×
20.09.2013
216.012.6d07

Результат интеллектуальной деятельности: СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ И ОЦЕНКИ ИНДИКАЦИИ ВИХРЕВЫХ ТОКОВ, В ЧАСТНОСТИ ТРЕЩИН, В ИСПЫТЫВАЕМОМ ОБЪЕКТЕ ИЗ ЭЛЕКТРОПРОВОДНОГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002493562
Дата охранного документа
20.09.2013
Аннотация: Изобретение относится к способу определения и оценки трещин в испытываемом объекте из электропроводного материала. Способ включает: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей на участке (10) поверхности испытываемого объекта, обеспечение сигналов вихревых токов, причем каждый сигнал вихревых токов соответствует измерительному пути, преобразование (14) сигналов вихревых токов и предоставление преобразованных измеренных величин как функции измерительного пути, частоты (f) и положения (s) вдоль измерительного пути, интерпретация (16) преобразованных измеренных величин с применением преобразованных измеренных величин, по меньшей мере, одного соседнего измерительного пути, и предоставление сигналов трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам. Технический результат заключается в повышении различительной способности определения трещин. 16 з.п. ф-лы, 3 ил.

Изобретение относится к способу для определения и оценки индикации вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала.

При многочисленных испытаниях материалов требуются неразрушающие методы. Например, поверхности деталей из металла часто подвергаются воздействию окружающей среды, которая обуславливает коррозию, окисление, диффузию и другие процессы старения. Механические напряжения также вызывают трещины на поверхности детали.

Это относится, в частности, к рабочим и направляющим лопаткам газовой турбины, которые из-за механических и термических нагрузок особенно подвержены трещинообразованию на своей поверхности. Чтобы иметь возможность с регулярными интервалами проверять текущее состояние таких турбин, требуются неразрушающие методы контроля.

С применением принципа вихревых токов могут реализовываться подходящие методы неразрушающего контроля. При этом на испытываемый объект воздействует электромагнитное переменное поле с регулируемой частотой. За счет этого в испытываемом объекте индуцируются вихревые токи. Созданное вихревыми токами электромагнитное поле или его индуцированное напряжение определяется. При этом может определяться амплитуда и фазовое положение индуцированного напряжения.

Чтобы иметь возможность определять наличие трещин в поверхности детали, может применяться способ вихревых токов. Также глубина трещин может в принципе определяться способом вихревых токов. Однако не известно, каким образом можно проводить различие между простыми трещинами и несколькими очень близко расположенными соседними трещинами.

Задачей изобретения является создание улучшенного способа для определения и оценки одной или более индикаций вихревых токов, в особенности трещин, в электропроводной детали, который обеспечивает возможность надежного различения между отдельной трещиной и несколькими соседними трещинами.

Эта задача решается совокупностью признаков пункта 1 формулы изобретения.

Соответствующий изобретению способ для определения и оценки индикаций вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала включает в себя следующие этапы:

- нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой,

- определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей на участке поверхности испытываемого объекта,

- обеспечение сигналов вихревых токов, причем каждый сигнал вихревых токов соответствует измерительному пути,

- преобразование сигналов вихревых токов и предоставление преобразованных измеренных величин как функции измерительного пути, частоты и положения вдоль измерительного пути,

- интерпретация преобразованных измеренных величин с применением преобразованных измеренных величин, по меньшей мере, одного соседнего измерительного пути, и

- предоставление синтезированных сигналов трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам.

Идея изобретения состоит в том, что поверхность или участок поверхности испытываемого объекта сканируется вдоль параллельных измерительных путей. Тем самым осуществляется эффективное сканирование поверхности или участка поверхности испытываемого объекта. При этом определяются индуцированные в испытываемом объекте вихревые токи. Полученные измеренные данные связываются с измеренными данными соседних измерительных путей. Таким способом можно полученные измеренные данные измерительного пути корректировать с учетом измеренных данных соседних измерительных путей. Также можно многозначные измеренные данные одного измерительного пути однозначно интерпретировать с учетом измеренных данных соседних измерительных путей.

Предпочтительным образом определяется напряжение, индуцированное вихревыми токами. При этом может определяться амплитуда и фаза напряжения, индуцированного вихревыми токами. Трещины в испытываемом объекте приводят к локально измененным электрическим свойствам, например, меньшей электропроводности, чем у испытываемого объекта. Таким путем оказывается воздействие на индуцированное напряжение, и обнаруживаются трещины.

