.

В качестве сенсорного материала для спектральной компьютерной томографии, интерес представляет теллурид кадмия и цинка (Cadmium zinc telluride, CZT, или CdZnTe), или CdTe, из-за их относительно высокой тормозящей способностью относительно рентгеновского излучения (толщина CZT примерно 3 мм считается достаточной для полной замены используемого в настоящее время сцинтиллятора с графической операционной системой). Однако, эта высокая тормозящая способность до некоторой степени также является недостатком: для ограничения максимальной скорости счета подпикселя в сенсорном слое примерно до 10 МГц таким образом, чтобы обслуживающий считывание канал электронного устройства лишь изредка фиксировал наложение импульсов, первые сенсорные слои (с пикселями размером 300x300 мкм) должны обладать толщиной значительно ниже 100 мкм. Вызывает сомнения, можно ли изготавливать эти тонкие слои CZT в связи с ломкостью CZT. В дополнение, из-за много меньшего формата изображения, определяемого как толщина, деленная на «поперечное расширение», преимущества мелкопиксельного эффекта в таких очень тонких слоях, толщиной ниже 100 мкм.

Обращаясь к вышеописанным проблемам, материал с низкой тормозящей способностью, такой как кремний, предлагается в качестве сенсорного материала для спектральной компьютерной томографии, возможно в сочетании с CZT или CdTe, которые также используют в режиме подсчета, или даже со слоем с графической операционной системой (GOS, graphic operating system), интегрирующим энергию. Из-за низкого атомного номера кремния, Z=14, затухание рентгеновского излучения много меньше, чем в случае CZT или CdTe. Следовательно, толщина верхнего слоя многослойного детектора, изготовленного из Si в считывающем детекторе, с разрешением по энергии, для достижения скоростей счета, не превышающих 10 МГц, составляет примерно 1,7 мм. Толщина конверсионных слоев, находящихся ниже верхнего слоя, может даже последовательно повышаться от слоя к слою. Следовательно, можно легко изготовить детектор спектральной компьютерной томографии, состоящий из нескольких слоев Si, используемого в качестве материала для прямой конверсии. Дополнительные преимущества Si состоят в том, что он намного дешевле, чем CZT, намного проще для изготовления (потенциально даже в стандартном КМОП-производстве), и в нем почти отсутствуют перекрестные наводки K-флуоресценции, поскольку энергия K-края составляет менее 2 кэВ, а выход по флуоресценции (т.е., мера того, как часто возникают взаимодействия с K-флуоресценцией) составляет лишь 4,1%.

Фиг.1 показывает вид сверху части детектора излучений 10, обладающего массивом 2×3 пикселей 1 и массивом 3×3 подпикселей 2 для каждого пикселя 1. Фотоны, генерируемые в пикселях 1 и подпикселях 2, обнаруживаются считывающим электронным устройством (не показано), соединенным с пикселями 1 и подпикселями 2. В этом случае канавка 3 окружает каждый пиксель 1 и каждый подпиксель 2. Канавка 3 обеспечена в подложке 4 (не показана), на которой также обеспечены пиксели 1 и подпиксели 2. Канавку 3 заполняют барьерным материалом, который снижает количество перекрестных наводок между пикселями 1 и между подпикселями 2 за счет поглощения части фотонов, генерируемых излучением, падающим на детектор излучений 10. Наиболее эффективный барьерный материал обладает средним z-числом. Например, пригодным барьерным материалом являются молибден, серебро или вольфрам. Материалы с высокими z-числами менее пригодны, если их K-край лежит выше или в пределах энергетического интервала 35-70 кэВ, в котором в основном возникают перекрестные наводки; в этом случае, барьерный материал может страдать от K-флуоресценции и снижать эффективность поглощения до уровня ниже K-края.

Фиг.2a-c иллюстрируют способ изготовления детектора излучений 10 согласно изобретению, и показывают поперечные разрезы части детектора излучений 10. В подложке 4, в данном примере содержащей кремний, канавки 3 сформированы путем нанесения, в данном случае, способом травления DRIE («Deep Reactive Ion Etching», глубокого реактивного ионного травления), которое приводит к созданию относительно прямых и вертикальных стенок для канавок 3, как показано на Фиг.2a. Например, оксидный маскирующий слой можно наносить для определения области, в которой формируются канавки 3. Является предпочтительным, чтобы глубина канавок 3 находилась в диапазоне 20-600 мкм, в зависимости от толщины подложки 4 и от максимальной глубины, которой рентгеновские фотоны достигают внутри подложки 4, вызывая перекрестные наводки. Ширина или размер канавок 3, определяющая расстояние между соседними пикселями 1 и подпикселями 2, находится, например, в диапазоне 50-300 мкм, в зависимости от размера пикселей 1 и подпикселей 2.

