×
27.08.2013
216.012.6479

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА КАТАНКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к прокатному производству и может быть использовано для получения катанки в мотках, используемой для волочения в проволоку различного назначения. Технический результат изобретения состоит в повышении технологической пластичности и равномерности механических свойств катанки. Для достижения технического результата непрерывно литую заготовку нагревают до температуры 1050-1150°С, проводят черновую прокатку с ее завершением при температуре не выше 900°С, охлаждают полосу круглого сечения и осуществляют чистовую непрерывную прокатку в температурном интервале от 850°С до 680°С с суммарным коэффициентом вытяжки не менее 4,5. Кроме того, углеродистая сталь имеет следующий химический состав, мас.%: 0,06-0,12 С, 0,35-0,65 Мn, 0,17-0,37 Si, 0,01-0,15 Cr, 0,001-0,004 Ca, 0,004-0,012 N, остальное - Fe и примеси. 1 з.п. ф-лы, 3 табл., 2 пр.

Изобретение относится к прокатному производству и может быть использовано для получения катанки в мотках, используемой для волочения в проволоку различного назначения.

Известен способ производства катанки из углеродистой стали для последующего получения проволоки, включающий нагрев квадратной заготовки до температуры 1250°С, черновую прокатку полосы, чистовую непрерывную прокатку в блоке клетей с температурой конца прокатки 970-1050°С и охлаждение водой до температуры 730-790°С. При этом сталь имеет следующий химический состав, мас.%:

Углерод 0,7
Марганец 0,5
Никель 0,08
Медь 0,09
Железо и примеси Остальное [1].

Недостатки известного способа состоят в том, что катанка диаметром 8 мм и менее имеет низкую технологическую пластичность и неравномерные механические свойства по сечению. Это приводит к обрывам при волочении и требует проведения промежуточных отжигов в процессе волочения катанки в проволоку конечной толщины.

Известен также способ производства катанки из углеродистой стали, включающей нагрев непрерывно литой заготовки до температуры 1120-1260°С, черновую прокатку полосы, чистовую непрерывную прокатку и охлаждение. При этом суммарный коэффициент вытяжки полосы в процессе чистовой прокатки не регламентирован [2].

Недостатки данного способа состоят в том, что катанка имеет низкую технологическую пластичность и равномерность механических свойств, что затрудняет ее последующее волочение в проволоку.

Наиболее близким аналогом к предлагаемому изобретению является способ производства катанки из углеродистой рядовой стали, включающий нагрев непрерывно литой заготовки до температуры 1200-1260°С, черновую прокатку полосы, непрерывную чистовую прокатку и охлаждение, причем весь прокатный передел осуществляют в температурном интервале от 1200-1260°С и до 860-1000°С с суммарным коэффициентом вытяжки λ≥4 [3].

Недостатки известного способа состоят в том, что катанка, особенно диаметром 8 мм и менее, имеет низкую технологическую пластичность и неравномерность механических свойств по сечению. Это затрудняет и усложняет процесс ее последующего волочения в проволоку.

Техническая задача, решаемая изобретением, состоит в повышении технологической пластичности и равномерности механических свойств катанки.

Для решения технической задачи в известном способе производства катанки из углеродистой стали для последующего волочения в проволоку, включающем нагрев непрерывно литой заготовки, черновую прокатку полосы, чистовую непрерывную прокатку и охлаждение, согласно предложению нагрев ведут до температуры 1050-1150°С, черновую прокатку завершают при температуре не выше 900°С, после чего полосу дополнительно охлаждают, а непрерывную чистовую прокатку ведут в температурном интервале от 850°С и до 680°С с суммарным коэффициентом вытяжки не менее 4,5. В варианте реализации способа углеродистая сталь содержит, мас.%:

Углерод 0,06-0,12
Марганец 0,36-0,65
Кремний 0,17-0,37
Хром 0,01-0,15
Кальций 0,001-0,004
Азот 0,004-0,012
Железо и примеси Остальное.

Сущность предложенного изобретения состоит в следующем. Окончательно качество катанки из углеродистой непрерывно литой стали (в части равномерности микроструктуры и технологической пластичности при последующем волочении) формируется при чистовой непрерывной прокатке.

