×
10.09.2013
216.012.6803

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ПРЕССОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И ИЗДЕЛИЯ, ПОЛУЧАЕМЫЕ ИЗ НИХ

Вид РИД

Изобретение

№ охранного документа
0002492274
Дата охранного документа
10.09.2013
Аннотация: Изобретение относится к способу производства длинномерных, тонкостенных панелей и профилей, предназначенных для использования на железнодорожном транспорте. Способ включает отливку слитков из сплава, содержащего следующее соотношение компонентов, мас.%: цинк 3,6-4,1, магний 0,6-1,1, марганец 0,2-0,5, цирконий 0,05-0,12, хром 0,05-0,15, медь 0,1-0,2, титан 0,01-0,06, молибден 0,01-0,06, алюминий - остальное, при температуре литья 690-710°С со скоростью 25-50 мм/мин, гомогенизацию слитков при температуре 450-470°С в течение 8-12 часов, горячее прессование при температуре 410-530°С при скорости истечения 0,1-4,0 м/мин, закалку от температуры деформации на воздухе или воздушно-водяной смесью и двухступенчатое старение: при температуре 90-110°С с выдержкой 6-12 ч и при температуре 160-190°С с выдержкой 4-10 ч. Изобретение позволяет получать длинномерные изделия, обладающие высокими эксплуатационными свойствами. 2 н. и 2 з.п. ф-лы, 1 пр., 6 табл., 4 ил.

Настоящее изобретение относится, к способу производства длинномерных, тонкостенных панелей и профилей, предназначенных для использования на железнодорожном транспорте, но не ограничивается только этой областью, из высокопрочного алюминиевого сплава, имеющего следующее соотношении компонентов, мас.%:

Цинк 3,6-4,1

Магний 0,6-1,1

Марганец 0,2-0,5

Цирконий 0,05-0,12

Хром 0,05-0,15

Медь 0,1-0,2

Титан 0,01-0,06

Молибден 0,01-0,06

Алюминий остальное

За почти 200-летнюю историю железнодорожного транспорта вагоностроение проделало путь от деревянных конструкций кузова к интегральным алюминиевым и гибридным конструкциям.

Переход на новые конструкционные материалы всегда сопровождался улучшением технических характеристик подвижного состава, изменениями в конструкции и технологии его изготовления, снижении удельных затрат материальных, финансовых и энергетических ресурсов на единицу полезной работы, например, на один пассажиро-километр.

Применение крупногабаритных экструдированных панелей позволяет на 40% сократить трудоемкость изготовления кузова и снизить его массу до 7,5 т для вагонов длиной 26 м по сравнению с 11 т для такого же кузова из стали.

Нововведения в этой технологии привели к еще большему, до двух раз по сравнению со стальными, уменьшению затрат времени на изготовление алюминиевых кузовов. Полная стоимость типичного алюминиевого кузова составляет менее 85% стоимости обычного стального кузова.

Технология производства вагонов из крупногабаритных алюминиевых профилей и панелей является экономически выгодным решением. Крупногабаритные профили способны заменить многие сложные классические детали. Прессованные профили могут поставляться в виде готовых для монтажа интегральных деталей. Такие технологии могут быть использованы во многих областях техники. Существующие преимущества и возможности применения изделий из алюминиевых сплавов, позволяют им успешно конкурировать со стальными конструкциями

Алюминиевые сплавы, из которых изготовляются панели, предназначенные для использования в вагоностроении должны соответствовать следующим требованиям:

1. Обладать необходимой прочностью, высокой энергоемкостью разрушения, высокой сопротивляемостью циклическим нагрузкам, которые действуют на вагоны при их движении, высокой коррозионной стойкостью. [1, 6, 8].

2. Обладать хорошей технологичностью в машиностроительном производстве, (хорошо свариваться аргонно-дуговой сваркой, иметь малую склонность к трещинообразованию при сварке, разупрочнение металла в сварном соединении не должно превышать 0,85 от основного металла, обладать определенным запасом пластичности для выполнения небольших правок и формовок).

