×
10.09.2013
216.012.667f

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МОЩНОСТИ НАГРУЗКИ С ОПРЕДЕЛЕНИЕМ МОМЕНТА АЭРОБНО-АНАЭРОБНОГО ПЕРЕХОДА ПО ЭЛЕКТРОМИОГРАММЕ И ДАННЫМ ИК-СПЕКТРОСКОПИИ РАБОТАЮЩЕЙ МЫШЦЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, диагностике, может быть использовано в спорте и восстановительной терапии. При определении мощности нагрузки, при которой в энергообеспечение мышечной работы при выполнении теста с линейно возрастающей нагрузкой начинают активно включаться анаэробные процессы, момент аэробно-анаэробного перехода (МААП) определяют по положению максимума на кривой, отражающей динамику изменения отношения концентрации гемоглобина в работающей мышце, измеряемой с помощью ИК-спектроскопии, к интенсивности или высокочастотной составляющей поверхностной электромиограммы этой мышцы. Способ обеспечивает определение МААП без использования нагрузок, близких к предельным, с возможностью оценки МААП в отдельных мышцах небольшой массы, сокращение которых не ведет к заметным изменениям системных физиологических показателей, простоту и неинвазивность процедуры. 3 ил.
Основные результаты: Способ определения мощности нагрузки, при которой в энергообеспечение мышечной работы при выполнении теста с линейно возрастающей нагрузкой начинают активно включаться анаэробные процессы, отличающийся тем, что момент аэробно-анаэробного перехода определяют по положению максимума на кривой, отражающей динамику изменения отношения концентрации гемоглобина в работающей мышце, измеряемой с помощью ИК-спектроскопии, к интенсивности или высокочастотной составляющей поверхностной электромиограммы этой мышцы.

Изобретение относится к медицинской диагностике и может быть использовано в спорте и восстановительной терапии для определения аэробно-анаэробного перехода по электромиограмме и данным ИК-спектроскопии работающей мышцы.

Известно, что энергообеспечение длительной мышечной работы (более 5 минут) идет преимущественно аэробным путем [1, 2]. В связи с этим оценка интенсивности аэробных процессов во время работы является основным показателем работоспособности человека, который широко используется в спорте и в восстановительной медицине для диагностики функционального состояния и подбора оптимальной нагрузки при проведении спортивных и реабилитационных тренировок. Для определения физической работоспособности обычно используют тест с возрастающей нагрузкой. В результате такого тестирования определяются максимальные показатели, характеризующие производительность кардиореспираторной системы, такие как максимальное потребление кислорода (МПК) и максимальный сердечный выброс (МСВ), а также оценивается мощность нагрузки, при которой наблюдается аэробно-анаэробный переход, т.е. когда в энергообеспечение мышечной работы начинают активно включаться анаэробные процессы.

Для оценки мощности, при которой происходит аэробно-анаэробный переход в тесте с линейно возрастающей нагрузкой, обычно используют системные физиологические показатели [1, 2]:

1. Динамику накопления концентрации лактата (молочной кислоты) в крови, по которой определяют аэробный порог, лактатный порог, порог анаэробного обмена (ПАНО). Эти величины определяются по развиваемой испытуемым мощности, при которой концентрация лактата достигает определенного уровня. Так, например, считается, что при работе большой мышечной массы уровень ПАНО достигается при концентрации лактата в крови 4 мМ. Недостатком методик детектирования аэробно-анаэробного перехода в работающих мышцах по концентрации лактата является его инвазивность - необходимость взятия пробы крови (из пальца в случае работы большой мышечной массы). При сокращениях небольших мышц концентрация лактата в капиллярной крови практически не изменяется, для определения содержания лактата в мышечной ткани требуется катетеризация вены, по которой происходит отток крови из работающей мышцы - сложная и небезопасная процедура. Вообще говоря, концентрацию лактата в мышечной ткани можно определять с помощью ЯМР-спектроскопии, однако этот способ требует дорогостоящих, уникальных приборов (МР-томографы с спектроскопическими приставками и, кроме того, обеспечивающие возможность выполнения мышечной работы во время измерений).

