×
20.09.2013
216.012.6a88

Результат интеллектуальной деятельности: КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ ОКСИДА УГЛЕРОДА И ВОДОРОДА В ЕГО ПРИСУТСТВИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к катализаторам получения алифатических углеводородов из оксида углерода и водорода и их использованию. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные каталитически активные частицы металлического кобальта или железа, причем он получен путем пиролиза макромолекул полиакрилонитрила (ПАН) в присутствии солей железа или кобальта в инертной атмосфере под действием ИК-излучения при температуре 300-700°C после предварительного отжига на воздухе. Описан способ получения алифатических углеводородов из оксида углерода и водорода при повышенной температуре и давлении в присутствии описанного выше катализатора. Технический результат - упрощение процесса получения катализатора и удешевление процесса. 2 н. и 3 з.п. ф-лы, 2 ил., 1 табл., 9 пр.

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии.

Смеси алифатических углеводородов, содержащих 5 и более атомов углерода (С5+), являются ценными полупродуктами для производства компонентов моторных топлив и смазочных масел, которые выделяют из этих смесей посредством дистилляции. Кроме того, твердые углеводороды (воски) находят применение в качестве составляющих сплавов для точного литья, компонентов парфюмерных и косметических композиций.

Традиционным методом получения углеводородов, в том числе и алифатических, является переработка нефти - основного природного сырья для производства этих продуктов.

Однако в последние годы все больший интерес приобретают методы получения углеводородов различных групп из альтернативного сырья - угля, природного и попутного нефтяного газа, биомассы различного происхождения. Подобные технологии известны из уровня техники и включают, как правило, две основные стадии: получение смеси оксида углерода и водорода, называемой синтез-газом, и последующая конверсия синтез-газа в углеводороды способом, известным как синтез Фишера-Тропша. Из этих стадий вторая является основной, поскольку именно она определяет выход и состав целевых продуктов.

Синтез Фишера-Тропша - каталитический процесс. Катализаторы, которые подходят для проведения этой реакции содержат, как правило, один или несколько каталитически активных переходных металлов VIII группы Периодической системы элементов. В частности, железо и кобальт хорошо известны как каталитически активные металлы для такой реакции, давно и успешно применяемые для практической реализации этого процесса.

Синтез углеводородов из оксида углерода и водорода протекает с большим выделением тепла, что может приводить к локальным перегревам катализатора и, как следствие, к потере им каталитической активности. При практической реализации процесса большое внимание уделяется разработке реакторов, способных эффективно осуществлять отвод тепла, выделяющегося при проведении реакции. Для этой цели используют аппараты с неподвижным, псевдоожиженным или суспендированным слоем катализатора (Guettel R., Kunz U., Turek T. Reactors for Fischer-Tropsch Synthesis // Chemical Engineering & Technology. 2008. V.31. №5. P.746). В реакторах с псевдоожиженным слоем применяют исключительно железные катализаторы, в реакторах с суспендированным слоем - преимущественно кобальтовые системы, а в аппаратах с неподвижным слоем - и железные и кобальтовые катализаторы.

Железные и кобальтовые катализаторы синтеза Фишера-Тропша традиционно готовят совместным осаждением активного компонента и промоторов в форме нерастворимых в воде солей или гидроксидов на порошкообразный носитель с последующим формованием гранул требуемого размера или пропиткой гранул носителя солями активного компонента и промоторов. Размер гранул катализатора синтеза Фишера-Тропша определяется условиями его эксплуатации и составляет 2-5 мм для реакторов с неподвижным слоем и 50-150 мкм для реакторов со взвешенным слоем (псевдоожиженным или суспендированным).

Вне зависимости от способа приготовления катализатора и условий его последующей эксплуатации любой катализатор синтеза Фишера-Тропша, с любым размером гранул должен быть восстановлен. Цель этой процедуры - получение реакционноспособного, нульвалентного состояния активного компонента катализатора, способного осуществлять адсорбцию реагентов (оксида углерода и водорода) на поверхности и формировать мономерный поверхностный комплекс, участвующий в полимеризационном процессе.