3. Т.к. объемы выпуска полуфабрикатов для вагоностроения велик, то сплавы должны обладать высокой технологичностью в прессовом производстве, а именно высокой скоростью истечения; низким удельным давление прессования; возможность прессования сложных тонкостенных изделий, в том числе полых, а также иметь широкий температурный интервал существования и высокую устойчивость твердого раствора основных легирующих компонентов в алюминии, обеспечивающих возможность закалки на прессе.

Известен алюминиевый сплав (Патент РФ №2288293, публ. 27.11.2006) соответствующий вышеуказанным требованиям и имеющий следующий химический состав мас.%:

Цинк 3,6-4,1

Магний 0,6-1,1

Марганец 0,2-0,5

Цирконий 0,05-0,12

Хром 0,05-0,15

Медь 0,1-0,2

Титан 0,01-0,06

Молибден 0,01-0,06

Алюминий остальное.

Известен способ изготовления изделий из деформируемых алюминиевых сплавов, содержащих по крайней мере один переходный металл, включающий следующие операции: нагрев слитка до температуры предварительной пластической деформации 262-398°С с выдержкой 0,5-7 ч, предварительная пластическая деформация при этой температуре, нагрев перед окончательной пластической деформацией до температуры 405-445°С, выдержка при этой температуре в течение 0,5-7 ч и последующая окончательная пластическая деформация, термическая обработка (Патент РФ №2152451).

Известен способ получения полуфабрикатов из сплавов системы Al-Zn-Mg-Cu с повышенными статическими механическими характеристиками, состоящий из следующих операций: двухступенчатая гомогенизация - температура 460°С, выдержка 7 ч + температура 466°С, выдержка 23 ч, ковка при температуре 400°С, закалка с температуры 475°С и двухступенчатое старение по режиму: температура 120°С, выдержка 6 ч + температура 135°С, выдержка 7 ч (Заявка США №2003/219353).

Недостатками указанных способов являются неоднородность структуры полуфабрикатов, низкие показатели вязкости разрушения K1C, значительная анизотропия механических свойств и пониженные коррозионные свойства, что приводит к снижению ресурса и надежности в эксплуатации изделий.

Наиболее близким к предложенному способу, принятым за прототип, является способ изготовления прессованных полуфабрикатов из алюминиевого сплава и изделие, полученное из них включающий отливку слитков, их отжиг при температуре 320-395°С горячее прессование, термическую обработку на твердый раствор при температуре 430-565С, закалку и старение.

Недостатком этого способа является то, что способ специализирован для изготовления силовых деталей планера самолетов и не удовлетворяет технологическим требованиям массового производства тонкостенных, длинномерных, полых панелей и профилей, применяемых в конструкциях железнодорожных вагонов, и не гарантирует их стабильности свойств, а также экономически мало конкурентоспособен.

Задачей настоящего изобретения является разработка экономичного способа изготовления прессованных, длинномерных, тонкостенных, полых панелей шириной до 790 мм и профилей, предназначенных для железнодорожного транспорта, обладающих комплексом прочностных, технологических и эксплуатационных свойств, отвечающих перспективным требованиям в этой области техники.

Техническим результатом, достигаемым при применении предлагаемого способа, является создание конкурентоспособной технологии производства из высоколегированного алюминиевого сплава системы Al-Zn-Mg-Cu-Zr полуфабрикатов, в которой хорошие механические, технологические и коррозионные свойства изделий обеспечивается оптимальными режимами термомеханической обработки.