Затем, пиксели 1 создают посередине канавок 3, например, посредством стандартной КМОП-технологии, как показано на Фиг.2b. Кроме того, стенки и дно канавок обеспечены изоляционным слоем 6. Этот технологический этап можно выполнить путем выполнения этапа формирования любого хорошо известного изоляционного слоя, такого как термическое окисление или пассивация. Этот этап формирования изоляционного слоя 6 можно выполнить до, в ходе или после этапа изготовления пикселей 1. Затем, канавки 3 заполняют подходящим барьерным материалом, как показано на Фиг.2c. Изоляционный слой 6 предусматривает, по меньшей мере, электрическую изоляцию между барьерным материалом, который находится в канавках 3, и подложкой 4, пикселями 1 и подпикселями 2. Заполнение канавок 3 можно осуществить полностью или частично. Путем выполнения подходящей технологии, можно даже изготавливать детекторы излучений 10, в которых коэффициент заполнения канавок 3 барьерным материалом изменяется поперек всего детектора излучений. Например, канавки 3, окружающие пиксель 1, заполняют до объема, отличного от канавок 3, которые окружают подпиксель. Подходящая технология представляет собой, например, струйную печать, при которой канавки 3 заполняются последовательным образом. Таким путем можно селективно расположить барьерный материал в канавках 3 и запрограммировать или отрегулировать коэффициент заполнения канавок 3 как функцию местоположения части канавки 3 на подложке 4. Другой подходящей технологией является, например, трафаретная печать, при которой наносят маскирующий слой, в котором созданы отверстия в местоположениях, где части канавок 3 должны быть заполнены, по меньшей мере, частично. После этого можно выполнить другой этап заполнения, или (не обязательно) можно нанести второй маскирующий слой для заполнения оставшихся частей канавок 3 и для повышения коэффициента заполнения канавок 3, которые уже были заполнены, по меньшей мере, частично на предыдущем этапе создания маскирующего слоя.

Например, в качестве барьерного материала можно наносить металлический порошок, внедренный в эпоксидный клей. Размер зерна металлического порошка и эпоксидную смолу можно оптимизировать, в зависимости от глубины канавок 3 для достижения оптимального заполнения канавок 3.

Дополнительно, эпоксидную смолу также используют в качестве клея для прикрепления, например, ASG («Anti Scatter Grid», «антирассеивающей решетки») поверх детектора 10, что приводит к достижению оптимизированного температурного коэффициента, подходящего как для детектора излучений 10, так и для ASG.

Технологический этап предварительного отжига и этап очистки передней стороны полупроводниковой пластины можно успешно выполнять перед этапом окончательной термообработки, при котором происходит отверждение барьерного материала.

Можно применять и другие технологии, которые приводят к образованию канавок 3 с геометрическими формами, отличными от геометрических форм канавок, полученных при применении травления DRIE. Например, можно применять технологию влажного травления, с использованием KOH в качестве травителя, которая является более быстрой технологией травления, чем сухое травление, и которая приводит к образованию менее прямых, но более наклонных стенок для канавок 3, как показано на Фиг.3.

Поверх, по меньшей мере, частично заполненных канавок 3 может быть обеспечен слой отражающего материала, предотвращающего попадание излучения в барьерный материал.

Детектор излучений согласно изобретению не ограничен подавлением перекрестных наводок при компьютерной томографии, при наличии подсчета рентгеновских фотонов с разрешением по энергии, но он также является благоприятным для подавления перекрестных наводок в кремниевых детекторах, содержащих пиксели.

Наконец, следует отметить, что в настоящем изобретении применение термина «содержащий» не исключает других элементов или этапов. Использование грамматической формы единственного числа не исключает множественного, при этом один процессор может выполнять функции нескольких средств. Изобретению присущ каждый и любой всевозможный новый отличительный признак, и каждое и любое сочетание этих отличительных признаков. Кроме того, ссылочные обозначения в формуле изобретения не следует рассматривать как ограничивающие его объем.