Условия восстановления катализатора определяются его составом и генезисом (способом приготовления, длительностью предварительной термообработки и т.д.), как это, в частности, описано в работе (Чернавский П.А. // Кинетика и катализ. 2005. Т.46. №5. С.674). Обычно восстановление катализатора осуществляют при температурах, значительно превышающих температуру синтеза (более чем на 100°C), в специальных аппаратах, обогреваемых газовыми горелками для создания температур 350-500°C, а не паром, как это организовано в реакторах, используемых для синтеза Фишера-Тропша. При этом восстановление мелких частиц катализатора, применяемого для синтеза во взвешенном слое (жидком или псевдоожиженном) проводят в псевдоожиженном слое для облегчения доступа водорода к поверхности. Это приводит к определенным трудностям управления процессом восстановления. Кроме того, при восстановлении образуется большое количество кислых водных стоков. При практической реализации процесса Фишера-Тропша это приводит к необходимости организации дорогостоящей отдельной стадии восстановления с рециклом водорода, выделением и очисткой реакционной воды. Кроме того, восстановленные катализаторы синтеза Фишера-Тропша пирофорны, то есть легко воспламеняются при соприкосновении с воздухом. Транспортировать и перегружать их можно исключительно в анаэробных условиях. Особенные трудности представляет процедура загрузки восстановленного катализатора в межтрубное пространство кожухотрубчатого аппарата для проведения синтеза Фишера-Тропша в неподвижном слое.

Исключение процедуры восстановления катализатора и использование каталитической системы, не проявляющей пирофорных свойств, при наличии в ней восстановленного металла, позволило бы существенно улучшить общую экономику процесса.

Прототипом предлагаемого изобретения является патент US 6720283, в котором описаны кобальтовые катализаторы, нанесенные на активированный уголь. Данные каталитические композиции требуют активации перед началом синтеза Фишера-Тропша при 400°C, 0,5 МПа и объемной скорости подачи водорода 1000 ч-1. При промышленной реализации данного процесса наличие стадии активации требует создание отдельного реактора для проведения восстановления.

Задача предлагаемого изобретения заключается в создании эффективного катализатора для получения углеводородных продуктов из синтез-газа (CO и H2) методом Фишера-Тропша, отличающегося наличием в его составе высокодисперсных частиц переходного металла VIII группы в нульвалентном состоянии, которые обладают пониженной активностью в отношении кислорода воздуха (не проявляют пирофорности) и не нуждается в восстановлении, а также в разработке на его основе способа получения алифатических углеводородов, преимущественно C5+ углеводородов, как наиболее ценных полупродуктов для производства компонентов моторных топлив и смазочных масел.

Поставленная задача решается тем, что предложен катализатор для получения алифатических углеводородов из оксида углерода и водорода - композиционный материал, содержащий наноразмерные частицы металлического железа или металлического кобальта, полученный пиролизом макромолекул полиакрилонитрила (ПАН) в присутствии солей железа или кобальта в инертной атмосфере под действием ИК-излучения при температуре 300-700°C после предварительного отжига на воздухе.

Поставленная задача решается также тем, что предложен способ получения алифатических углеводородов из оксида углерода и водорода в реакторе при повышенной температуре и давлении в присутствии этого катализатора.

Способ может быть осуществлен в трехфазном реакторе или реакторе со стационарным слоем катализатора.

В предлагаемом техническом решении можно использовать любые составы катализаторов, которые подходят для проведения синтеза Фишера-Тропша, содержащие каталитически активные металлы VIII группы.

Катализатор дополнительно может содержать промоторы, известные из уровня развития технологии синтеза Фишера-Тропша, такие как оксиды калия, алюминия, циркония, титана, марганца и др.

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в упрощении процесса получения углеводородов благодаря использованию катализатора, содержащего в своем составе равномерно распределенные в углеродной матрице наноразмерные частицы металлического железа или кобальта, не требующего восстановления водородом или оксидом углерода и не проявляющего пирофорных свойств.

Катализатор готовят путем пиролиза полиакрилонитрила (ПАН) в присутствии солей железа или кобальта в инертной атмосфере под действием ИК-излучения при температуре 400-700°C с использованием автоматизированной установки ИК нагрева. В результате формируется нанокомпозитный материал, в котором наноразмерные каталитически активные частицы железа или кобальта тонкодисперсно и однородно распределены в структуре углеродной матрицы, имеющей графитоподобную структуру.

