×
20.09.2013
216.012.6bf9

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ЭЛЕКТРОЛИЗА ВОДЫ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002493292
Дата охранного документа
20.09.2013
Аннотация: Группа изобретений относится к энергетике, и может использоваться в автономных энергоустановках. Устройство для электролиза воды содержит электролизер с пневматически изолированными полостями для водорода и кислорода, подключенный к блоку питания, который электрически связан с системой контроля параметров процесса, а также систему водоснабжения с запасом реакционной воды, включающую газоотделители водорода и кислорода, и систему охлаждения газоотделителя водорода, входная гидромагистраль которого снабжена датчиком температуры. После запуска электролизера регистрируют величину тока электролиза и в случае ее меньшего значения по сравнению с заданной величиной тока подачу реакционной воды прерывают, а после достижения заданной величины тока возобновляют подачу воды через полость для водорода электролизера с расходом, обеспечивающим постоянство температуры воды на выходе из этой полости. При падении тока возобновляют подачу реакционной воды в полость для кислорода. Изобретение повышает энергоэффективность, быстродействие и безопасность работы устройства для электролиза воды, а также позволяет снизить его зависимость от вспомогательных источников энергии и условий окружающей среды. 2 н.п. ф-лы, 2 ил.

Изобретение относится к энергетике и может использоваться в автономных энергоустановках (ЭУ), в том числе ЭУ, работающих с возобновляемыми источниками энергии (ВИЭ).

С 19-го века известны способ и устройство для электролиза воды, включающее питательную емкость и электролизер с каналами для подвода воды к электродам и для раздельного отвода электролизных газов водорода и кислорода (von Hofmann, A.W. Introduction to Modern Chemistry: Experimental and Theoretic; Embodying Twelve Lectures Delivered in the Royal College of Chemistry, London. Walton and Maberly, London, 1866., ru.wikipedia.org>wiki/Аппарат_Гофмана). Такой «аппарат Гофмана» не пригоден для электролиза с большой производительностью (когда выделяется много тепла), а использование общей питающей емкости со временем приводит к появлению взаимных примесей в электролизных газах.

Более близкими к предлагаемому решению является способ электролиза воды и устройство для его осуществления (RU 2034933 C1, МПК: C25B 1/02 (2006.01), 10.05.1995 г.), в котором применяется твердополимерный электролизер, а устройство работает методом «газ-лифт» (прототип). В обоих случаях используется анодная схема подачи реакционной воды (РВ) в электролизер, когда вода подается в кислородную полость электролизных ячеек (ЭЯ), а в водородную их полость РВ попадает через протонопроводящую мембрану ЭЯ. Устройство для электролиза воды содержит твердополимерный электролизер с пневматически изолированными полостями водорода и кислорода, подключенный к блоку питания, который электрически связан с системой контроля параметров, а также систему водоснабжения с запасом реакционной воды, включающую газоотделитель кислорода, соединенный с кислородной полостью электролизера своими входной и выходной гидромагистралями и снабженный выходной пневмомагистралью с запорным элементом, газоотделитель водорода с входной и выходной гидромагистралью, соединенный своей входной гидромагистралью с водородной полостью электролизера и снабженный выходной пневмомагистралью с запорным элементом. Способ эксплуатации устройства для электролиза воды включает запуск электролизера и последующую подачу реакционной воды через его водородную и кислородную полости методом «газ-лифт», частичное разложение воды электрическим током на водород и кислород, отделение полученных газов от оставшейся воды и выдачу их потребителю, контроль параметров процесса.

К недостаткам прототипа-устройства можно отнести:

- при большой мощности электролизера наступает перегрев электролизера, так как тепло из ЭЯ не отводится;

- при высоких давлениях, когда растворимость газов в воде растет, в питающей емкости образуется гремучая смесь.

Недостатками прототипа-способа являются:

- необходимость предварительного нагрева РВ и связанное с этим недостаточное быстродействие устройства, что затрудняет его использование с ВИЭ и затрудняет запуск при низких температурах;

- повышенные энергозатраты, также связанные с предпусковым нагревом РВ.