ДЕТЕКТОР ИЗЛУЧЕНИЙ И СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТЕКТОРА ИЗЛУЧЕНИЙ
ДЕТЕКТОР ИЗЛУЧЕНИЙ И СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТЕКТОРА ИЗЛУЧЕНИЙ
ДЕТЕКТОР ИЗЛУЧЕНИЙ И СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТЕКТОРА ИЗЛУЧЕНИЙ
ДЕТЕКТОР ИЗЛУЧЕНИЙ И СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТЕКТОРА ИЗЛУЧЕНИЙ
ДЕТЕКТОР ИЗЛУЧЕНИЙ И СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТЕКТОРА ИЗЛУЧЕНИЙ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 20.
10.11.2015
№216.013.8bf5

Детектор излучения с направляющими электродами

Изобретение относится к детектору излучения и соответствующему способу детектирования излучения. Детектор (100-400) излучения содержит элемент-преобразователь (110) для преобразования падающего излучения (X) в электрические сигналы; периодический или квазипериодический массив анодов (130-430),...
Тип: Изобретение
Номер охранного документа: 0002567436
Дата охранного документа: 10.11.2015
27.03.2016
№216.014.c94f

Пиксель детектора со счетом фотонов, который имеет анод, содержащий два или более поочередно выбираемых и раздельных под-анода

Изобретение относится к системе визуализации и более конкретно к детектору со счетом фотонов с разрешением по энергии. Система визуализации содержит источник излучения, испускающий излучение, проходящее через область исследования, и детекторную матрицу с множеством пикселей детектора со счетом...
Тип: Изобретение
Номер охранного документа: 0002578252
Дата охранного документа: 27.03.2016
27.02.2016
№216.014.ce2d

Рентгеновский детектор прямого преобразования

Изобретение относится к детектору для обнаружения высокоэнергетического излучения. Детектор (100) излучения содержит преобразовательный элемент (102) для преобразования падающего высокоэнергетического излучения (X) в зарядовые сигналы, катод (101) и решетку (104) анодов (103), расположенные на...
Тип: Изобретение
Номер охранного документа: 0002575941
Дата охранного документа: 27.02.2016
20.02.2016
№216.014.ce89

Формирование спектральных изображений

Изобретение относится к формированию спектральных изображений и находит особое применение в спектральной компьютерной томографии (CT). Техническим результатом является увеличение спектрального разрешения без использования специализированных технических средств и повышения сложности системы...
Тип: Изобретение
Номер охранного документа: 0002575392
Дата охранного документа: 20.02.2016
20.04.2016
№216.015.352c

Устройство обнаружения для обнаружения фотонов, испускаемых источником излучения

Изобретение относится к устройству обнаружения для обнаружения фотонов, испускаемых источником излучения. Блок генерирования сигналов генерирует сигнал обнаружения, указывающий энергию обнаруженного фотона, при попадании фотонов на устройство обнаружения, и сигнал базового уровня, который...
Тип: Изобретение
Номер охранного документа: 0002581720
Дата охранного документа: 20.04.2016
20.08.2016
№216.015.4bc3

Детектор для подсчета фотонов

Изобретение относится к детектору для подсчета фотонов и описывается с частным применением к компьютерной томографии (CT). Система получения изображений содержит детекторную матрицу с пикселями детектора прямого преобразования, которая обнаруживает излучение, пересекающее область исследования...
Тип: Изобретение
Номер охранного документа: 0002594602
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.5b43

Система формирования рентгеновского изображения с детектором, содержащим пиксели

Изобретение относится к области рентгенотехники. Система (100) формирования изображения для генерации рентгеновских изображений содержит по меньшей мере один источник рентгеновских лучей, предпочтительно решетку источников (101а-101d) рентгеновских лучей и детектор (103) рентгеновских лучей с...
Тип: Изобретение
Номер охранного документа: 0002589720
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7413

Детектор рентгеновского излучения

Использование: для детектирования рентгеновского излучения. Сущность изобретения заключается в том, что детектор рентгеновского излучения содержит блок датчиков для определения падающего рентгеновского излучения, содержащий определенное число сенсорных элементов, счетный канал в расчете на...
Тип: Изобретение
Номер охранного документа: 0002597655
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8fd2

Чувствительное к излучению детекторное устройство с отклоняющими заряд зазорами между сегментами

Изобретение в целом относится к системам формирования изображения. Детекторное устройство для детектирования излучения содержит преобразующий слой, множество собирающих заряд электродов, множество внешних направляющих электродов, при этом детекторное устройство предназначено для приложения к...
Тип: Изобретение
Номер охранного документа: 0002605523
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b99f

