×
10.09.2013
216.012.680c

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения монокристаллов ниобата лития с бидоменной структурой, применяемых в устройствах нанотехнологии и микромеханики. Электроды в виде системы параллельных струн накладывают на две плоскопараллельные грани кристалла, которые ориентируют под углом z+36° к полярной оси, к электродам подсоединяют проволочные платиновые контакты, собранную ячейку помещают в печь и нагревают до температуры фазового перехода - температуры Кюри под действием неоднородного электрического поля, в результате чего осуществляется формирование двух противоположно заряженных доменов равного объема с плоской междоменной границей. Изобретение позволяет перейти от традиционно применяемых пьезокерамических элементов деформации к монокристаллическим бидоменным элементам точного позиционирования на основе монокристаллов сегнетоэлектриков с высокой температурой Кюри, в которых отсутствует крип и гистерезис. 1 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к способу формирования в монокристаллах сегнетоэлектриков бидоменной структуры для использования в устройствах нанотехнологии и микромеханики, где имеется потребность осуществлять точные, с высокой повторяемостью и без остаточных деформаций, механические перемещения в микро- и нанодиапазонах. Это относится как к измерительной технике, в частности, к зондовым микроскопам, так и к функциональным устройствам, изготовленным по MEMS-технологиям.

Основным конструктивным элементом таких устройств любой модификации является электромеханическое устройство, которое преобразовывает электрическую энергию в управляемое движение т.е. микроактюатор. К перспективным методам активации следует отнести пьезоэлектрические биморфные элементы на основе бидоменных структур в монокристаллах сегнетоэлектриков. Однако в настоящее время не существует надежных методов формирования биморфной доменной структуры в сегнетоэлектрических кристаллах

Известны несколько различных способов формирования в кристаллах сегнетоэлектриков системы доменов заданных размеров и ориентировки междоменных границ [Периодически поляризованные доменные структуры за счет использования системы электродов. ФТТ. 1999 г. т.41 с.1831-1837. Шур В.Я., Румянцев Е.А., Бачко Р.Г. и др.; Surfase domain engineering in congment lithium niobate single crystals. Applied physics letters, v.81, N26, 4946-4948, 2002. A.C. Busacca, C.L. Sones, V. Apostolopoulos, R.W. Eason and S. Mailis.]. Кристаллы, поляризованные этими методами, являются полидоменными, т.е. содержат в объеме сегнетоэлектрические домены ориентированные антипараллельно. Однако для изготовления биморфных структур такие доменные образования не подходят т.к. необходимо, чтобы две грани кристалла на которые наносится управляющие электроды, были вырезаны параллельно доменной границе и имели достаточно большую площадь для получения необходимой механической энергии при упругой деформации биморфа. Предложенными способами невозможно поляризовать кристаллы толщиной более 0.2-0.5 мм и площадью более нескольких квадратных миллиметров. Кроме того, их геометрия не позволяет использовать максимальные пьезоэлектрические модули.

Наиболее близким аналогом к предлагаемому способу является способ получения монокристаллов ниобата лития с бидоменной структурой путем наложения электродов на две грани кристалла при нагреве до температуры фазового перехода - температуры Кюри под действием неоднородного электрического поля [АНТИПОВ В.В. и др., Формирование бидоменной структуры в пластинах монокристалла ниобата лития электротермическим методом, «Известия ВУЗов. Сер. Материалы электронной техники», 2008, №3, стр.18-22].

Недостатками известного способа являются невозможность создания плоскопараллельной доменной структуры в монокристаллах ниобата лития и отсутствие конкретных данных, при которых достигается получение такой структуры.

Технический результат заявленного изобретения заключается в получении монокристаллов ниобата лития с бидоменной структурой, имеющей плоскую междоменную границу, и максимальной деформацией.

Технический результат изобретения достигается способом получения монокристаллов ниобата лития с бидоменной структурой для устройств нанотехнологии и микромеханики путем наложения электродов в виде системы параллельных струн на две плоскопараллельными грани кристалла, ориентированного под углом z+36° к полярной оси, при нагреве до температуры фазового перехода - температуры Кюри под действием неоднородного электрического поля. Электроды могут быть изготовлены из палладиевой пасты и нанесены на пластины сапфира.

При подаче постоянного электрического потенциала на электроды в виде системы параллельных струн создается неоднородное электрическое поле с заданным пространственным распределением величины и направления силовых линий поля в объеме кристалла. Поляризация сегнетоэлектрика происходит благодаря тому, что при температуре фазового перехода ионы металлов, например, лития в ниобате лития, обладают высокой подвижностью, проводящей к тому, что под действием электрического поля ионы в катионной кристаллической подрешетке смещаются, а после снижения температуры состояние фиксируется. Направление смещения зависит от силовых линий электрического поля и определяет направление векторов поляризации в объеме кристалла.