Задачей данного технического решения является:

- повышение быстродействия и сокращение энергозатрат;

- реализация возможности «холодного» запуска установки без вспомогательных источников энергии;

- возможность длительной работы в стационарном режиме;

- исключение возможности образования гремучей смеси в процессе работы установки при высоких давлениях.

Техническим результатом изобретения является повышение энергоэффективности, быстродействия и безопасности работы устройства для электролиза воды, снижение его зависимости от вспомогательных источников энергии и условий окружающей среды.

Технический результат достигается тем, что в устройство для электролиза воды, содержащее твердополимерный электролизер с пневматически изолированными полостями водорода и кислорода, подключенный к блоку питания, который электрически связан с системой контроля параметров, а также систему водоснабжения с запасом реакционной воды, включающую газоотделители водорода и кислорода, соединенные с соответствующими полостями электролизера своими входными и выходными гидромагистралями и снабженные пневмомагистралями с запорными элементами, введена система охлаждения газоотделителя водорода, выходная гидромагистраль которого снабжена регулятором расхода воды, подключенным к системе контроля параметров, а входная гидромагистраль - датчиком температуры, также подключенным к этой системе, при этом на выходной гидромагистрали газоотделителя кислорода установлен запорный элемент.

Технический результат достигается за счет того, что в способе эксплуатации устройства для электролиза воды, включающем запуск электролизера и последующую подачу реакционной воды через его водородную и кислородную полости методом «газ-лифт», частичное разложение воды на водород и кислород, отделение полученных газов от оставшейся воды и выдачу их потребителю, контроль параметров процесса, после запуска электролизера регистрируют величину тока электролиза и в случае ее меньшего значения по сравнению с заданной величиной тока подачу реакционной воды прерывают, а после установления заданной величины тока возобновляют подачу воды через водородную полость электролизера с расходом, обеспечивающим постоянство температуры воды на выходе из этой полости, при этом в случае падения тока возобновляют подачу реакционной воды в кислородную полость электролизера.

Суть предлагаемого способа состоит в том, что для ускорения выхода электролизера на заданный режим (а также для «холодного» запуска электролизной установки) используется тепло, генерируемое самим электролизером. Тепловая мощность последнего составляет обычно 20÷30% от потребляемой энергии, при этом она увеличивается с увеличением срока службы электролизера (то есть старый электролизер греется больше и выходить на режим будет быстрее). Это тепло и используется для разогрева ЭЯ.

При запуске электролизных установок обычно производится предварительный нагрев РВ до 40÷50°C, поскольку циркуляция через твердополимерную ЭЯ холодной воды препятствует процессу ее разложения там. Это связано с тем, что скорость реакций определяющим образом зависит от температуры реагентов.

В предлагаемом способе течения воды через ЭЯ нет, и появляется возможность для саморазогрева ячеек. Тепло, выделяющееся на поверхности их мембран при химических реакциях, не выносится наружу, а остается в пристеночном пограничном слое у поверхности мембраны. Это стимулирует ускорение самих этих реакций, что в свою очередь повышает мощность тепловыделения и температуру воды в ячейке. Таким образом, в отсутствии течения воды в ЭЯ происходит ее саморазогрев даже при относительно низких температурах окружающей среды. В частности, при испытаниях в РКК «Энергия» в 2010 г. твердополимерная установка без специальных средств теплоизоляции выходила на номинальный режим работы при температуре окружающей среды до 5÷10°C.

Длительность работы электролизера в режиме саморазогрева ограничивается двумя факторами:

- возможностью перегрева ЭЯ (рабочая температура мембраны обычно не превышает 100°C);

- ограниченным запасом воды, находящейся в ЭЯ (ее запас не пополняется, так как течения нет).

При этом следует подчеркнуть, что при анодной схеме водоснабжения (принятой и здесь, и в прототипе) вода из кислородной полости ЭЯ вместе с протонами переносится в водородную полость, где происходит выделение основной части тепла. В связи с этим в предлагаемой установке используется два циркуляционных контура в системе водоснабжения электролизера (фиг.1):

- водородный контур, служащий для выноса тепла из ЭЯ и работающий постоянно, с расходом, обеспечивающим стационарность теплового режима электролизера;

- кислородный контур, используемый для пополнения запасов воды в ЭЯ. Для предотвращения захолаживания ячеек холодной водой «проливки» кислородной полости необходимо проводить кратковременно, при падении тока электролиза (ток падает при заполнении ячеек газом, когда вода заканчивается).