Предложенное техническое решение имеет следующие преимущества:

- каталитически активные наночастицы железа и кобальта образуются "in situ" в процессе формирования нанокомпозита, а не вводятся извне;

- восстановление металлов происходит с участием водорода, выделяющегося при деструкции полимерной цепи полиакрилонитрила;

- простота аппаратурного оформления, отсутствие дорогостоящей техники высокого вакуума;

- значительное сокращение времени приготовления нанокомпозита, что обеспечивает энергосбережение, так как наиболее энергоемкая высокотемпературная стадия проходит за короткое время (10-120 с) при максимальной мощности установки 15-30 кВт.

Получение катализатора включает следующие стадии:

- приготовление раствора полиакрилонитрила (молекулярная масса 1.105) в амидных или сульфоксидных растворителях (концентрация ПАН 1-10 масс.%);

- приготовление раствора соли железа или кобальта в амидных или сульфоксидных растворителях, суммарная концентрация металлов 10-30 масс.%;

- выдерживание в термошкафу при Т=90°C для удаления растворителя;

- отжиг в ИК-камере лабораторной установки ИК-пиролиза в двухстадийном режиме, включающем:

- предварительный отжиг на воздухе последовательно при 150 и 200°С в течение 15 мин при каждой температуре, в результате которого происходит полное удаление растворителя и предварительное структурирование полиакрилонитрила с образованием системы сопряженных C=N связей;

- основной отжиг в инертной атмосфере при температуре 400-700°C в течение 10-120 с, во время которого происходит структурирование ПАН с образованием графитоподобной структуры, восстановление металлов с участием водорода, выделяющихся при деструкции полимерной цепи ПАН.

- охлаждение до комнатной температуры.

ИК-отжиг проводят в ИК-камере лабораторной установки. Источником ИК-излучения служат галогенные лампы КГ-220, установленные по наружной поверхности цилиндрического кварцевого реактора, в который помещен образец в графитовой кассете. Для обеспечения равномерного нагрева образца внутренняя поверхность камеры выполнена из нержавеющей стали.

Интенсивность ИК-излучения контролируют по температуре нагрева образца, измеряемой с помощью хромель-копелевой термопары, размещенной непосредственно под образцом. Блок управления обеспечивает подъем и снижение интенсивности ИК-излучения по заданной программе. Точность регулировки температуры составляет 0,25°C.

На фиг.1 представлены типичные микрофотографии полученных композиционных материалов. Можно видеть, что они содержат частицы металлического железа и кобальта размером 10-30 нм ((а) - Со/ПАН; (б) - Fe/ПАН).

Методом РФА подтверждено наличие в композиционных материалах частиц металлического железа и кобальта размером 10-30 нм. На фиг.2 приведено типичное распределение кристаллитов в этих материалах, рассчитанное из данных РФА. (1 - Co/ПАН; 2 - Fe/ПАН).

Композиционный материал, содержащий наноразмерные частицы железа и/или кобальта, помещают в трубчатый реактор или реактор автоклавного типа, заполненный жидкой фазой, и проводят синтез Фишера-Тропша, пропуская смесь оксида углерода и водорода, взятых в мольном отношении 1:(0,5-3), при температуре 200-350°C и давлении 1-50 атм с нагрузкой на катализатор 3-6 нл/гКат·ч.

Нижеследующие примеры иллюстрируют изобретение, но никоим образом не ограничивают область его применения.

Пример 1.

10,00 г полиакрилонитрила растворяют в 50,0 мл диметилформамида. В полученный раствор добавляют 2,96 г ацетилацетоната кобальта. Полученную смесь подвергают ультразвуковому диспергированию в течение 1 часа. С целью удаления растворителя смесь высушивают при температуре 90°C до постоянного веса в сушильном шкафу.

Полученный прекурсор подвергают ИК-излучению на воздухе по следующей схеме: 150°C, 15 мин; 200°C, 15 мин; в инертной атмосфере: 700°C, 2 мин.

Полученный таким образом катализатор содержит 10% масс. Co, распределенных в матрице углерода.

Катализатор помещают в реактор автоклавного типа, заполненный жидкой фазой («сларри»), и проводят синтез Фишера-Тропша, пропуская смесь оксида углерода и водорода, взятых в мольном отношении 1:2, при температуре 200-350°С и давлении 20 атм с нагрузкой на катализатор 4 нл/гКат·ч.

Результаты эксперимента приведены в таблице, где Тк - температура пиролиза, τ - время пиролиза, Тсин - температура синтеза (получения) алифатических углеводородов.

Пример 2.