В известном способе-аналоге [3] по мере уменьшения площади сечения полосы возрастает неравномерность температурного поля по сечению. Первоначально аустенитизированные в процессе нагрева наружные слои металла, контактирующие с валками и охлаждающей их водой, теряют температуру и переходят в двухфазное аустенитно-ферритное состояние. Их деформирование в чистовых проходах сопровождается формированием неравномерной микроструктуры и механических свойств, что ведет к снижению технологической пластичности катанки при последующем волочении в проволоку, проявляющейся в нестабильности процесса волочения, обрывам проволоки, образованию на ней поверхностных дефектов и др.

После промежуточного охлаждения, непрерывная чистовая прокатки полосы из углеродистой стали в температурном интервале от 850 и до 680°С, как показали наши исследования, гарантированно проистекает в однофазной ферритной области. Поэтому неизбежно существующая неравномерность охлаждения полосы не оказывает влияния на фазовый состав стали. Одновременно с этим деформированная с суммарным коэффициентом вытяжки не менее 4,5 в указанном температурном интервале ферритная фаза углеродистой стали интенсивно рекристаллизуется между проходами. Вновь образующаяся гомогенная зеренная микроструктура феррита с 8-м номером балла зерна обладает наиболее высокой технологической пластичностью при последующем волочении катанки.

Завершение черновой прокатки при температуре не выше 900°С, с одной стороны, гарантирует однофазное аустенитное состояние стали при черновых проходах, чем обеспечивается интенсивная проработка валками изначально литой структуры аустенита, измельчение карбидных включений, а с другой стороны, сокращает технологически необходимую паузу для промежуточного охлаждения полосы между черновой и чистовой прокатками и полного превращения аустенитной фазы в ферритную.

Предложенные температурно-деформационные режимы производства катанки повышают технологическую пластичность и равномерность механических свойств для всего класса углеродистых сталей. Однако наиболее высокие технологическая пластичность и равномерность механических свойств при волочении, определяемую минимальным количеством переходов N по числу используемых волок различного диаметра, достигнуты при использовании стали с предложенным химическим составом.

Экспериментально установлено, что нагрев до температуры ниже 1050°С не обеспечивает полного растворения крупных карбидных включений в углеродистой стали, образующихся при кристаллизации непрерывно литой заготовки, что снижает технологическую пластичность и равномерность механических свойств катанки. Увеличение температуры нагрева более 1150°С не улучшает технологической пластичности, а лишь увеличивает энергозатраты на нагрев непрерывно литых заготовок и расход стали на окалинообразование.

Завершение черновой прокатки при температуре выше 900°С требует увеличения интенсивности и продолжительности дополнительного охлаждения перед чистовой прокаткой, что нецелесообразно.

Чистовая прокатка при температуре выше 850°С не исключает наличия в ферритной фазе включений аустенита, что ухудшает технологическую пластичность и равномерность механических свойств катанки. В то же время чистовая прокатка при температуре ниже 680°С ведет к резкому замедлению процесса рекристаллизации деформированных ферритных зерен и горячему наклепу. Это также снижает технологическую пластичность и стабильность механических свойств катанки из углеродистой стали.

Углерод является основным упрочняющим элементом в стали предложенного состава. При его концентрации менее 0,06% снижается прочность катанки и полученной из нее проволоки. Увеличение содержания углерода более 0,12% снижает технологическую пластичность катанки при ее волочении в проволоку.

Марганец раскисляет непрерывно литую сталь и упрочняет ее. При содержании марганца менее 0,36% механические свойства катанки нестабильны. Увеличение содержания марганца более 0,65% снижают технологическую пластичность катанки при волочении.

Кремний увеличивает скорость деформационного упрочнения стали при волочении, что снижает вероятность обрывов. Увеличение содержания кремния более 0,37%, как и снижение менее 0,17% приводит к снижению технологической пластичности катанки при волочении.