Угол ориентировки граней кристаллов относительно полярных осей выбирается из условия максимального пьезомодуля для используемого сегнетоэлектрического кристалла на стадии изготовления заготовок для формирования в них биморфных структур. Это позволяет получать максимальные механические деформации «сжатие-растяжение» при приложении электрических полей.

Результирующая проекция вектора напряженности электрического поля одноименно заряженных электродов меняется по толщине кристалла, напряженность электрического ноля максимальна на полярных гранях и близка к нулю в середине кристалла, где расположена плоскость нулевого потенциала. Электроды дают возможность управлять положением доменной границы, ее формой и объемами доменов разной поляризации.

Для получения структур с одной доменной границей в пластине из ниобата лития использована система электродов, создающих неоднородное, симметричное относительно границы электрическое поле по объему кристалла. При охлаждении пластины от температуры Кюри происходит прорастание двух доменов с противоположными направлениями векторов поляризации от электродов вглубь кристалла. Направление и скорость задаются плотностью распределения и ориентацией силовых линий электрического ноля в пластине. Необходимо обеспечить зарождение и прорастание доменов по всей площади кристалла. Домены встречаются в области нулевого потенциала электрического поля и формируют в кристалле бидомен с одной границей посередине.

Кристалл с электродами помещается в печь, которая обеспечивает нагрев до температуры Кюри для данного материала, проводится необходимая выдержка кристалла под полем, что обеспечивает зарождение и прорастание доменов вглубь объема монокристалла, и затем медленное снижение до комнатной температуры. Прорастание происходит от граней кристалла во встречных направлениях вглубь кристалла. После охлаждения сегнетоэлектрический кристалл имеет две монодоменные области равного объема с противоположным направлением векторов поляризации и плоской междоменной границей. Такое заданное пространственное распределение по объему кристалла вектора поляризации формирует бидоменную структуру.

Предложенный способ позволяет управлять положением и топологией границ, изменять напряженность и конфигурацию электрического поля.

Пример проведения технологического процесса формирования биморфной структуры в монокристалле ниобата лития.

Между двумя сапфировыми пластинами (1) помещался сегнетоэлектрический кристалл ниобата лития LiNbO3 заданных геометрических размеров (2) с плоскопараллельными гранями. Перпендикуляры к этим граням не совпадают с направлением оси спонтанной поляризации кристаллов и выбираются из условия максимального пьезомодуля для выбранного сегнетоэлектрика на стадии изготовления пластин. С целью создания неоднородного электрического поля по объему кристалла па обе сапфировые пластины наносился металлический электрод (3) в виде системы параллельных струп. Напряженность электрического поля внутри электродов является суммой напряженностей электрического поля, создаваемого каждым электродом. Ширина электродов, их период и толщина зависят от геометрии кристалла и задавались в процессе изготовления.

На основе компьютерной модели расчета распределения напряженности электрического поля по толщине кристалла сегнетоэлектрика, получено теоретическое распределение поляризации в зависимости от различных условий проведения процесса формирования бидоменной структуры. В расчетах учитывается ширина электродов и расстояние между ними, число электродов, расстояние между электродами, подаваемый на электрод потенциал, смешение относительно друг друга электродов и неточность определения кристаллографических ориентировок кристалла при установке в технологической ячейке.

Вектор напряженности электрического поля меняется по толщине кристалла и напряженность поля максимальна на гранях кристалла и падает до нуля в объеме кристалла. На геометрию и положение междоменной границы оказывают влияние следующие технические характеристики: расстояние между струнами электродов, расстояние между электродами и кристаллом, неточности в сборке рабочей ячейки при формировании биморфа - совмещение друг с другом без сдвига электродов пластин, совмещение направления поляризации и электродов.

Неточности ориентировки и совмещения электродов могут приводить к искажению плоской формы междоменной границы, ее закручиванию и ухудшению эксплуатационных характеристик биморфа.

Для изготовления электродов на круглой пластине из синтетического сапфира диаметром - 76 мм и толщиной 0,5 мм наносится слой жидкой палладиевой пасты, затем пластины отжигаются при температуре 700°C для удаления органического растворителя пасты. Электродная структура создается воздействием импульсного лазерного излучения второй гармоники гранатового лазера с длиной волны 532 нм с энергией 80 мДж, которым удаляется часть проводящего палладиевого покрытия при испарении сфокусированными 10 не импульсами. Ширина полученных электродов - 0,22 мм и расстояние между ними - 0,85 мм выбирались из расчетов по описанной методике с учетом геометрических размеров кристалла и расстояния между ним и электродами (фиг.1).