Интерпретация преобразованных измеренных величин осуществляется предпочтительно на основе предварительно определенного алгоритма оценки.

Например, алгоритм оценки базируется на эмпирически определенном наборе правил. Для этого, в частности, можно проводить опорные измерения на образцах испытываемого объекта с известными свойствами и отсюда устанавливать калибровочные функции.

В качестве альтернативы или дополнительно алгоритм оценки может базироваться на самообучающемся способе, в частности, с применением нейронной сети.

С точки зрения техники измерений, для определения вихревых токов применяется многоканальный датчик, причем каждый канал ставится в соответствие измерительному пути. С помощью многоканального датчика возможно множество измерений одновременно.

В особенности, параллельные измерительные пути могут сканироваться одновременно.

В качестве альтернативы этому, для определения вихревых токов может применяться одиночный датчик, причем параллельные измерительные пути сканируются последовательно друг за другом.

Например, испытываемый объект нагружается электромагнитным переменным полем с несколькими дискретными частотами. Так как определенные свойства электрического переменного поля зависят от частоты, можно тем самым получить дополнительную информацию об испытываемом объекте.

Также испытываемый объект может нагружаться электромагнитным переменным полем с непрерывным частотным спектром. Также частотный спектр имеет характеристическую структуру и позволяет сделать выводы относительно физических свойств испытываемого объекта.

Главным образом, применяются синтезированные сигналы трещин для определения геометрических свойств одной или более трещин.

В частности, предусмотрено, что синтезированные сигналы трещин применяются для определения глубины одной или нескольких трещин. Глубина трещин во многих случаях является решающей для принятия решения, следует ли испытываемый объект заменять или ремонтировать.

Кроме того, сигналы вихревых токов могут применяться для определения электрической проводимости. Также из электрической проводимости можно получить косвенные информации о геометрической структуре трещин.

В предпочтительной форме выполнения изобретения применяются механические направляющие средства, чтобы установить движение датчика вихревых токов вдоль измерительной дорожки на участке поверхности испытываемого объекта. За счет этого, способ является воспроизводимым. В частности, при применении одиночного датчика механическая направляющая является предпочтительной для обеспечения определенных интервалов путей. Могут проводиться опорные измерения, чтобы, например, определять алгоритм оценки или калибровочные кривые.

Для этого предпочтительным образом механические направляющие средства были согласованы или согласовываются с геометрической формой испытываемого объекта.

В частности, предусмотрен способ для определения и оценки трещин на и/или в зоне поверхности испытываемого объекта. Поверхность испытываемого объекта в процессе работы особенно подвергается действию механических и химических нагрузок.

Наконец, предусмотрено, что способ для определения и оценки трещин может использоваться под поверхностью испытываемого объекта в зоне измерений электромагнитного переменного поля. Также трещины под поверхностью испытываемого объекта оказывают влияние на его электрические свойства и, тем самым, вихревые токи.

Другие признаки, преимущества и особые формы выполнения изобретения раскрыты в подчиненных пунктах.

В последующем описании чертежей способ, соответствующий изобретению, более подробно описан на примере предпочтительных форм выполнения и со ссылками на чертежи, на которых показано:

Фиг.1 - схематичный вид определения и оценки сигналов вихревых токов согласно предпочтительной форме выполнения способа, соответствующего изобретению,

Фиг.2 - схематичное примерное графическое представление преобразованных измеренных сигналов после преобразования сигнала согласно предпочтительной форме выполнения способа, соответствующего изобретению, перед применением алгоритма оценивания, и

Фиг.3 - схематичное примерное графическое представление синтезированных сигналов трещин после логического связывания согласно предпочтительной форме выполнения способа, соответствующего изобретению, после применения алгоритма оценивания.

На фиг.1 показан схематичный вид определения и оценки сигналов х1, х2, х3, х4 и х5 вихревых токов на участке 10 поверхности испытываемого объекта согласно предпочтительной форме выполнения способа, соответствующего изобретению. Сканирование участка 10 поверхности испытываемого объекта осуществляется с помощью датчика 12 вихревых токов.