2. Динамику легочной вентиляции и показателей газообмена, с помощью которых определяют вентиляторный порог, точку респираторной компенсации и др. показатели, также отражающие аэробную работоспособность человека. Следует отметить, что экспериментальная регистрация динамики этих физиологических показателей является достаточно простой в методическом отношении процедурой, однако определение момента аэробно-анаэробного перехода представляет достаточно сложную проблему, поскольку для этого обычно требуется найти положение особых точек (точек перегиба, точек, в которых наблюдается отклонение от линейности и т.д.) на динамической кривой. На практике следствием этого является низкая точность определения искомых величин, трудности сопоставления этих величин, полученных разными авторами с помощью отличающихся алгоритмов обсчета. Кроме того, для определения величин, характеризующих момент аэробно-анаэробного перехода, необходимо анализировать всю кривую, описывающую изменения выбранных физиологических показателей в тесте с линейно возрастающей мощностью нагрузки, причем особенно важным для анализа является заключительный период теста, когда испытуемый выполняет мышечную работу с мощностью, близкой к предельной. Следует отметить, что выполнение испытуемым предельной работы не всегда возможно (тестирование больных с сердечно-сосудистыми нарушениями для определения индивидуальных нагрузок, оптимальных для проведения реабилитационных тренировок, тестирование высококвалифицированных спортсменов в соревновательный период и т.д.). Кроме того, такой подход также возможен лишь при «глобальной» мышечной работе, в которую вовлечена большая мышечная масса.

Некоторые авторы [3] предлагают использовать для определения мощности, на которой происходит аэробно-анаэробный переход в тесте с возрастающей нагрузкой, сигнал поверхностной ЭМГ. Недостатком метода являются большие флуктуации электромиографического сигнала, а также сильная зависимость точности этого метода от длительности участка записи выше точки аэробно-анаэробного перехода. Необходимо учитывать, что интенсивность ЭМГ-активности при линейном увеличении мощности нагрузки возрастает неравномерно, что приводит к значительным ошибкам при определении аэробно-анаэробного перехода по точке перегиба.

Для неинвазивной регистрации процессов, связанных с развитием мышечного утомления, часто используется метод инфракрасной спектрометрии, предоставляющий показатели, характеризующие оксигенацию мышечной ткани. В частности, известно, что по содержанию гемоглобина определяют кровенаполнение мышечной ткани, а изменение концентрации дезоксигенированной формы гемоглобина в работающей мышце отражает потребление кислорода активными мышечными волокнами (MB).

Техническим результатом заявленного изобретения является то, что во время выполнения теста с линейно возрастающей нагрузкой обеспечивается устойчивая регистрация слабого сигнала поверхностной ЭМГ работающей мышцы и измерение содержания различных форм гемоглобина в ней, что позволяет определять момент аэробно-анаэробного перехода по динамике регистрируемых показателей в том числе в режиме on-line, метод не требует выполнения теста при мощностях нагрузки, близких к предельным, обеспечивает возможность оценки момента аэробно-анаэробного перехода в отдельных мышцах небольшой массы, сокращение которых даже на максимальной мощности не ведет к заметным изменениям системных физиологических показателей, кроме того, является методически простым и не требует инвазивных процедур, связанных с взятием проб крови у испытуемого.

Заявленный технический результат достигается за счет того, что способ определения мощности нагрузки, при которой в энергообеспечение мышечной работы при выполнении теста с линейно возрастающей нагрузкой начинают активно включаться анаэробные процессы, отличающийся тем, что момент аэробно-анаэробного перехода определяется по положению максимума на кривой, отражающей динамику изменения отношения интенсивности поверхностной электромиограммы или ее высокочастотной составляющей к концентрации гемоглобина в работающей мышце, измеряемой с помощью ИК-спектроскопии.