Указанный технический результат достигается тем, что в способе прессованных полуфабрикатов из высокопрочного алюминиевого сплава, включающий отливку слитков, горячее прессование, термическую обработку на твердый раствор, закалку и старение, отличающийся тем, что слитки отливают из сплава, имеющего следующее соотношении компонентов, мас.%:

Цинк 3,6-4,1

Магний 0,6-1,1

Марганец 0,2-0,5

Цирконий 0,05-0,12

Хром 0,05-0,15

Медь 0,1-0,2

Титан 0,01-0,06

Молибден 0,01-0,06

Алюминий остальное,

при температуре литья 690-710°С со скоростью 25-50 мм/мин подвергают гомогенизации при температуре 450-470°С в течение 8-12 часов, горячее прессование проводят при температуре 410-530°С при скорости истечения 0,1-4,0 м/мин, закалку производят от температуры деформации непосредственно после прессования на прессе, на воздухе или воздушно-водяной смесью и двухступенчатое старение по режиму: температура 90-110°С, выдержка 6-12 ч + температура 160-190°С, выдержка 4-10 ч.

При значительной толщине в сечении элементов профиля закалку изделия производят водой после нагрева в печи от температуры 450°С.

Возможно также выполнение естественного старения в течение не менее 7 суток.

Из полуфабрикатов, полученных этим способом, изготавливают длинномерные, тонкостенные панели и профили, предназначенные для использования на железнодорожном транспорте.

Выбор алюминиевого сплава данного химического состава обусловлен тем, что в процессе выплавки крупных слитков из данного сплава не образуются интерметаллиды Al3Zr кристаллизационного происхождения, а наличие в составе сплава меди и микродобавок переходных металлов Cr, Мо, Ti, а также корректировка режима двухступенчатого старения позволили получить высокое сопротивление расслаивающей коррозии (3 балл) и коррозии под напряжением при высоком уровне механических свойств.

Механические свойства сплава значительно превышают механические свойства сплавов типа АД31, применяемых для изготовления вагонов за рубежом, и очень близки свойствам сплава 1915, пассажирские вагоны из которого более тридцати лет эксплуатируются в России.

Режимы литья при температуре 690-710°С и скорости литья 25-50 мм/мин подобраны опытным путем и обеспечивают равномерную структуру сплава по всему объему слитка.

Подготовка структуры сплава к закалке на прессе начинается при проведении гомогенизационного отжига отлитых слитков. Во время выдержки при температуре гомогенизации происходит растворение грубых частиц избыточной фазы Mg2Si, образовавшихся при кристаллизации расплава по эвтектической реакции и выделившихся по границам зерен и дендритных ветвей. К моменту окончания выдержки частицы Mg2Si в структуре слитка практически отсутствуют, а магний и кремний находятся в твердом алюминиевом растворе. Гомогенизация слитков проводится при температуре 450-470°С в течение 8-12 часов, превышение этих границ ведет к выделению по границам зерен легкоплавких элементов, гомогенизация при более низких параметрах не гарантирует приемлемого выравнивания химической микронеоднородности зерен.

Образование твердого раствора основных легирующих компонентов в алюминии в данном сплаве происходит при повышении температуры значительно легче и быстрее, чем, например, в сплаве АД31, который легирован кремнием, за счет более легкого и быстрого растворения частиц η (MgZns) относительно частиц Mg2Si (фаза Mg2Si - одна из самых термически стабильных фаз, которые образуют основные легирующие компоненты в промышленных алюминиевых сплавах (Cu, Mg, Zn, Si) между собой и алюминием).

Таким образом, данный сплав обладает высокой устойчивостью пересыщенного твердого раствора основных легирующих компонентов (цинка и магния) в алюминии, температурный интервал пониженной устойчивости твердого раствора смещен в область пониженных температур, а температура прессования совпадает с температурным интервалом существования твердого раствора цинка и магния в алюминии, который очень широк (340-615°С). Эти особенности обеспечивают хорошую возможность проведения закалки на прессе прессуемых полуфабрикатов.

Привлекательность низких температур прессования заключается в том, что при этом достигается высокое качество поверхности прессованного полуфабриката и уменьшается вероятность образования внутренних расслоений.

Прессование при температуре прессования ниже температуры 410°С не рационально, т.к. возрастают усилия прессования, прессование при температуре выше 530°С приводит к снижению качества изделий.