Испытываемый объект подвергается действию электромагнитного переменного поля с регулируемой частотой f. Может быть предусмотрена одна или несколько определенных частот f. Также может применяться непрерывный частотный спектр с предварительно определенными граничными частотами. Посредством электромагнитного переменного поля в испытываемом объекте индуцируются вихревые токи. Выработанное вихревыми токами электромагнитное поле или его индуцированное напряжение определяется датчиком 12 вихревых токов.

Датчик 12 вихревых токов может быть выполнен как одноканальный датчик или как многоканальный датчик. В этой конкретной форме выполнения датчик 12 вихревых токов выполнен как многоканальный датчик и включает в себя пять каналов cn, cn+1, cn+2, cn+3 и cn+4. За счет перемещения датчика 12 вихревых токов вдоль направления перемещения каждому отдельному датчику ставится в соответствие измерительный путь. Измерительные пути являются параллельными друг другу на участке 10 поверхности. Также каждый из каналов cn, cn+1, cn+2, cn+3 и cn+4 соответствует измерительному пути.

При альтернативном применении одноканального датчика, с помощью одного и того же датчика сканируются друг за другом параллельно проходящие измерительные пути на участке 10 поверхности.

Сигналы х1, х2, х3, х4 и х5 вихревых токов отдельных каналов cn, cn+1, cn+2, cn+3 и

cn+4 обрабатываются в блоке преобразования 14 сигналов и затем обрабатываются в блоке логического связывания 16.

Прежде всего, сигналы х1, х2, х3, х4 и х5 вихревых токов отдельных каналов cn, cn+1, cn+2, cn+3 и cn+4 подвергаются обработке 14 сигналов. При обработке 14 сигналов для каждого канала cn, cn+1, cn+2, cn+3 и cn+4 вырабатываются преобразованные измеренные величины u1, u2, u3, u4 и u5. Преобразованные измеренные величины u1, u2, u3, u4 и u5 являются функциями каналов cn, cn+1, cn+2, cn+3 и cn+4 частоты f и измерительной позиции s. Измерительная позиция s определяет точку на соответствующем измерительном пути.

Обработка 14 сигналов х1, х2, х3, х4 и х5 вихревых токов осуществляется для каждого канала cn, cn+1, cn+2, cn+3 и cn+4 и для каждой частоты f.

В последующем блоке логического связывания 16 преобразованные измеренные величины u1, u2, u3, u4 и u5 интерпретируются по предварительно определенным критериям.

При этом для каждой измерительной позиции s значение одной или более выбранных преобразованных измеренных величин u1, u2, u3, u4 и u5 сравнивается с соответствующими величинами соседних позиций. Помимо этого, значение выбранных преобразованных измеренных величин u1, u2, u3, u4 и u5 может сравниваться с соответствующими величинами соседних позиций для различных частот f.

Путем применения алгоритма оценивания на основе эмпирически определенного набора правил или посредством самообучающегося набора при этом вырабатываются синтезированные сигналы v1, v2, v3, v4 и v5 трещин. Синтезированные сигналы v1, v2, v3, v4 и v5 трещин скорректированы в соответствии с исследуемым путем cn и амплитудой. Скорректированные таким образом сигналы v1, v2, v3, v4 и v5 трещин улучшают вывод относительно положения и числа трещин и могут применяться для определения глубины трещины.

Посредством сканирования участка 10 поверхности испытываемого объекта вырабатывается линейное представление или плоскостное представление сигналов х1, х2, х3, х4 и х5 вихревых токов. Сигналы х1, х2, х3, х4 и х5 вихревых токов являются, таким образом, функцией позиции s вдоль измерительного пути или позиции на участке 10 поверхности.

Предусмотрено механическое направляющее устройство, чтобы датчик 12 вихревых токов перемещать вдоль предварительно определенного измерительного пути воспроизводимым образом.

Применение нескольких частот f обеспечивает дополнительную информацию о свойствах трещины, так как многие электромагнитные параметры зависят от частоты. Испытываемый объект может одновременно или последовательно нагружаться различными частотами f.

На фиг.2 схематично показано примерное графическое представление преобразованных измеренных величин u1, u2, u3, u4 и u5 после преобразования 12 сигналов и перед логическим связыванием 16, согласно предпочтительному варианту осуществления соответствующего изобретению способа. Преобразованные измеренные величины u1, u2, u3, u4 и u5 получаются из соответствующих сигналов х1, х2, х3, х4 и х5 вихревых токов.