Образец в виде прямоугольной пластины монокристалла ниобата лития с размерами 40 мм (срез Z+36°) на 20 мм (срез X) и толщиной 1,5 мм (с гранями перпендикулярными кристаллографическому направлению Y - 127,86°) (2), помещается между пластинами с проводящими палладиевыми электродами на сапфире (1, 3), таким образом, чтобы струны электродов были пространственно совмещены, а направление Х было перпендикулярно струнам (фиг.2). К электродам подсоединяются проволочные платиновые контакты (4), электрически связывающие между собой обе пластины с электродами, и затем собранная рабочая ячейка помещается в без градиентную печь.

Печь равномерно нагревается до температуры фазового перехода ниобата лития конгруэнтного состава - 1150°C в течение (3-3,5) часов, подается постоянное напряжение 1000 B на электроды, кристалл выдерживается 30 минут и затем под постоянным электрическим полем начинается медленное охлаждение печи до 800-850°C за 60 минут. Электрическое поле и нагрев выключаются при снижении температуры до этой температуры, что обеспечивает зарождение доменов на плоских гранях кристалла, прорастание доменных границ по объему кристалла и формирование одной доменной границы в середине пластины. Полное инерционное охлаждение печи до комнатной температуры длится 12-14 часов. Глубина прорастания доменной границ зависит, прежде всего, от времени выдержки кристалла под полем.

Исследования морфологии и визуализация полученной доменной структуры в кристалле ниобата лития методами рентгеновской дифрактометрии и атомно-силовой микроскопии подтвердили, что под действием неоднородного электрического поля при отжиге сформировалась устойчивая бидоменная структура.

Эффективность и стабильность преобразования электрического сигнала в изгибно-механические упругие деформации на экспериментальном макете с сечением доменного биморфного элемента 2×8×1 мм при консольном закреплении характеризуется следующими характеристиками: изменение деформации в интервале напряжений от 20 до 500 В/мм составляет 0,04-0,5 мкм, остаточная деформация элементов не превышает 0,3%, линейность деформации не хуже 1% в диапазоне рабочих температур от комнатной до 850°C.

Из результатов испытаний можно сделать выводы, что продольно-изгибные деформации полученных биморфных кристаллических структур характеризуются отсутствием механического гистерезиса, ползучести и остаточных деформаций в широком интервале рабочих температур при высокой линейности величин деформации биморфов от электрического сигнала.


СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ
СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ
Источник поступления информации: Роспатент

Показаны записи 221-227 из 227.
27.02.2016
№216.014.be15

Устройство для загрузки металлизованных окатышей в дуговую печь

Изобретение относится к области металлургии, а именно к устройствам для загрузки металлизованных окатышей в дуговую печь. Устройство снабжено установленным на приемной воронке фотоэлементным датчиком фиксации верхнего уровня загрузки окатышей в ней, блоком автоматического включения и отключения...
Тип: Изобретение
Номер охранного документа: 0002576213
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c236

Композиционный материал с металлической матрицей и наноразмерными упрочняющими частицами и способ его изготовления

Изобретение относится к области нанотехнологии, а именно к композиционным материалам с металлической матрицей и наноразмерными упрочняющими частицами. Задачей изобретения является повышение прочностных характеристик композиционного материала при минимизации объемной доли упрочняющих частиц. Для...
Тип: Изобретение
Номер охранного документа: 0002574534
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.ca6c

Подложка для химического осаждения из паровой фазы (cvd) алмаза и способ его получения

Изобретение относится к подложке для алмазного покрытия, наносимого методом химического осаждения из паровой фазы (CVD), способу ее формирования и электродному стержню для формирования подложки упомянутым способом. Подложка содержит основу из карбидного твердого сплава или стали и слой, который...
Тип: Изобретение
Номер охранного документа: 0002577638
Дата охранного документа: 20.03.2016
13.01.2017
№217.015.7e29

Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов, на основе соединений редкоземельных металлов и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях промышленности. В...
Тип: Изобретение
Номер охранного документа: 0002601149
Дата охранного документа: 27.10.2016
17.02.2018
№218.016.2bc3

Радиоизотопный механо-электрический генератор

Изобретение относится к радиоизотопным механо-электрическим генераторам с пьезоэлектрическим кантилевером. Устройство включает отдельно расположенный радиоизотопный источник постоянного напряжения в виде плоскопараллельного конденсатора, одна обкладка которого, закрепленная на первой...
Тип: Изобретение
Номер охранного документа: 0002643151
Дата охранного документа: 31.01.2018
19.06.2019
№219.017.8ac8