10,00 г полиакрилонитрила растворяют в 50,0 мл диметилформамида. В полученный раствор добавляют 5,92 г ацетилацетоната кобальта. Полученную смесь подвергают ультразвуковому диспергированию в течение 1 часа. С целью удаления растворителя смесь высушивают при температуре 90°С до постоянного веса в сушильном шкафу.

Полученный прекурсор подвергают ИК-излучению на воздухе по следующей схеме: 150°C, 15 мин; 200°C, 15 мин; в инертной атмосфере: 700°C, 2 мин.

Полученный таким образом катализатор содержит 20% масс. Co, распределенных в матрице углерода.

Катализатор помещают в реактор автоклавного типа, заполненный жидкой фазой («сларри»), и проводят синтез Фишера-Тропша, пропуская смесь оксида углерода и водорода, взятых в мольном отношении 1:2, при температуре 200-350°C и давлении 20 атм с нагрузкой на катализатор 4 нл/гКат·ч.

Результаты эксперимента приведены в таблице.

Пример 3.

10,0 г полиакрилонитрила растворяют в 50,0 мл диметилформамида. В полученный раствор добавляют 5,92 г ацетилацетоната кобальта. Полученную смесь подвергают ультразвуковому диспергированию в течение 1 часа. С целью удаления растворителя смесь высушивают при температуре 90°C до постоянного веса в сушильном шкафу.

Полученный прекурсор подвергают ИК-излучению на воздухе по следующей схеме: 150°C, 15 мин; 200°C, 15 мин; в инертной атмосфере: 600°C, 2 мин.

Полученный таким образом катализатор содержит 20% масс. Co, распределенных в матрице углерода.

Катализатор помещают в реактор автоклавного типа, заполненный жидкой фазой («сларри»), и проводят синтез Фишера-Тропша, пропуская смесь оксида углерода и водорода, взятых в мольном отношении 1:2, при температуре 200-350°C и давлении 20 атм с нагрузкой на катализатор 4 нл/гКат·ч.

Результаты эксперимента приведены в таблице.

Пример 4.

10,0 г полиакрилонитрила растворяют в 50,0 мл диметилформамида. В полученный раствор добавляют 8,88 г ацетилацетоната кобальта. Полученную смесь подвергают ультразвуковому диспергированию в течение 1 часа. С целью удаления растворителя смесь высушивают при температуре 90°C до постоянного веса в сушильном шкафу.

Полученный прекурсор подвергают ИК-излучению на воздухе по следующей схеме: 150°C, 15 мин; 200°C, 15 мин; в инертной атмосфере: 600°C, 2 мин.

Полученный таким образом катализатор содержит 30% масс. Co, распределенных в матрице углерода.

Катализатор помещают в реактор автоклавного типа, заполненный жидкой фазой («сларри»), и проводят синтез Фишера-Тропша, пропуская смесь оксида углерода и водорода, взятых в мольном отношении 1:2, при температуре 200-350°C и давлении 20 атм с нагрузкой на катализатор 4 нл/гКат·ч.

Результаты эксперимента приведены в таблице.

Пример 5.

10 г полиакрилонитрила растворяют в 50 мл диметилформамида. В полученный раствор добавляют 2,74 г карбоната кобальта. Полученную смесь подвергают ультразвуковому диспергированию в течение 1 часа. С целью удаления растворителя смесь высушивают при температуре 90°C до постоянного веса в сушильном шкафу.

Полученный прекурсор подвергают ИК-излучению на воздухе по следующей схеме: 150°C, 15 мин; 200°C, 15 мин; в инертной атмосфере: 700°C, 2 мин.

Полученный таким образом катализатор содержит 20% масс. Co, распределенных в матрице углерода.

Катализатор помещают в реактор автоклавного типа, заполненный жидкой фазой («сларри»), и проводят синтез Фишера-Тропша, пропуская смесь оксида углерода и водорода, взятых в мольном отношении 1:2, при температуре 200-350°C и давлении 20 атм с нагрузкой на катализатор 4 нл/гКат·ч.

Результаты эксперимента приведены в таблице.

Пример 6.

10 г полиакрилонитрила растворяют в 50 мл диметилформамида. В полученный раствор добавляют 2,74 г карбоната кобальта. Полученную смесь подвергают ультразвуковому диспергированию в течение 1 часа. С целью удаления растворителя смесь высушивают при температуре 90°C до постоянного веса в сушильном шкафу.