Хром способствует измельчению микроструктуры стали при чистовой горячей прокатке стали предложенного состава в ферритной области. Снижение его концентрации менее 0,01% приводит к увеличению неравномерности механических свойств катанки. Увеличение концентрации хрома более 0,15% снижает технологическую пластичность катанки.

Кальций модифицирует сталь, очищает границы зерен, улучшает деформируемость катанки при осесимметричной схеме напряженного состояния, характерной для волочения. Снижение концентрации кальция менее 0,001% ведет к снижению технологической пластичности. Увеличение содержания кальция более 0,004% приводит к образованию в структуре углеродистой стали хрупких неметаллических включений, которые могут инициализировать обрывы при волочении проволоки, что нецелесообразно.

Азот упрочняет ферритную матрицу по механизму дисперсинного твердения (выпадения карбонитридных частиц). Однако при увеличении содержания азота более 0,012% снижается технологическая пластичность катанки и качество проволоки. Снижение содержания азота менее 0,004% существенно увеличивает стоимость производства стали без улучшения технологической пластичности и равномерности механических свойств, что нецелесообразно.

Примеры реализации способа

Пример 1. Непрерывно литые заготовки квадратного сечения 80×80 мм из углеродистой стали марки Ст3сп с химическим составом по ГОСТ 380-2005 нагревают в методической печи с газовым отоплением до температуры аустенитизации Та=1100°С и подвергают черновой прокатке в черновой группе клетей проволочного стана 150 в полосу круглого сечения диаметром D0=15,0 мм. Во время черновой прокатки полоса охлаждается до температуры Тч=870°С. Выходящую из черновой группы клетей полосу в аустенитном состоянии охлаждают водой до температуры Тнп=830°C. В процессе охлаждения в углеродистой стали завершается α→γ превращение аустенита в феррит.

После дополнительного охлаждения полосу задают в блок чистовых клетей и осуществляют непрерывную чистовую прокатку в системе калибров «овал-круг» в катанку диаметром D1=6,0 мм при температуре конца прокатки Ткп=710°С. Суммарный коэффициент вытяжки при чистовой прокатке равен:

Прокатанную катанку охлаждают водой и с помощью виткоукладчика верно укладывают на транспортер для окончательного охлаждения на воздухе. Охлажденную катанку подвергают солянокислотному травлению для удаления окалины.

Готовая катанка имеет высокую равномерность механических свойств и технологическую пластичность: она поддается мокрому волочению за минимально возможное число переходов N=9 раз по диаметру волок в проволоку конечного диаметра 3,0 мм без обрывов и образования дефектов поверхности.

Варианты реализации способа по примеру 1 приведены в табл.1. Из данных, приведенных в табл.1 следует, что реализация предложенного способа (варианты №2-4) обеспечивают повышение технологической пластичности и равномерности механических свойств катанки из углеродистой стали марки Ст3сп: для волочения проволоки диаметром 3,0 мм требуется наименьшее число переходов по диаметру волок N=9.

Таблица 1.
Режимы производства катанки из стали марки Ст3сп и их эффективность
№ варианта Та, °С Тч, °C Тнп, °С Ткп, °С А N, раз Дефекты поверхн. Обрывы
1. 1040 840 830 670 4,48 12 трещины есть
2. 1050 865 820 680 4,50 9 нет нет
3. 1100 870 830 710 6,25 9 нет нет
4. 1150 900 850 730 8,95 9 нет нет
5. 1160 910 860 735 14,75 13 трещины нет

проволока не имеет дефектов поверхности, обрывы отсутствуют. В случаях запредельных значений заявленных параметров (варианты №1 и №5) технологическая пластичность и равномерность механических свойств катанки снижаются: возрастает до 12-13 требуемое число переходов N, на поверхности проволоки имеются трещины, не исключены обрывы в процессе волочения.

Пример 2.

В кислородном конвертере производят выплавку сталей с различным химическим составом (табл.2).

Выплавленные стали подвергают непрерывной разливке в заготовки квадратного сечения 80×80 мм.

Непрерывно литые заготовки из стали с составом №3 нагревают в методической печи до температуры аустенитизации Та=1090°С и подвергают черновой прокатке в полосу круглого сечения диаметром D0=14 мм. Черновую прокатку завершают при температуре полосы Tч=880°C.