Алмазный инструмент на гальванической связке

Изобретение относится к алмазным инструментам, изготавливаемым с использованием процессов закрепления алмазных зерен на корпусе инструмента электроосаждением металлической связки, - инструментам на гальванической связке. Такими инструментами могут быть отрезные круги, трубчатые сверла,...
Тип: Изобретение
Номер охранного документа: 0002437752
Дата охранного документа: 27.12.2011
14.07.2019
№219.017.b4e6

Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент

Изобретение относится к области упрочнения режущего твердосплавного инструмента и может быть использовано в машиностроении, в частности в технологии металлообработки. Первоначально поверхность упомянутого инструмента подвергают модифицированию ионами хрома и методом ионно-плазменного...
Тип: Изобретение
Номер охранного документа: 0002468124
Дата охранного документа: 27.11.2012
Показаны записи 221-229 из 229.
27.01.2016
№216.014.bc92

Способ выплавки стали в электрических печах

Изобретение относится к металлургии, в частности к способу выплавки стали в электрической печи. Способ включает загрузку в печь шихты, содержащей стальной лом, металлизованные окатыши, шлакообразующие материалы и металлургические брикеты со степенью металлизации 65-70%. Металлургические брикеты...
Тип: Изобретение
Номер охранного документа: 0002573847
Дата охранного документа: 27.01.2016
27.01.2016
№216.014.bd06

Способ получения ионно-плазменного вакуумного-дугового керамикометаллического покрытия tin-cu для твердосплавного режущего инструмента расширенной области применения

Изобретение относится к способу получения наноструктурного керамикометаллического покрытия TiN-Cu на твердосплавном режущем инструменте и может быть использовано в металлообработке. Проводят предварительную очистку поверхности инструмента и последующее вакуумно-дуговое осаждение покрытия...
Тип: Изобретение
Номер охранного документа: 0002573845
Дата охранного документа: 27.01.2016
27.02.2016
№216.014.be15

Устройство для загрузки металлизованных окатышей в дуговую печь

Изобретение относится к области металлургии, а именно к устройствам для загрузки металлизованных окатышей в дуговую печь. Устройство снабжено установленным на приемной воронке фотоэлементным датчиком фиксации верхнего уровня загрузки окатышей в ней, блоком автоматического включения и отключения...
Тип: Изобретение
Номер охранного документа: 0002576213
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c236

Композиционный материал с металлической матрицей и наноразмерными упрочняющими частицами и способ его изготовления

Изобретение относится к области нанотехнологии, а именно к композиционным материалам с металлической матрицей и наноразмерными упрочняющими частицами. Задачей изобретения является повышение прочностных характеристик композиционного материала при минимизации объемной доли упрочняющих частиц. Для...
Тип: Изобретение
Номер охранного документа: 0002574534
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.ca6c

Подложка для химического осаждения из паровой фазы (cvd) алмаза и способ его получения

Изобретение относится к подложке для алмазного покрытия, наносимого методом химического осаждения из паровой фазы (CVD), способу ее формирования и электродному стержню для формирования подложки упомянутым способом. Подложка содержит основу из карбидного твердого сплава или стали и слой, который...
Тип: Изобретение
Номер охранного документа: 0002577638
Дата охранного документа: 20.03.2016
13.01.2017
№217.015.7e29

Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов, на основе соединений редкоземельных металлов и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях промышленности. В...
Тип: Изобретение
Номер охранного документа: 0002601149
Дата охранного документа: 27.10.2016
17.02.2018
№218.016.2bc3

Радиоизотопный механо-электрический генератор

Изобретение относится к радиоизотопным механо-электрическим генераторам с пьезоэлектрическим кантилевером. Устройство включает отдельно расположенный радиоизотопный источник постоянного напряжения в виде плоскопараллельного конденсатора, одна обкладка которого, закрепленная на первой...
Тип: Изобретение
Номер охранного документа: 0002643151
Дата охранного документа: 31.01.2018
29.05.2018
№218.016.5506

Дифрактометр

Изобретение относится к устройствам для проведения рентгенодифракционных исследований материалов. Дифрактометр содержит источник рентгеновского излучения, размещенные за ним последовательно по ходу рентгеновского луча первую щелевую диафрагму, первый гониометр, вторую щелевую диафрагму, второй...
Тип: Изобретение
Номер охранного документа: 0002654375
Дата охранного документа: 18.05.2018
09.06.2019
№219.017.77c8

Способ получения проводящих нанокомпозитных покрытий, содержащих металл в кремний-углеродной матрице

Изобретение относится к области микроэлектроники и может быть использовано для создания нанокомпозитных покрытий с заранее заданной удельной проводимостью. В вакуумной камере с помощью плазмотрона создают поток плазмы паров кремнийсодержащего жидкого углеводорода в присутствии аргона с...
Тип: Изобретение
Номер охранного документа: 0002297471
Дата охранного документа: 20.04.2007
+ добавить свой РИД