Полученный прекурсор подвергают ИК-излучению на воздухе по следующей схеме: 150°C, 15 мин; 200°C, 15 мин; в инертной атмосфере: 600°C, 2 мин.

Полученный таким образом катализатор содержит 20% масс. Co, распределенных в матрице углерода.

Катализатор помещают в реактор автоклавного типа, заполненный жидкой фазой («сларри»), и проводят синтез Фишера-Тропша, пропуская смесь оксида углерода и водорода, взятых в мольном отношении 1:2, при температуре 200-350°C и давлении 20 атм с нагрузкой на катализатор 4 нл/гКат·ч.

Результаты эксперимента приведены в таблице.

Пример 7.

10 г полиакрилонитрила растворяют в 50 мл диметилформамида. В полученный раствор добавляем 2,74 г карбоната кобальта. Полученную смесь подвергают ультразвуковому диспергированию в течение 1 часа. С целью удаления растворителя смесь высушивают при температуре 90°C до постоянного веса в сушильном шкафу.

Полученный прекурсор подвергают ИК-излучению на воздухе по следующей схеме: 150°C, 15 мин; 200°C, 15 мин; в инертной атмосфере: 400°C, 2 мин.

Полученный таким образом катализатор содержит 20% масс. Co, распределенных в матрице углерода.

Катализатор помещают в реактор автоклавного типа, заполненный жидкой фазой («сларри»), и проводят синтез Фишера-Тропша, пропуская смесь оксида углерода и водорода, взятых в мольном отношении 1:2, при температуре 200-350°C и давлении 20 атм с нагрузкой на катализатор 4 нл/гКат·ч.

Результаты эксперимента приведены в таблице.

Пример 8.

10 г полиакрилонитрила растворяют в 50 мл диметилформамида. В полученный раствор добавляют 6,16 г ацетилацетоната железа. Полученную смесь подвергают ультразвуковому диспергированию в течение 1 часа. С целью удаления растворителя смесь высушивают при температуре 90°C до постоянного веса в сушильном шкафу.

Полученный прекурсор подвергают ИК-излучению на воздухе по следующей схеме: 150°C, 15 мин; 200°C, 15 мин; в инертной атмосфере: 700°C, 2 мин.

Полученный таким образом катализатор содержит 20% масс. Fe, распределенных в матрице углерода.

Катализатор помещают в трубчатый реактор и проводят синтез Фишера-Тропша в фиксированном слое катализатора, пропуская смесь оксида углерода и водорода, взятых в мольном отношении 1:1, при температуре 200-350°C и давлении 30 атм с нагрузкой на катализатор 4 нл/гКат·ч.

Результаты эксперимента приведены в таблице.

Пример 9.

10 г полиакрилонитрила растворяют в 50 мл диметилформамида. В полученный раствор добавляют 4,62 г ацетилацетоната железа. Полученную смесь подвергают ультразвуковому диспергированию в течение 1 часа. С целью удаления растворителя смесь высушивают при температуре 90°C до постоянного веса в сушильном шкафу.

Полученный прекурсор подвергают ИК-излучению на воздухе по следующей схеме: 150°C, 15 мин; 200°C, 15 мин; в инертной атмосфере: 500°C, 2 мин.

Полученный таким образом катализатор содержит 15% масс. Fe, распределенных в матрице углерода.

Катализатор помещают в трубчатый реактор и проводят синтез Фишера-Тропша в фиксированном слое катализатора, пропуская смесь оксида углерода и водорода, взятых в мольном отношении 1:1, при температуре 200-350°C и давлении 30 атм с нагрузкой на катализатор 4 нл/гКат·ч.

Результаты эксперимента приведены в таблице.