Таблица 2.
Химический состав углеродистых сталей
№ состава Содержание химических элементов, мас.%
С Mn Si Cr Ca N Fe + примеси
1. 0,05 0,34 0,16 0,009 - 0,003 Остальное
2. 0,06 0,36 0,17 0,01 0,001 0,004 -:-
3. 0,09 0,50 0,27 0,08 0,002 0,008 -:-
4. 0,12 0,65 0,37 0,15 0,004 0,012 -:-
5. 0,14 0,66 0,38 0,16 0,006 0,014 -:-

По завершении черновой прокатки полосу охлаждают до температуры Тнп=810°СС и подвергают непрерывной чистовой прокатке в катанку диаметром D1=5,0 мм с суммарным коэффициентом вытяжки λ=7,84. Температуру конца прокатки поддерживают равной Ткп=700.

Прокатанную катанку после охлаждения и травления подвергают мокрому волочению в проволоку диаметром 2,0 мм за минимально возможное число переходов по диаметру волок N=7 раз. За счет того, что катанка имела повышенные технологическую пластичность и равномерность механических свойств, волочение протекало без образование поверхностных дефектов и обрывов проволоки.

Варианты реализации способа по примеру 2 и показатели их эффективности приведены в табл.3.

Из данных, приведенных в табл.3, следует, что использование стали предложенного состава (составы №2-4) и предложенных режимов производства (варианты №2-4) позволяет повысить технологическую пластичность и равномерность механических свойств катанки. Благодаря этому при волочении катанки снижается до N=7 требуемое число переходов по диаметру волок, исключаются дефекты поверхности и обрывы проволоки

Таблица 3.
Режимы производства катанки и их эффективность
№ варианта № состава Та, °С Тч, °С Тнп, °С Ткп, °С λ Nmin, раз Дефекты поверхн. Обрывы
1. 5. 1040 890 830 670 7,84 15 трещины есть
2. 4. 1050 825 820 730 8,36 7 нет нет
3. 3. 1090 810 830 700 7,84 7 нет нет
4. 2. 1150 900 850 680 4,50 7 нет нет
5. 1. 1160 910 860 735 4,40 12 трещины есть

при волочении. В случаях запредельных значений заявленных параметров (варианты №1 и №5) технологическая пластичность и равномерность механических свойств катанки снижаются, вследствие чего возрастает число переходов N до 12-15, на поверхности проволоки имеются трещины, не исключены обрывы в процессе волочения.

Технико-экономические преимущества предложенного способа состоят в том, что нагрев непрерывно литых заготовок из углеродистой стали до 1050-1150°С, завершение черновой прокатки при температуре не выше 900°С, последующее дополнительное охлаждение полосы и непрерывная чистовая прокатка в температурном интервале от 850°С и до 680°С с суммарным коэффициентом вытяжки не менее 4,5, обеспечивает пластическую деформацию полосы в однофазной ферритной области. Ферритная фаза остается стабильной при понижении температуры полосы в процессе чистовой прокатки. При этом счет многоциклового измельчения зерен микроструктуры, динамической и статической из рекристаллизации формируется гомогенная структура металла, равномерные механические свойства, повышается технологическая пластичность и стабильность механических свойств катанки.

В качестве базового объекта при оценке экономической эффективности предложенного способа принят известный способ [3]. Использование предложенного способа обеспечивает повышение рентабельность производства катанки из углеродистой стали на 5-10%.

Литературные источники

1. Патент РФ №2292247, МПК В21В 1/16, 2007 г.

2. М.А. Беняковский и др. Технология прокатного производства. Справочник. T.1. - М.: Металлургия, 1991 г., с.61, 334, 400.

3. Патент РФ №2243834, МПК В21В 1/46, 2005 г.