В предлагаемом способе определения момента аэробно-анаэробного перехода в тесте с линейным возрастанием мощности нагрузки помимо сигнала ЭМГ, отражающего процесс рекрутирования двигательных единиц (ДЕ), используется полученная методом ИК-спектроскопии информация об изменении концентрации гемоглобина в работающей мышце. Момент аэробно-анаэробного перехода определяется по положению максимума на сглаженной кривой отношения концентрации гемоглобина к интенсивности ЭМГ, определяемой по среднеквадратичной амплитуде сигнала. Вместо нативного сигнала ЭМГ можно использовать его высокочастотную составляющую (f>75 Гц), что представляется важным с практической точки зрения, поскольку отсекаются низкочастотные артефакты, связанные с изменением геометрии мышцы при ее сокращении, а также наводки промышленной частоты, которые зачастую являются основным препятствием для устойчивой регистрации слабого сигнала поверхностной ЭМГ. Предлагаемый подход не требует выполнения всего теста для анализа полученной динамической кривой, а следовательно, этот метод определения можно использовать в режиме on-line. Кроме того, эта методика пригодна и для оценки момента аэробно-анаэробного перехода в отдельных мышцах, сокращение которых даже на максимальной мощности не ведет к заметным изменениям системных физиологических показателей.

На Фиг.1 представлена полученная экспериментально динамика изменения интенсивности ЭМГ одного из испытуемых в тесте с линейно возрастающей (15 Вт/мин) мощностью нагрузки на велоэргометре (жирной линией показана сглаженная кривая, использующаяся для определения момента аэробно-анаэробного перехода). Видно, что, несмотря на линейное увеличение мощности, интенсивность ЭМГ возрастает нелинейно. Особенно сильно это проявляется в конце теста, когда в работу включаются высокопороговые двигательные единицы. Очевидно, что на такой кривой достаточно трудно определить точку перегиба - момент, соответствующий аэробно-анаэробному переходу.

На Фиг.2 показано, как во время теста у того же испытуемого изменяется концентрация гемоглобина [cHb] в работающей мышце. Разброс значений [cHb] отражает ее изменения в течение одного цикла движения, (жирной линией отображена сглаженная кривая). Как отмечалось выше, этот показатель отражает кровенаполнение работающей мышцы. Видно, что в конце теста наблюдается постепенное отклонение динамики [cHb] от монотонного возрастания, кривая выходит на плато, отмечается даже некоторое снижение этого показателя. Такую динамику, по-видимому, можно объяснить усилением сосудосуживающих влияний со стороны симпатической нервной системы, вызванных активацией хеморецепторов в работающей мышце вследствие накопления в ней продуктов метаболизма (метаборефлекс). Как и в случае ЭМГ, по одной такой кривой зачастую также сложно определить мощность, на которой происходит аэробно-анаэробный переход в тесте с возрастающей нагрузкой.

Видно, что динамика нелинейных участков на графиках, отражающих ЭМГ-активность и кровенаполнение работающей мышцы, в конце теста качественно отличается - концентрация гемоглобина выходит на плато или даже несколько снижается, тогда как интенсивность ЭМГ резко возрастает. Поэтому для определения момента аэробно-анаэробного перехода удобно использовать динамику отношения этих разнонаправленных показателей. На Фиг.3 представлена зависимость от мощности нагрузки отношения концентрации гемоглобина к среднеквадратичной амплитуде ЭМГ (динамика отношения концентрации гемоглобина в m.vastus lateralis к интенсивности ее ЭМГ-активности во время выполнения теста; для вычисления [cHb]/EMG использовались сглаженные кривые). Видно, что кривая имеет выраженный максимум.

По положению максимума на этой кривой и определяется мощность, соответствующая аэробно-анаэробному переходу (ААПЭМГ/cHb) в тесте с линейно возрастающей нагрузкой. Для подтверждения предлагаемого метода было проведено экспериментальное исследование, в котором молодые, физически активные испытуемые (10 человек) выполняли тест на велоэргометре с линейно возрастающей мощностью нагрузки (скорость нарастания - 15 Вт/мин) до отказа от продолжения работы. Во время теста у испытуемых непрерывно регистрировалась поверхностная ЭМГ (использовались хлорсеребряные накожные электроды, наложенные на срединную часть m. vastus lateralis) и содержание гемоглобина в этой мышце, измеряемое с помощью ИК-спектроскопии (спектрофотометр NIRO-200, Hamamatsu Photonics, Япония) (см. Фиг.1, Фиг.2). Кроме того, во время выполнения теста у испытуемых каждые две минуты бралась проба крови (20 мкл) из пальца для определения концентрации лактата (анализатор SuperGLeasy+, DrMuellerGmbH, Германия). Таким образом, мощность нагрузки, которая соответствует аэробно-анаэробному переходу определялась двумя способами: по концентрации лактата в капиллярной крови (ААПLa) - мощность, при которой концентрация лактата достигает 4 мМ [1], и по максимуму отношения [cHb]/ЭМГ. Между этими величинами была найдена статистически значимая корреляция (r=0.78, p<0.05), в среднем по группе испытуемых