Скорость истечения варьируется в пределах 0,1-4,0 м/мин и зависит от площади и конфигурации сечений изделия, в частности при прессовании сложных тонкостенных полых панелей или профилей для снижения усилия прессования температура нагрева может быть повышена до 500-530°С. Прессование таких сложных полуфабрикатов проводят с пониженными скоростями истечения, и выделяющееся деформационное тепло успевает уйти в инструмент. В этом случае величина повышения температуры невелика.

Вследствие того что температурный интервал существования твердого раствора в сплаве имеет очень широкий диапазон (340-615°С), то для фиксации твердого раствора при прессовании тонкостенных панелей и профилей достаточно охлаждения воздухом или водовоздушной смесью, что позволяет выполнять эту операцию непосредственно после прессования на столе пресса.

При изготовлении монолитных профилей, имеющих значительную площадь поперечного сечения проводится закалка в воде, от температуры 450°С, после нагрева в печи, что гарантирует равномерность свойств по всему объему изделия.

Полуфабрикаты из данного сплава можно применять как в естественно состаренном состоянии, так и после искусственного старения. Прочностные свойства в естественно состаренном состоянии после длительного многомесячного вылеживания даже немного выше, чем после искусственного старения, однако прессованные полуфабрикаты в естественно состаренном состоянии более чувствительны к расслаивающей коррозии. Поэтому при выборе состояния полуфабриката для конкретных условий эксплуатации следует руководствоваться выбором оптимального сочетания прочности и коррозионной стойкости.

Искусственное двухступенчатое старение по режиму: температура 90-110°С, выдержка 6-12 ч + температура 160-190°С, выдержка 4-10 ч. На первой ступени идет интенсивное образование зон Гинье-Престона, которые на второй ступени служат зародышами образования упрочняющих частиц фазы η (MgZn2). В результате частицы выделяются с высокой плотностью в единице объема матрицы и максимально упрочняют сплав. При этом при перестаривании происходит минимальная потеря прочностных свойств.

Температура второй ступени старения для сплава была выбрана 160-190°С. Основанием для такого выбора послужил тот факт, что при более низкой температуре при увеличении длительности выдержки, как показали предварительные эксперименты, не происходит заметного роста сопротивления расслаивающей коррозии. Небольшое повышение температуры второй ступени до 200°С приводит к сильному снижению прочностных характеристик. Оптимальное время вытяжки на первой и второй ступени, при котором при минимальном снижении свойств достигалось бы максимальное повышение сопротивления расслаивающей коррозии, были подобраны опытным путем.

Изобретение иллюстрируется фотографиями, где показаны поперечные сечения:

Фиг.1 - профиля (габариты 350×110 мм);

Фиг.2 - панели (габариты 790×52 мм);

Фиг.3 - панели шифра (габариты 790×50 мм).

На Фиг.4 (а-д - светлопольное изображение, е - темнопольное изображение в рефлексе фазы Al3Zr, а - ×500×2; 6 - ×5800×2; г - ×48000×2; д, е - 36000×2)

Пример конкретного исполнения.

В электроплавильной печи сопротивления типа САН вместимостью 10 тн были выполнены 2 плавки следующего химического состава, таблица 1:

Табл.1
Номер плавки Массовая доля элементов в %
Cu Mg Mn Fe Si Cr Zn Ti Mo Zr
1 0,117 0,831 0,296 0,190 0,0672 0,081 3,80 0,0275 0,0108 0,088
2 0,127 0,871 0,309 0,165 0,0514 0,0643 4,07 0,0265 0,0202 0,103

Затем были отлиты плоские и круглые слитки. Литье слитков проводилось по следующим режимам, таблица 2:

Табл.2
Номер плавки Размер слитка, мм Параметры литья
температура, °С скорость, мм/мин Давление воды, Па
1 310×1110 705 46,6 1,4×105
2 0510 700 26,7 4,558×104

Режимы гомогенизации отлитых слитков приведены в таблице 3.