Преобразование 14 сигналов для сигналов х1, х2, х3, х4 и х5 вихревых токов осуществляется для каждого канала cn, cn+1, cn+2, cn+3 и

cn+4 и для каждой частоты f отдельно. При преобразовании 14 сигналов для каждого канала cn, cn+1, cn+2, cn+3 и cn+4 вырабатываются соответствующие преобразованные измеренные величины u1, u2, u3, u4 и u5. Получаемые в результате преобразованные измеренные величины u1, u2, u3, u4 и u5 являются функциями канала cn, cn+1, cn+2, cn+3 и cn+4, частоты f и измерительной позиции s.

На фиг.3 показано схематичное примерное графическое представление синтезированных сигналов v1, v2, v3, v4 и v5 трещин после логического связывания 16 согласно предпочтительной форме выполнения способа, соответствующего изобретению. Синтезированные сигналы v1, v2, v3, v4 и v5 трещин получаются из преобразованных измеренных величин u1, u2, u3, u4 и u5. При определении синтезированного сигнала v3 трещины применяется соответствующая преобразованная измеренная величина u3 и, по меньшей мере, также соседние преобразованные измеренные величины u2 и u4. Оценивание соседних преобразованных измеренных величин u1 и u5 приводит к результату одиночного сигнала, позиционированного между каналами.

Соответствующий изобретению способ является особенно эффективным методом для того, чтобы как установить, так и оценить трещины на поверхности испытываемого объекта. Помимо этого, могут определяться дополнительные геометрические свойства трещин за счет того, что устанавливается, имеет ли место единственная трещина, или две или более рядом расположенных трещин.


СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ И ОЦЕНКИ ИНДИКАЦИИ ВИХРЕВЫХ ТОКОВ, В ЧАСТНОСТИ ТРЕЩИН, В ИСПЫТЫВАЕМОМ ОБЪЕКТЕ ИЗ ЭЛЕКТРОПРОВОДНОГО МАТЕРИАЛА
СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ И ОЦЕНКИ ИНДИКАЦИИ ВИХРЕВЫХ ТОКОВ, В ЧАСТНОСТИ ТРЕЩИН, В ИСПЫТЫВАЕМОМ ОБЪЕКТЕ ИЗ ЭЛЕКТРОПРОВОДНОГО МАТЕРИАЛА
СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ И ОЦЕНКИ ИНДИКАЦИИ ВИХРЕВЫХ ТОКОВ, В ЧАСТНОСТИ ТРЕЩИН, В ИСПЫТЫВАЕМОМ ОБЪЕКТЕ ИЗ ЭЛЕКТРОПРОВОДНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 1 071-1 080 из 1 427.
15.10.2018
№218.016.927b

Импульс нулевого тока с постоянной крутизной тока для прерывания постоянного тока

Изобретение относится к устройству для формирования импульса (1) нулевого тока для генерации перехода через нуль тока в электрическом компоненте (3), через который протекает постоянный ток (2), в частности вакуумной переключающей лампе, причем устройство содержит электрический накопитель (4)...
Тип: Изобретение
Номер охранного документа: 0002669573
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9288

Турбинный регулировочный блок с регулятором термической нагрузки в качестве основного регулятора

Изобретение относится к турбинному регулировочному блоку (1) для регулировки турбины (6, 8, 10), в частности для регулировки запуска турбины (6, 8, 10), осуществлённому в виде каскадного регулятора с основным регулятором (2) и с внутренним регулятором (3), причём основным регулятором является...
Тип: Изобретение
Номер охранного документа: 0002669537
Дата охранного документа: 11.10.2018
16.10.2018
№218.016.9298

Неподвижный контактный узел возникновения дуги и его заземляющий переключатель

Изобретение относится к неподвижному контактному узлу возникновения дуги, содержащему корпус, вал, неподвижный контакт возникновения дуги и пружину, при этом корпус имеет проем. Один конец неподвижного контакта возникновения дуги продолжается в проем и поворотно соединен с корпусом посредством...
Тип: Изобретение
Номер охранного документа: 0002669703
Дата охранного документа: 15.10.2018
17.10.2018
№218.016.9313

Устройство для тягового электроснабжения и способ эксплуатации устройства

Использование: в области электротехники. Технический результат – повышение надежности и безопасности тягового электроснабжения. Устройство (1) для тягового электроснабжения содержит преобразователь тока (27), предназначенный для понижения своего выходного напряжения до заданного уровня...
Тип: Изобретение
Номер охранного документа: 0002669786
Дата охранного документа: 16.10.2018
19.10.2018
№218.016.9410