Следует отметить, что переход от преимущественно аэробного обеспечения мышечного сокращения к аэробно-анаэробному не является одномоментным событием, этот переход регистрируется по плавным изменениям динамики некоторых физиологических показателей, которые тем или иным образом отражают изменения мышечного метаболизма. Мощность нагрузки, при которой регистрируется аэробно-анаэробный переход, может заметно различаться при использовании различных методик ее определения, однако это не является существенным недостатком, поскольку на практике обычно важно не абсолютное значение, а его изменение вследствие того или иного воздействия на организм человека. В спортивной и медицинской практике этот показатель аэробной работоспособности человека, измеренный с помощью одной и той же выбранной методики, обычно используется для определения эффективности проводимых спортивных или реабилитационных тренировок.

Предлагаемый способ оценки момента аэробно-анаэробного перехода в тесте с непрерывно повышающейся нагрузкой по интегральной интенсивности ЭМГ и данным ИК-спектроскопии работающей мышцы является методически простым и не требует инвазивных процедур, связанных с взятием проб крови у испытуемого. Кроме того, к достоинствам предлагаемого способа следует отнести возможность определения с его помощью момента аэробно-анаэробного перехода в небольших мышцах.

Источники информации

1. Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J AppI Physiol Occup Physiol 1979; 42:25-34.

2. «Метод оценки аэробно-анаэробного перехода»

http://www.belmapo.by/downloads/sport_med/2011/sport/14.doc

3. Коряк Ю.А. Нейромышечные изменения под влиянием семисуточной механической разгрузки мышечного аппарата у человека // Фундаментальные исследования. - 2008. - №9 - С.8-21 URL: http://www.rae.ru/fs/?section=content&op=show_article&article_id=7781229, http://www.rae.ru/fs/pdf/2008/9/1.pdf

Способ определения мощности нагрузки, при которой в энергообеспечение мышечной работы при выполнении теста с линейно возрастающей нагрузкой начинают активно включаться анаэробные процессы, отличающийся тем, что момент аэробно-анаэробного перехода определяют по положению максимума на кривой, отражающей динамику изменения отношения концентрации гемоглобина в работающей мышце, измеряемой с помощью ИК-спектроскопии, к интенсивности или высокочастотной составляющей поверхностной электромиограммы этой мышцы.
СПОСОБ ОПРЕДЕЛЕНИЯ МОЩНОСТИ НАГРУЗКИ С ОПРЕДЕЛЕНИЕМ МОМЕНТА АЭРОБНО-АНАЭРОБНОГО ПЕРЕХОДА ПО ЭЛЕКТРОМИОГРАММЕ И ДАННЫМ ИК-СПЕКТРОСКОПИИ РАБОТАЮЩЕЙ МЫШЦЫ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 20.
26.08.2017
№217.015.de02

Способ оценки уровня компенсаторно-приспособительных и адаптационных возможностей организма космонавтов

Изобретение относится к области медицины, а именно к авиакосмической медицине, и может быть использовано для оценки оптимального уровня компенсаторно-приспособительных и адаптационных возможностей организма космонавтов в условиях космического полета. Способ включает получение препарата...
Тип: Изобретение
Номер охранного документа: 0002624860
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ea45

Способ получения мск-ассоциированных недифференцированных гемопоэтических клеток-предшественников с фенотипов cd34+/cd133+