Сущность изобретения поясняется чертежами.

На фиг.1 представлена схема предлагаемого устройства для электролиза воды, где обозначено: 1 - твердополимерный электролизер; 2 - водородная полость электролизера; 3 - кислородная полость электролизера; 4 - блок питания; 5 - система контроля параметров; 6 - газоотделитель кислорода; 7 - входная гидромагистраль газоотделителя кислорода; 8 - выходная гидромагистраль газоотделителя кислорода; 9 - пневмомагистраль газоотделителя кислорода; 10, 11, 19 - запорный элемент; 12 - газоотделитель водорода; 13 - входная гидромагистраль газоотделителя водорода; 14 - выходная гидромагистраль газоотделителя водорода; 15 - пневмомагистраль газоотделителя водорода; 16 - теплообменник газоотделителя водорода; 17 - регулятор расхода воды (РРВ); 18 - датчик температуры.

На фиг.2 представлено изменение основных параметров процесса электролиза (ток, давление, температура) при способе эксплуатации устройства, где обозначено:

20 - зависимость тока электролиза от времени;

21 - зависимость давления в газоотделителях (6), (12) от времени;

22 - зависимость температуры на выходе электролизера от времени.

В предлагаемой схеме электролизной установки водородная (2) и кислородная (3) полости твердополимерного электролизера (1), соединены с газоотделителем водорода (11) и газоотделителем кислорода (6) их входными гидромагистралями (13) и (7) соответственно. Газоотделители (6) и (12) снабжены соответствующими пневмомагистралями (9) и (15) с запорными элементами (10), (11). На гидромагистралях водородного газоотделителя (12) установлены:

- на входной магистрали (13) - датчик температуры (18);

- на выходной (14) - регулятор расхода воды (17).

Датчик температуры (18), и регулятор расхода воды (17) подключены к системе контроля параметров (5), которая электрически связана с блоком питания (4) электролизера (1).

Выходная гидромагистраль (8) газоотделителя кислорода (6) снабжена запорным элементом (19).

Газоотделитель водорода (12) снабжен системой охлаждения - например, теплообменником (16). В качестве системы охлаждения могут использоваться различные средства: рубашка охлаждения, обдув воздухом и др.

Работает данное устройство в соответствии с предлагаемым способом следующим образом. После запуска электролизера (1) (то есть заполнения его водой из газоотделителей (6) и (12) и включения блока питания (4)) система контроля параметров (5) регистрирует величину тока электролиза.

Если величина тока недостаточна из-за низкой температуры реакционной воды и электролизера, подачу воды в полости (2) и (3) электролизера прекращают, с помощью РРВ (17) и запорного элемента (19) на выходных магистралях (14) и (8) газоотделителей водорода (12) и кислорода (6). В отсутствие циркуляции воды начинается саморазогрев электролизера (1) вместе с находящейся в нем водой. Обусловленное повышением температуры увеличение тока электролиза регистрируется системой контроля (5). Образующиеся при этом водород и кислород из полостей электролизера (2) и (3) соответственно по входным гидромагистралям (13) и (7) поступают в газоотделители (12) и (6) вместе с небольшим количеством воды. В ходе электролиза тепло выделяется в основном в водородной полости (2) электролизера (1).

Температура водородо-водяной смеси на выходе водородной полости (2) регистрируется датчиком температуры (18) и системой контроля параметров (5), которая фиксирует также величину рабочего тока. Когда ток достигнет заданной величины, открывают РРВ (17) и устанавливают такой расход воды в гидромагистрали (14), который бы остановил дальнейший рост температуры воды на выходе из водородной полости (2) электролизера, в гидромагистрали (13).

Таким образом, тепло, выработанное электролизером (1) при работе в режиме саморазогрева, расходуется на нагрев реакционной воды (и самого электролизера) до необходимой температуры, соответствующей заданному значению тока. Избыточное тепло выносится в водородный газоотделитель (12) и удаляется через систему охлаждения (16), в результате чего реализуется стационарный тепловой режим устройства. В целом водородный контур устройства работает как его система терморегулирования, а кислородный контур является системой водоснабжения.