Табл.3
Размер слитка, мм Температура гомогенизации, °С Продолжительность выдержки, час
310×1110 455-460 12
0510 460-463 12

Из отлитых слитков были изготовлены опытные партии 2х типов панелей (фиг.2 и 3) и 1 типа профилей (фиг.1). Закалку профилей проводили в воду после выдержки в вертикальной закалочной печи от температуры 450°С. Закалка панелей проводилась на столе пресса от температуры деформации путем принудительной подачи воздуха. Режимы прессования приведены в таблице 4.

Табл.4
Температура заготовки, °С Температура матрицы, °С Температура контейнера, °С Скорость истечения, м/мин Величина остаточной деформации при правке, % Искусственное старение
I ступень II ступень
410-530 360-460 410-450 0,1-4,0-0,1 1,0-3,5 100°С 6-12 ч 170-180°С 4-10 ч

Механические свойства прессованных полуфабрикатов в естественно состаренном и искусственно состаренном состоянии по выбранному режиму (100°С, 10 час +175°С, 6 час) приведены в табл.5 и 6.

Табл.5
Свойства профилей
Состояние Направление σв МПа σ02 МПа δ, % ψ, %
Естественно состаренные Продольное 347 236 14,3 21,8
Поперечное 369 264 13,2 33,5
Искусственно состаренные 100°С, 10 ч+175°С, 6 ч Продольное 309 243 15,9 38,9
Поперечное 333 275 15,2 54,3

Табл.6
Свойства панелей (продольные образцы)
Место вырезки образцов Состояние σв МПа σ02 МПа δ, % РСК, Балл
Полотно панели Естественно состаренные 353 219 20,0 8,5
Искусственно состаренные 100°C, 104+175°C, 64 322 252 18,9 3
Перегородка Естественно состаренные 350 217 19,0 -
Искусственно состаренные 100°C, 104+175°C, 64 332 253 18,3 -

Свойства образцов, вырезанных из перегородок панели (табл.6), не уступают свойствам образцов, вырезанных из полотна панели и характеризуются достаточно высокими значениями. Это еще раз подтверждает, что сплав при подвергнутой обработке по данному способу обладает очень высокой устойчивостью твердого раствора, позволяющей производить его фиксацию при низких скоростях охлаждения с высоких температур.

Так же, как и в случае профиля, свойства панели в естественно состаренном состоянии несколько выше свойств в искусственно состаренном состоянии. Однако сопротивление расслаивающей коррозии, как показали испытания панели, значительно лучше в искусственно состаренном состоянии. После естественного старения склонность панелей к расслаивающей коррозии оценивается 7-8 баллами, а после искусственного старения - 3 баллами.

На фиг.4 представлены результаты электронно-микроскопического исследования структуры профиля в состоянии поставки. При малых увеличениях в электронном микроскопе хорошо видна субзеренная структура (фиг.4а, б), а при более высоких увеличениях хорошо различаются частицы интер-металлидов переходных металлов марганца, хрома (фиг.4в), циркония (фиг4д, е). На фиг.4г показана граница субзерна, сдерживаемая интерметаллидами марганца (типа Al6Mn) и циркония (Al3Zr).

После закалки прессованные полуфабрикаты гарантировано сохраняют полностью нерекристаллизованную структуру.

Некристаллизованная (полигонизованная) структура в прессованных полуфабрикатах обеспечивает повышенный комплекс служебных характеристик. Прежде всего это повышенные прочностные свойства при хорошей пластичности, высокие показатели ударной вязкости и более высокое сопротивление коррозии под напряжением.

Высокие конструкционные и технологические свойства изделий, изготовленных по данному способу, были также подтверждены проведением испытаний сварных соединений. Сварное соединение прессованных профилей СП50 после 60 суток естественного старения после сварки имеет σвсв=255 МПа, угол загиба =77 град, КСUшва=28 Дж/см2, КСVшва=21 Дж/см2, KCV зоны сплавления =38 Дж/см2. Исследование свариваемости прессованных профилей из сплава 1935 В показало, что сплав обладает малой склонностью к трещинообразованию при сварке, а коэффициент ослабления сварного соединения составляет 0,80-0,95; сварные соединения и собственно швы пластичные и вязкие. Сварные соединения обладают высоким сопротивлением коррозии под напряжением в естественно и искусственно состаренном состояниях. Склонность к расслаивающей коррозии сварных соединений оценивается 7-8 баллом в естественно состаренном состоянии и 2-3 баллом после искусственного старения.