Изобретение относится к медицине, биотехнологии, конкретно к получению клеточных культур, обогащенных гемопоэтическими клетками-предшественниками с фенотипом CD34/CD133. Способ включает подготовку стромального подслоя, добавление фракции пуповинной крови, культивирование и селекцию. Из...
Тип: Изобретение
Номер охранного документа: 0002628092
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.eb0b

Способ обеззараживания и нагрева жидкостей и устройство для его осуществления

Изобретение относится к нагреву и обеззараживанию воды СВЧ-энергией и может быть использовано в пищевой, медицинской, микробиологической, фармацевтической, а также в химической промышленности. Способ обеззараживания и нагрева воды включает воздействие СВЧ-энергией на поток обрабатываемой воды...
Тип: Изобретение
Номер охранного документа: 0002627899
Дата охранного документа: 14.08.2017
29.06.2018
№218.016.690a

Способ регенерации воды из мочи

Изобретение относится к медицинской биотехнологии и может быть использовано в системах водообеспечения длительно функционирующих автономных гермозамкнутых космических и наземных обитаемых объектов. Для регенерации воды мочу собирают и консервируют, добавляя водный раствор ортофосфорной...
Тип: Изобретение
Номер охранного документа: 0002659201
Дата охранного документа: 28.06.2018
31.05.2019
№219.017.70bb

Способ определения динамики отека диска зрительного нерва

Изобретение относится к области медицины, а именно к офтальмологии, неврологии и лучевой диагностике, и может быть использовано для определения динамики отека диска зрительного нерва (ДЗН). Получают изображения сетчатки в области головки зрительного нерва с помощью оптической когерентной...
Тип: Изобретение
Номер охранного документа: 0002689891
Дата охранного документа: 29.05.2019
10.07.2019
№219.017.a9c7

Способ и устройство для обеззараживания и нагрева жидкостей

Группа изобретений относится к технологии обработки жидкостей СВЧ-энергией и может быть использована в пищевой, медицинской, микробиологической, фармацевтической промышленности. Способ обеззараживания и нагрева включает воздействие СВЧ-энергией на поток обрабатываемой жидкости, который подают в...
Тип: Изобретение
Номер охранного документа: 0002694034
Дата охранного документа: 08.07.2019
04.06.2020
№220.018.23d3

Способ получения ассоциатов гемопоэтических и стромальных клеток-предшественников, способных подавлять активацию и пролиферацию аллогенных лимфоцитов

Изобретение относится к биотехнологии. Описан способ получения ассоциатов гемопоэтических и стромальных клеток-предшественников. Проводят подготовку стромального подслоя из МСК из стромально-васкулярной фракции жировой ткани с остановкой клеточных делений с помощью митомицина С, добавляют...
Тип: Изобретение
Номер охранного документа: 0002722669
Дата охранного документа: 02.06.2020
17.06.2023
№223.018.7f20

Способ определения интегральной антибиотикорезистентности микроорганизмов

Заявленное изобретение относится к способу определения интегральной антибиотикорезистентности микроорганизмов после воздействия условий космического полета, включающему расчет показателей антибиотикорезистентности АР по формуле АР=С×Д×П×(М+К), где К – Конъюгация, М – Мобилизация, Д -...
Тип: Изобретение
Номер охранного документа: 0002773530
Дата охранного документа: 06.06.2022
19.06.2023
№223.018.8241

Средство, обладающее противогипоксической активностью

Изобретение относится к соединению 2-N-(3,4,5-триметоксибензоил)-амино-L-пентандиоат магния формулы (I), а также его применению в качестве средства, обладающего противогипоксической активностью. Соединение формулы (I) превосходит препарат сравнения антигипоксант мексикор. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002797210
Дата охранного документа: 31.05.2023
19.06.2023
№223.018.8282

Способ предотвращения атрофии скелетных мышц при их функциональной разгрузке

Изобретение относится к медицине, а именно к травматологии, космической медицине, физиологии, и может быть использовано для предотвращения атрофии скелетных мышц при их функциональной разгрузке. Способ характеризуется тем, что в организм инъекционно вводят ингибитор пуринэргических рецепторов...
Тип: Изобретение
Номер охранного документа: 0002797216
Дата охранного документа: 31.05.2023
Показаны записи 11-18 из 18.
26.08.2017
№217.015.ea45