Фильтрация мультифокального рентгеновского излучения

Изобретение относится к средствам фильтрации рентгеновского излучения. Для генерации многоэнергетического рентгеновского излучения разработана рентгеновская трубка (10) для генерации многоэнергетического рентгеновского излучения, содержащая анод (12) и фильтрующий блок (14). Анод имеет по...
Тип: Изобретение
Номер охранного документа: 0002615151
Дата охранного документа: 04.04.2017
Показаны записи 101-110 из 1 333.
10.08.2013
№216.012.5e13

Микроэлектронное сенсорное устройство сенсора для детектирования целевых частиц

Изобретение относится к микроэлектронному сенсорному устройству для исследования целевых частиц (1), которые связаны с местами (3) связывания на поверхности (12) связывания носителя (11). Входной пучок (L1) света передается на носитель (11), где имеет место фрустрированное полное внутреннее...
Тип: Изобретение
Номер охранного документа: 0002489704
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5e39

Осветительное устройство

Осветительное устройство содержит множество источников света, обеспечивающих свет на разных длинах волн и средство коллимации. Средство коллимации имеет приемный конец и выходной конец, в котором источники света размещены на приемном конце. Средство коллимации содержит первый набор фильтров,...
Тип: Изобретение
Номер охранного документа: 0002489742
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5e4d

Детектор рентгеновского излучения для формирования фазово-контрастных изображений

Изобретение относится к детектору рентгеновского излучения. Заявленное изобретение содержит матрицу чувствительных элементов и по меньшей мере две решетки анализатора, расположенные с разной фазой и/или периодичностью перед двумя разными чувствительными элементами. Предпочтительно,...
Тип: Изобретение
Номер охранного документа: 0002489762
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5e5a

Светоизлучающее устройство бокового действия с преобразованием длины волны

Светоизлучающее устройство бокового действия, содержащее подложку (101), отражатель (102), пространственно удаленный от упомянутой подложки (101) и проходящий вдоль длины упомянутой подложки, и, по меньшей мере, один светоизлучающий диод (103), установленный на упомянутой подложке и обращенный...
Тип: Изобретение
Номер охранного документа: 0002489775
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.5f00

Эпилятор, имеющий приводимый массажирующий элемент

Изобретение относится к эпилятору. Задачей изобретения является обеспечение эпилятора, имеющего снижающий боль элемент, который является приводимым очень компактным приводным механизмом. Эпилятор содержит эпиляционную головку, имеющую по меньшей мере один вращающийся дискообразный элемент;...
Тип: Изобретение
Номер охранного документа: 0002489952
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.5f04

Набор изделий, которые являются пригодными для использования в процессе приготовления напитка

Изобретение относится к набору изделий, которые являются пригодными для использования в процессе приготовления напитка путем пропускания текучей среды через экстракт для напитка. Набор изделий содержит устройство для приготовления напитка, имеющее варочное пространство для по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002489956
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.624f

Беспроводное наблюдение за пациентом с использованием потоковой передачи медицинских данных с помощью связанного с телом соединения

Изобретение относится к области беспроводного наблюдения за пациентом, а именно к беспроводному наблюдению за пациентом с помощью медицинского датчика сверхмалой мощности, прикрепленного к телу пациента. Техническим результатом является безопасность и надежность беспроводного наблюдения за...
Тип: Изобретение
Номер охранного документа: 0002490799
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6260

Модульное осветительное устройство

Изобретение относится к осветительным системам для систем отображения проекционного типа и, в частности, к модульному осветительному устройству, содержащему источник света, который излучает свет первого цвета, и пикселированный оптический элемент, который предназначен для приема излучаемого...
Тип: Изобретение
Номер охранного документа: 0002490816
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6261

Устройство вывода автостереоскопического изображения

Изобретение относится к устройствам отображения стереоскопического изображения. Техническим результатом является возможность использовать устройство трехмерных изображений как в горизонтальном, так и в вертикальном режимах при сохранении хорошего распределения представлений и структуры пикселей...
Тип: Изобретение
Номер охранного документа: 0002490817
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6271

Безопасное стартерное устройство

Изобретение относится к области электротехники. Стартерное устройство для газоразрядной лампы содержит последовательную цепь из: пускового переключателя (5) с тлеющим разрядом; по меньшей мере, одного резистивного элемента (9); термически управляемого переключающего элемента (8). Термически...
Тип: Изобретение
Номер охранного документа: 0002490833
Дата охранного документа: 20.08.2013
+ добавить свой РИД