Нарушен такой режим работы, может быть в случае, когда заканчивается запас воды в кислородной полости (3) электролизера (1). В процессе работы эта вода частично разлагается током, а частично переносится через мембрану ЭЯ в водородную полость (2). При этом кислородная полость (3) заполняется газом и ток падает. В этом случае открывается запорный элемент (19), и запас воды в кислородной полости (3) пополняется из газоотделителя кислорода (6).

Выход водорода и кислорода из газоотделителей (6), (12) потребителю осуществляется по соответствующим пневмомагистралям (9) и (15), которые снабжены запорными элементами (10), (11).

Получены экспериментальные данные (фиг.2) при испытаниях твердополимерной электролизной установки с производительностью по водороду до 100 нл/ч (РКК «Энергия», 2010 г.). Напряжение питания электролизера, имеющего 12 электролизных ячеек, постоянно (22 B), номинальный ток электролиза - 15 A. Импульсные провалы на графике тока (зависимость тока электролиза от времени - кривая 20 на фиг.2) соответствуют временному заполнению кислородной полости электролизера газом (кислородная полость одной из ячеек обезвоживается и ток падает).


УСТРОЙСТВО ДЛЯ ЭЛЕКТРОЛИЗА ВОДЫ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОЛИЗА ВОДЫ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ
Источник поступления информации: Роспатент

Показаны записи 341-350 из 370.
09.05.2019
№219.017.4e4e

Способ управления положением солнечных батарей космического аппарата и система для его осуществления

Изобретения относятся к энергоснабжению космических аппаратов (КА). Предлагаемый способ включает разворот панелей солнечных батарей (СБ) в рабочее положение, когда нормаль к освещенной поверхности СБ совмещена с плоскостью, образуемой осью вращения СБ и направлением на Солнце. При этом...
Тип: Изобретение
Номер охранного документа: 0002325311
Дата охранного документа: 27.05.2008
09.05.2019
№219.017.5030

Релейный регулятор

Изобретение относится к автоматике и может быть использовано в резервированных системах управления различными инерционными объектами, например поворотными платформами, промышленными роботами, летательными аппаратами. Технический результат - повышение надежности. Релейный регулятор содержит...
Тип: Изобретение
Номер охранного документа: 0002441265
Дата охранного документа: 27.01.2012
09.05.2019
№219.017.506a

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора объектов наблюдения с орбитального КА включает пластину с картой земной поверхности, полупрозрачную пластину, установленную поверх карты планеты, и средство...
Тип: Изобретение
Номер охранного документа: 0002463559
Дата охранного документа: 10.10.2012
24.05.2019
№219.017.5f94

Релейный регулятор

Изобретение относится к технике автоматического управления, в частности к технике формирования управляющих сигналов. Технический результат заключается в повышении надежности. Релейный регулятор содержит в каждом из (2m+1) канале аналого-цифровой преобразователь (АЦП), запоминающее устройство...
Тип: Изобретение
Номер охранного документа: 0002342690
Дата охранного документа: 27.12.2008
24.05.2019
№219.017.5fd5

Устройство для стабилизации температуры изделия

Относится к областям электротехники, электроники и теплотехники. Устройство для стабилизации температуры изделия содержит связанные между собой цепи питания, последовательно соединенные датчик температуры, усилитель, подключенные ко второй цепи питания, и транзистор, выход которого совместно с...
Тип: Изобретение
Номер охранного документа: 0002359309
Дата охранного документа: 20.06.2009
29.05.2019
№219.017.6864

Устройство закрытия и последовательного открытия крышки

Изобретение относится к области космической техники, а именно к устройствам, обеспечивающим открытие или закрытие входа в герметичные отсеки космических аппаратов. Устройство закрытия и последовательного открытия крышки содержит установленный на крышку привод с закрепленной на крышке рукояткой,...
Тип: Изобретение
Номер охранного документа: 0002457161
Дата охранного документа: 27.07.2012
29.05.2019
№219.017.6868

Способ заправки жидким кислородом баков окислителя ракетно-космической системы (варианты)