Предложенный способ прессования полуфабрикатов из высокопрочного алюминиевого сплава позволяет получить уникальные, длинномерные, тонкостенные профили и панели шириной до 790 мм, предназначенные для использования на железнодорожном транспорте, обладающих комплексом прочностных, технологических и эксплуатационных свойств, отвечающих перспективным требованиям в этой области техники.


СПОСОБ ИЗГОТОВЛЕНИЯ ПРЕССОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И ИЗДЕЛИЯ, ПОЛУЧАЕМЫЕ ИЗ НИХ
СПОСОБ ИЗГОТОВЛЕНИЯ ПРЕССОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И ИЗДЕЛИЯ, ПОЛУЧАЕМЫЕ ИЗ НИХ
СПОСОБ ИЗГОТОВЛЕНИЯ ПРЕССОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И ИЗДЕЛИЯ, ПОЛУЧАЕМЫЕ ИЗ НИХ
СПОСОБ ИЗГОТОВЛЕНИЯ ПРЕССОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И ИЗДЕЛИЯ, ПОЛУЧАЕМЫЕ ИЗ НИХ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 30.
19.04.2019
№219.017.2f98

Инструмент для осадки с кручением

Изобретение относится к обработке металлов давлением и может быть использовано при осадке заготовок из труднодеформируемых металлов и сплавов с получением заданных физико-механических свойств и структуры. Инструмент содержит верхний и нижний бойки, которые имеют возможность относительного...
Тип: Изобретение
Номер охранного документа: 0002374026
Дата охранного документа: 27.11.2009
19.04.2019
№219.017.30f8

Многослойное защитно-смазочное покрытие

Изобретение относится к области цветной металлургии, в частности к составам временных покрытий, и может быть использовано для защиты сплавов от окисления при нагреве под горячую деформацию и смазки контактных поверхностей деформируемого металла и инструмента. Покрытие состоит из двух слоев...
Тип: Изобретение
Номер охранного документа: 0002412775
Дата охранного документа: 27.02.2011
19.04.2019
№219.017.341a

Способ изготовления фольги из интерметаллидных ортосплавов на основе титана

Изобретение предназначено для повышения качества фольги, изготавливаемой холодной прокаткой из сплавов на основе алюминидов титана, основанных на орторомбической фазе TiAlNb. Способ включает производство слитков или порошковых заготовок. Они подвергаются горячей термомеханической обработке, в...
Тип: Изобретение
Номер охранного документа: 0002465973
Дата охранного документа: 10.11.2012
18.05.2019
№219.017.56e7

Способ изготовления листов из β-титановых сплавов

Изобретение относится к цветной металлургии, в частности к термомеханической обработке труднодеформируемых, высокопрочных β-титановых сплавов, и может быть использовано при изготовлении тонких листов методом прокатки. Способ изготовления листов из β-титановых сплавов включает механическую...
Тип: Изобретение
Номер охранного документа: 0002318913
Дата охранного документа: 10.03.2008
18.05.2019
№219.017.56e8

Способ изготовления листов из β-титановых сплавов

Изобретение относится к цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано при изготовлении листов из высокопрочных β-титановых сплавов методом прокатки. Способ изготовления листов из β-титановых сплавов включает горячее прессование...
Тип: Изобретение
Номер охранного документа: 0002318914
Дата охранного документа: 10.03.2008
18.05.2019
№219.017.5709