Таблица.
Результаты получения алифатических углеводородов
Состав исходной смеси для приготовления катализатора Условия ИК-пиролиза Реактор Тсин °C Конверсия CO, % Производительность, кг/кг М·ч Выход углеводородов, г/м3
Соль, г Полимер г Растворитель, мл Газ ТК, °C τ, мин C1-C4 C5+
1 2,96 Co(AcAc)2 10,0 ПАН 50,0 ДМФА Ar 700 2 Сларри 300 42 2,1 39 37
2 5,92 Co(AcAc)2 10,0 ПАН 50,0 ДМФА Ar 700 2 Сларри 290 52 1,1 45 36
3 5,92 Co(AcAc)2 10,0 ПАН 50,0 ДМФА Ar 600 2 Сларри 285 52 1,5 44 46
4 8,88 Co(AcAc)2 10,0 ПАН 50,0 ДМФА Ar 600 2 Сларри 280 65 0,6 34 65
5 2,74 CoCO3 10,0 ПАН 50,0 ДМФА Ar 700 2 Сларри 280 59 1,8 37 68
6 2,74 CoCO3 10,0 ПАН 50,0 ДМФА Ar 600 2 Сларри 285 52 1,5 43 46
7 2,74 CoCO3 10,0 ПАН 50,0 ДМФА Ar 400 2 Сларри 285 46 0,5 59 24
8 6,16 Fe(AcAc)3 10,0 ПАН 50,0 ДМФА Ar 700 2 Фикс. сл.** 300 81 0,9 48 100
9 4,62 Fe(AcAc)3 10,0 ПАН 50,0 ДМФА Ar 500 2 Фикс. сл. 300 78 1,2 37 97
10 Катализатор: 8% Co, 92% С (катализатор требует восстановления)* Фикс. сл.** 240 54 1 24 89
11 Катализатор: 8% Co, 92% С (катализатор требует восстановления)* Сларри 240 56 1 17 96
* US 6720283
** Реактор со стационарным слоем катализатора.


КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ ОКСИДА УГЛЕРОДА И ВОДОРОДА В ЕГО ПРИСУТСТВИИ
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ ОКСИДА УГЛЕРОДА И ВОДОРОДА В ЕГО ПРИСУТСТВИИ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 50.
29.12.2017
№217.015.f2f6

Электроактивный полимер, электроактивный гибридный наноматериал, гибридный электрод для суперконденсатора и способы их получения

Изобретение относится к области создания электроактивных полимеров - N-замещенных полианилинов (ПАНИ) и гибридных наноматериалов на основе этих полимеров и многостенных углеродных нанотрубок (МУНТ), которые могут быть использованы для получения высокоэффективных электродных материалов для...
Тип: Изобретение
Номер охранного документа: 0002637258
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f304

Способ алкилирования изобутана в трехфазном реакторе с неподвижным слоем катализатора

Изобретение относится к способу алкилирования изобутана в трехфазном реакторе с неподвижным слоем катализатора бутилены подают на каждый слой катализатора, а изобутан, взятый в избытке, в верхнюю часть реактора, проводят реакцию алкилирования, отделяют и возвращают на рецикл непрореагировавпшй...
Тип: Изобретение
Номер охранного документа: 0002637922
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f30e

Металлополимерный нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo и способ его получения

Изобретение может быть использовано в системах магнитной записи информации, органической электронике, медицине, при создании ионообменных материалов, компонентов электронной техники, солнечных батарей, дисплеев, перезаряжаемых батарей, сенсоров и биосенсоров. Металлополимерный нанокомпозитный...
Тип: Изобретение
Номер охранного документа: 0002637333
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.fb29

Катализатор гидропереработки нефтяных фракций (варианты)

Изобретение относится к производству катализаторов для гидропереработки нефтяных фракций, в том числе обессеривания, гидрогенизации и гидродеароматизации. Предложен катализатор гидропереработки нефтяных фракций, полученный in situ путем термического разложения в углеводородном сырье - нефтяных...
Тип: Изобретение
Номер охранного документа: 0002640210
Дата охранного документа: 27.12.2017
19.01.2018
№218.016.0797

Способ выделения концентрата ценных металлов, содержащихся в тяжелых нефтях и продуктах их переработки

Изобретение относится к способу выделения ценных металлов, содержащихся в тяжелых нефтях и продуктах их переработки. Способ включает в себя обработку тяжелого нефтяного сырья низкотемпературной плазмой, образуемой сверхвысокочастотным (СВЧ) электромагнитным излучением. Способ осуществляется...
Тип: Изобретение
Номер охранного документа: 0002631427
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.0882

Способ выделения концентрата ценных металлов из тяжелого нефтяного сырья

Изобретение относится к способу переработки тяжелых нефтяных остатков, таких как остатки атмосферно-вакуумной перегонки нефти и остаточные высококипящие фракции термо- и термогидродеструктивных процессов, для получения ценных металлов, в том числе редких и редкоземельных металлов, а также...
Тип: Изобретение
Номер охранного документа: 0002631702
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.143d