Изобретения относятся к методам и средствам заправки-слива топлива ракетно-космической системы, применяемым на наземных стартовых комплексах. Указанная система включает в себя многоступенчатую ракету-носитель (РН) и космический разгонный блок (РБ). Бак окислителя верхней ступени РН заправляется...
Тип: Изобретение
Номер охранного документа: 0002455206
Дата охранного документа: 10.07.2012
09.06.2019
№219.017.76b9

Способ измерения объема закрытых и открытых пор пеноматериалов и устройство для его осуществления

Использование: в контрольно-измерительной технике и может найти применение в криогенной технике при отработке технологии изготовления и контроля качества нанесения криогенной тепловой изоляции из жестких ячеистых пеноматериалов, в частности жестких пенополиуретанов. Сущность: способ...
Тип: Изобретение
Номер охранного документа: 0002263893
Дата охранного документа: 10.11.2005
09.06.2019
№219.017.798d

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой от перегрузки по току. Технический результат заключается в увеличении надежности устройства за счет исключения режима стабилизации по току при любых видах и режимах...
Тип: Изобретение
Номер охранного документа: 0002397612
Дата охранного документа: 20.08.2010
09.06.2019
№219.017.7b77

Космический аппарат для спуска с орбиты искусственного спутника земли и способ его спуска с орбиты искусственного спутника земли

Изобретение относится к ракетно-космической технике. Космический аппарат (КА) содержит теплоизолированные корпус с затупленной носовой частью, стреловидное крыло, аэродинамические и газодинамические органы стабилизации и управления по каналам тангажа, крена и рысканья, в том числе...
Тип: Изобретение
Номер охранного документа: 0002334656
Дата охранного документа: 27.09.2008
Показаны записи 291-295 из 295.
10.07.2018
№218.016.6f2d

Электрохимический компрессор водорода

Изобретение относится к электрохимии, в том числе к «зеленой энергетике», и может использоваться в транспортных энергосистемах и космосе. Электрохимический компрессор водорода включает прочный корпус с входным и выходным штуцерами. Пакет электроизолированных мембранно-электродных блоков состоит...
Тип: Изобретение
Номер охранного документа: 0002660695
Дата охранного документа: 09.07.2018
05.12.2018
№218.016.a333

Способ создания реактивной тяги пилотируемого космического аппарата

Изобретение относится к ракетно-космической технике и может использоваться при разработке реактивных двигательных установок (ДУ), предназначенных для маневрирования пилотируемых космических аппаратов (КА). Способ создания реактивной тяги пилотируемого космического аппарата, включающий...
Тип: Изобретение
Номер охранного документа: 0002673920
Дата охранного документа: 03.12.2018
20.03.2019
№219.016.e33e

Способ эксплуатации пилотируемой орбитальной станции

Изобретение относится к управлению полётом и жизнеобеспечению экипажей космических аппаратов (КА), преимущественно орбитальных станций. Способ включает выделение углекислого газа из воздуха обитаемых отсеков КА путем адсорбции, а также последующую десорбцию, охлаждение (с частичным сжижением) и...
Тип: Изобретение
Номер охранного документа: 0002673215
Дата охранного документа: 22.11.2018
29.04.2019
№219.017.436a

Энергоустановка с электрохимическим генератором на основе водородно-кислородных топливных элементов и способ ее эксплуатации

Изобретение относится к энергоустановкам с электрохимическими генераторами (ЭХГ) на основе водородно-кислородных топливных элементов (ТЭ). Техническим результатом является повышение надежности включения и работоспособности ЭХГ при низких температурах окружающей среды. Согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002417487
Дата охранного документа: 27.04.2011
10.07.2019
№219.017.adb0

Автономная система энергопитания и способ ее эксплуатации

Изобретение относится к области автономных систем энергопитания (АСЭП) отдельных объектов, удаленных от линии электропередачи, а именно к АСЭП, включающим возобновляемые источники энергии в качестве внешнего источника электроэнергии, электрохимический генератор (ЭХГ), электролизер и баллоны для...
Тип: Изобретение
Номер охранного документа: 0002371813
Дата охранного документа: 27.10.2009
+ добавить свой РИД