Способ получения мск-ассоциированных недифференцированных гемопоэтических клеток-предшественников с фенотипов cd34+/cd133+

Изобретение относится к медицине, биотехнологии, конкретно к получению клеточных культур, обогащенных гемопоэтическими клетками-предшественниками с фенотипом CD34/CD133. Способ включает подготовку стромального подслоя, добавление фракции пуповинной крови, культивирование и селекцию. Из...
Тип: Изобретение
Номер охранного документа: 0002628092
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.eb0b

Способ обеззараживания и нагрева жидкостей и устройство для его осуществления

Изобретение относится к нагреву и обеззараживанию воды СВЧ-энергией и может быть использовано в пищевой, медицинской, микробиологической, фармацевтической, а также в химической промышленности. Способ обеззараживания и нагрева воды включает воздействие СВЧ-энергией на поток обрабатываемой воды...
Тип: Изобретение
Номер охранного документа: 0002627899
Дата охранного документа: 14.08.2017
15.03.2019
№219.016.e0bd

Способ повышения устойчивости к утомлению мышц человека при сохранении максимальной произвольной силы

Изобретение относится к медицине, более точно к спортивной медицине, может быть использовано для повышения работоспособности мышц человека. Осуществляют длительную низкочастотную электростимуляцию мышц. Электростимуляцию осуществляют при одновременном растяжении этих мышц. Электростимуляцию...
Тип: Изобретение
Номер охранного документа: 0002306960
Дата охранного документа: 27.09.2007
29.03.2019
№219.016.ef91

Сцинтилляционное детектирующее устройство

Предложенное сцинтилляционное детектирующее устройство относится к области охраны окружающей среды, а точнее к области регистрации радиоактивных излучений, и может быть использовано для радиационного анализа воздуха или иных газообразных сред. Данное сцинтилляционное детектирующее устройство...
Тип: Изобретение
Номер охранного документа: 0002296352
Дата охранного документа: 27.03.2007
01.06.2019
№219.017.7268

Способ выплавки никеле-титановых сплавов

Изобретение относится к области металлургии, в частности к получению никеле-титановых сплавов в вакуумных индукционных плавильных печах с холодным тиглем. В способе осуществляют укладку подготовленной шихты, при этом в нижнюю часть тигля укладывают титан около 20% высоты, затем равномерно...
Тип: Изобретение
Номер охранного документа: 0002690130
Дата охранного документа: 30.05.2019
16.08.2019
№219.017.c0ca

Способ дифференциальной диагностики функциональной гипоталамической аменореи на фоне стресса и энергетического дефицита

Изобретение относится к медицине, а именно к гинекологии, и может быть использовано при дифференциальной диагностике функциональной гипоталамической аменореи (ФГА) у женщин репродуктивного возраста на фоне энергетического дефицита и стресса. Для этого женщинам с ФГА проводят измерение роста,...
Тип: Изобретение
Номер охранного документа: 0002697369
Дата охранного документа: 13.08.2019
14.11.2019
№219.017.e195

Способ клёпки

Изобретение относится к техническим средствам механизации технологического процесса получения заклепочных соединений. В пакете соединяемых деталей образуют отверстие с фаской, в которое устанавливают заклепку с закладной головкой. Поджимают заклепку упором, сжимают пакет и производят...
Тип: Изобретение
Номер охранного документа: 0002705840
Дата охранного документа: 12.11.2019
10.05.2023
№223.018.5383

Способ обезвоживания радиоактивных ионообменных смол и установка для обезвоживания радиоактивных ионообменных смол

Группа изобретений относится к атомной энергетике, к технологии и оборудованию для обезвоживания радиоактивных ионообменных смол для их иммобилизации в монолитные структуры. Способ обезвоживания радиоактивных ионообменных смол включает подачу ионообменных радиоактивных смол с водой в приёмный...
Тип: Изобретение
Номер охранного документа: 0002795290
Дата охранного документа: 02.05.2023
+ добавить свой РИД