Рельсовое транспортное средство

Изобретение относится к рельсовому транспортному средству. Рельсовое транспортное средство содержит по меньшей мере один блок датчиков (18.1-18.8) для измерения значения по меньшей мере одного параметра, представляющего динамическую характеристику, присущую транспортному средству и регулируемую...
Тип: Изобретение
Номер охранного документа: 0002669880
Дата охранного документа: 16.10.2018
25.10.2018
№218.016.9560

Производственный модуль для выполнения производственной функции над продуктом

Настоящее изобретение относится к производственному модулю (110, 210, 310, 411, 412, 413, 421, 422, 423, 431, 432, 433) для выполнения производственной функции над продуктом (500). Производственный модуль выполнен и настроен для связывания со вторым производственным модулем (110, 210, 310, 411,...
Тип: Изобретение
Номер охранного документа: 0002670553
Дата охранного документа: 23.10.2018
26.10.2018
№218.016.9609

Система конденсаторов

Изобретение относится к области электротехники, а именно к системе конденсаторов, включающей в себя несколько конденсаторов, которые могут быть использованы в электрическом кабеле, коаксиальном кабеле и/или мощности резонансного нагрева. Предложенная система конденсаторов такого рода выполнена...
Тип: Изобретение
Номер охранного документа: 0002670607
Дата охранного документа: 24.10.2018
26.10.2018
№218.016.967a

Измерение турбулентных потоков

Изобретение относится к области энергетики. Установка для сжигания содержит горелку (1) и соединенное с горелкой (1) по текучей среде топочное пространство (2), боковой канал (28) и подводящий канал (11), имеющий место (12) соединения для бокового канала (28), по меньшей мере один впуск (27) и...
Тип: Изобретение
Номер охранного документа: 0002670636
Дата охранного документа: 24.10.2018
26.10.2018
№218.016.967e

Зажигание пламени электроположительного металла путем перевода активного газа в состояние плазмы

Изобретение относится к способу сжигания химически активного газа с электроположительным металлом, также к устройству для осуществления этого способа. В заявленном изобретении электроположительный металл выбран из группы, включающей щелочные металлы, щелочноземельные металлы, алюминий и цинк, а...
Тип: Изобретение
Номер охранного документа: 0002670600
Дата охранного документа: 24.10.2018
26.10.2018
№218.016.96a2

Электрическая машина с жидкостным охлаждением

Изобретение относится к области электротехники, в частности к асинхронной машине, имеющей охлаждаемый ротор. Технический результат - обеспечение эффективной герметизации охлаждающей среды. Электрическая машина имеет статор, опертый с возможностью вращения ротор, имеющий вал и...
Тип: Изобретение
Номер охранного документа: 0002670601
Дата охранного документа: 24.10.2018
Показаны записи 941-943 из 943.
04.04.2018
№218.016.353f

Узел деталей работающей на текучей среде энергомашины, способ монтажа

Изобретение относится к способу монтажа и узлу (А) деталей работающей на текучей среде энергомашины (FEM), в частности турбокомпрессора (TCO), с продольной осью (X). Для особенно простого и точного монтажа предусмотрено, что узел включает в себя внутренний пучок (IB) для расположения во внешнем...
Тип: Изобретение
Номер охранного документа: 0002645835
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3602

Устройство с ходовой частью

Группа изобретений относится к системам передач для локомотивов и моторных вагонов. Экипажная часть транспортного средства (12), в частности рельсового транспортного средства содержит ходовую часть (10), тяговые двигатели и блок силового питания. Ходовая часть (10) содержит колесные пары (14.1,...
Тип: Изобретение
Номер охранного документа: 0002646203
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.3735

Инжекционное охлаждение роторных лопаток и статорных лопаток газовой турбины

Компонент турбины содержит полый элемент с аэродинамическим профилем и инжекционную трубку, расположенную внутри полого элемента. Полый элемент содержит полость, имеющую противоположные заднюю и переднюю части, образованные внутренними поверхностями соответствующих областей задней и передней...
Тип: Изобретение
Номер охранного документа: 0002646663
Дата охранного документа: 06.03.2018
+ добавить свой РИД