Способ изготовления особо тонких листов из высокопрочных титановых сплавов

Изобретение относится к способу изготовления особо тонких листов из высокопрочных титановых сплавов методом пакетной прокатки. Способ включает получение исходной листовой заготовки, сборку пакета из листовых заготовок с обмазывающим покрытием с использованием кейса, горячую прокатку и...
Тип: Изобретение
Номер охранного документа: 0002381297
Дата охранного документа: 10.02.2010
18.05.2019
№219.017.57c7

Способ подготовки расходуемого электрода

Изобретение относится к области специальной электрометаллургии и может быть использовано для выплавки слитков тугоплавких и высокореакционных металлов и сплавов, преимущественно титановых. Способ включает нагрев и обезвоживание расходуемого электрода путем пропускания тока короткого замыкания,...
Тип: Изобретение
Номер охранного документа: 0002374338
Дата охранного документа: 27.11.2009
19.06.2019
№219.017.86b6

Способ изготовления лопаточных заготовок

Изобретение относится к обработке металлов давлением, а именно к изготовлению на гидравлических трубопрофильных прессах заготовок для производства лопаток турбин, а также других типов роторных лопаток или лопастей статора для турбомашин или пропеллеров преимущественно из титановых сплавов....
Тип: Изобретение
Номер охранного документа: 0002381083
Дата охранного документа: 10.02.2010
19.06.2019
№219.017.871e

Разжимная пресс-шайба

Изобретение относится к электрометаллургии и может быть использовано для полунепрерывного прессования расходуемых электродов из шихтовых материалов титановых сплавов и, в частности, для очистки внутренних поверхностей тел вращения. Разжимная пресс-шайба для очистки конической или...
Тип: Изобретение
Номер охранного документа: 0002359769
Дата охранного документа: 27.06.2009
19.06.2019
№219.017.87d6

Способ получения расходуемого электрода

Изобретение относится к области специальной электрометаллургии, а именно к изготовлению прессованных расходуемых электродов из высокореакционных металлов и сплавов, например титановых, для последующего переплава. В способе устанавливают в полый контейнер арматурные стержни, порционно загружают...
Тип: Изобретение
Номер охранного документа: 0002331679
Дата охранного документа: 20.08.2008
Показаны записи 11-14 из 14.
20.12.2018
№218.016.a989

Способ дренирования геокомпозитных матов

Изобретение относится к гидротехническому и природоохранному строительству, может быть использовано для дренирования и противофильтрационной защиты каналов и водоемов гидромелиоративных систем, выполняемых в сложных инженерных условиях с противофильтрационными экранами из геокомпозитных матов....
Тип: Изобретение
Номер охранного документа: 0002675497
Дата охранного документа: 19.12.2018
20.02.2019
№219.016.bc75

Способ полунепрерывного прессования заготовок из алюминиевых сплавов системы ai-mg-si

Изобретение относится к обработке металлов давлением, а именно к способу экструдирования алюминиевых профилей и труб в качестве заготовки при изготовлении топливной рампы впрыскового двигателя. Способ полунепрерывного прессования заготовок из алюминиевых сплавов системы Al-Mg-Si включает...
Тип: Изобретение
Номер охранного документа: 0002277451
Дата охранного документа: 10.06.2006
09.05.2019
№219.017.4b14

Инструмент для прессования изделий

Изобретение относится к обработке металлов давлением и может быть использовано при производстве прессованных изделий, в частности при полунепрерывном прессовании длинномерных изделий. Инструмент содержит матрицу, втулку контейнера, пресс-штемпель и уплотняющую прокладку, установленную с...
Тип: Изобретение
Номер охранного документа: 0002291008
Дата охранного документа: 10.01.2007
06.07.2019
№219.017.a83b

Инструмент для прессования широких тонкостенных панелей

Изобретение относится к обработке металлов давлением, а именно к инструменту для горячего прессования широких тонкостенных панелей из алюминиевых сплавов. Инструмент для прессования содержит матрицу с каналом для прессования и двумя наклонными плоскостями на ее торце, опору и вкладыш мундштука....
Тип: Изобретение
Номер охранного документа: 0002352418
Дата охранного документа: 20.04.2009
+ добавить свой РИД