Способ переработки горючего сланца

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого...
Тип: Изобретение
Номер охранного документа: 0002634725
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1631

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo, закрепленных на одностенных углеродных нанотрубках, и способ его получения

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания...
Тип: Изобретение
Номер охранного документа: 0002635254
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.16c6

Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей,...
Тип: Изобретение
Номер охранного документа: 0002635606
Дата охранного документа: 14.11.2017
13.02.2018
№218.016.1fa7

Способ получения наноразмерного катализатора синтеза фишера-тропша и способ синтеза фишера-тропша с его применением

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего...
Тип: Изобретение
Номер охранного документа: 0002641299
Дата охранного документа: 17.01.2018
Показаны записи 51-60 из 80.
10.05.2018
№218.016.3a51

Способ получения катализатора (варианты) и способ алкилирования изобутана бутиленами в присутствии полученного катализатора (варианты)

Изобретение относится к способу производства катализаторов и может быть использовано для процесса алкилирования изопарафиновых углеводородов олефинами в нефтеперерабатывающей и нефтехимической промышленности. Для получения катализатора алкилирования изобутана олефинами на основе цеолита типа...
Тип: Изобретение
Номер охранного документа: 0002647575
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.446b

Способ получения синтетической нефти из природного или попутного нефтяного газа (варианты)

Настоящее изобретение относится вариантам способа получения синтетической нефти из природного или попутного нефтяного газа. Один из вариантом способа включает стадию синтеза оксигенатов из исходного синтез-газа, полученного из указанного сырья, в присутствии металлооксидного катализатора, с...
Тип: Изобретение
Номер охранного документа: 0002649629
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4703

Способ измерения скорости циркуляции мелкодисперсного катализатора

Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора,...
Тип: Изобретение
Номер охранного документа: 0002650623
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4c27

Способ получения суспензии катализатора гидроконверсии тяжелого нефтяного сырья

Изобретение относится к области нефтепереработки и, более конкретно, к способам приготовления наноразмерных и ультрадисперсных катализаторов без носителя для гидрогенизационной переработки высокомолекулярного углеводородного сырья, в частности высококипящих остатков переработки нефти, природных...
Тип: Изобретение
Номер охранного документа: 0002652122
Дата охранного документа: 25.04.2018
09.06.2018
№218.016.5b72

Способ получения стирола из отходов полистирола

Изобретение относится к способу получения стирола из отходов полистирола, включающему растворение отходов полистирола в органическом растворителе, введение полученного раствора в реактор и разложение полистирола в отсутствие катализатора при повышенной температуре и атмосферном давлении. Способ...
Тип: Изобретение
Номер охранного документа: 0002655925
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5f73

Способ гидрогенизационной переработки нефтяного шлама

Изобретение относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°С. Для подготовки нефтяного шлама осуществляют его контакт с...
Тип: Изобретение
Номер охранного документа: 0002656673
Дата охранного документа: 06.06.2018
09.08.2018
№218.016.79f8

Нанокомпозитный магнитный материал и способ его получения

Изобретение относится к области нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на углеродных нанотрубках. Нанокомпозитный магнитный материал включает полимер - полидифениламин-2-карбоновую кислоту (ПДФАК) и...
Тип: Изобретение
Номер охранного документа: 0002663049
Дата охранного документа: 01.08.2018
01.09.2018
№218.016.81b6

Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения

Изобретение относится к области создания новых структурированных гибридных наноматериалов на основе электроактивных полимеров с системой сопряжения и одностенных углеродных нанотрубок (ОУНТ) и может быть использовано в качестве носителей для катализаторов, в том числе в топливных элементах с...
Тип: Изобретение
Номер охранного документа: 0002665394
Дата охранного документа: 29.08.2018
01.09.2018
№218.016.8248

Способ получения металлсодержащих наноразмерных дисперсий

Настоящее изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе. Способ получения металлсодержащей...
Тип: Изобретение
Номер охранного документа: 0002665575
Дата охранного документа: 31.08.2018
15.10.2018
№218.016.9271

Способ получения дивинила

Изобретение раскрывает способ получения дивинила путем превращения кислородсодержащего органического вещества при повышенной температуре в присутствии катализатора, включающего оксид цинка ZnO, оксид калия KO, оксид магния MgO и γ-оксид алюминия γ-AlOхарактеризующийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002669561
Дата охранного документа: 12.10.2018
+ добавить свой РИД