Источник поступления информации: Роспатент

Показаны записи 211-220 из 266.
20.07.2015
№216.013.648d

Способ определения напряжений в массиве горных пород

Изобретение относится к горному делу и может быть использовано для определения напряжений в массиве горных пород. Техническим результатом изобретения является определение факта превышения значением максимального главного напряжения критического уровня, равного или превышающего 0,9 от предела...
Тип: Изобретение
Номер охранного документа: 0002557288
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.648e

Установка для подготовки шахтного метана к утилизации

Изобретение относится к угольной промышленности и может быть использовано при подготовке шахтного метана к утилизации различными потребителями. Техническим результатом является повышение эффективности работы установки подготовки шахтного метана к утилизации, путем обеспечения возможности...
Тип: Изобретение
Номер охранного документа: 0002557289
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.65ca

Теплоноситель для солнечного коллектора

Изобретение относится к органическим теплоносителям, а именно к жидким пожаробезопасным теплоносителям на водно-гликолиевой основе, используемым для преобразования электромагнитного излучения Солнца в тепловую энергию для нагрева теплоносителя. Теплоноситель седиментационно устойчивый для...
Тип: Изобретение
Номер охранного документа: 0002557611
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.65cb

Запирающая прокладка для многопуансонного устройства высокого давления и высоких температур

Изобретение относится к области изготовления синтетических алмазов с использованием многопуансонных устройств высокого давления и касается запирающей прокладки для многопуансонных устройств высокого давления и высоких температур. Прокладка размещена между пуансонами многопуансонного устройства...
Тип: Изобретение
Номер охранного документа: 0002557612
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6894

Способ электролитического получения мелкодисперсных порошков серебра

Изобретение относится к порошковой металлургии. Мелкодисперсный порошок серебра получают электролизом раствора азотнокислого серебра с концентрацией серебра 15-60 г/дм и свободной азотной кислоты 5-20 г/дм при постоянном токе плотностью 1,5-2,0 А/дм. В качестве катодов используют титановые...
Тип: Изобретение
Номер охранного документа: 0002558325
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6982

Способ определения объема скважины

Изобретение относится к горному делу и может быть использовано для определения объема скважины, пробуренной в газоносных породных массивах, а также в измерительной технике для определения объема негерметичной емкости. Сущность способа заключается в том, что при определении объема скважины,...
Тип: Изобретение
Номер охранного документа: 0002558563
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69a8

Способ получения карбида хрома crc

Изобретение может быть использовано в металлургии. Для получения карбида хрома CrC смесь порошка хрома и сажи механически активируют в центробежной планетарной мельнице при ускорении шаров 25-45 g и соотношении шихта : шаровая загрузка по массе 1:20 в течение 30-40 мин. Затем шихту нагревают...
Тип: Изобретение
Номер охранного документа: 0002558601
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a09

Литниковая система для центробежного фасонного литья с вертикальной осью вращения

Изобретение относится к области литейного производства. Литниковая система содержит центральный стояк с расширяющейся нижней частью, горизонтальные литниковые ходы, вертикальный литниковый ход, литниковые питатели отливки, центральный металлоприемник, горизонтальный кольцевой коллектор....
Тип: Изобретение
Номер охранного документа: 0002558698
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6ac1

Способ синтеза нанокомпозита coni/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологии. Сначала при температуре 25÷50°C готовят раствор, содержащий, мас.%: полиакрилонитрил - 4,58; CoCl·6HO - 1,86; NiCl·6HO - 1,86; диметилформамид - 91,7, и выдерживают до полного растворения всех компонентов. Затем удаляют диметилформамид...
Тип: Изобретение
Номер охранного документа: 0002558887
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cb7

Способ газодинамической отсечки шлака от металла при выпуске плавки из дуговой сталеплавильной печи

Изобретение относится к области металлургии, в частности к дуговым печам, в которых используют газодинамическую отсечку шлака от металла при выпуске плавки. Отсечку шлака осуществляют посредством двух инертных газовых потоков, первый из которых подают в виде струй азота или аргона снизу в объем...
Тип: Изобретение
Номер охранного документа: 0002559389
Дата охранного документа: 10.08.2015
Показаны записи 211-220 из 294.
27.08.2015
№216.013.7565

Дуговая сталеплавильная печь с использованием газодинамической отсечки шлака от металла при выпуске плавки

Изобретение относится к области электрометаллургии, в частности к дуговым печам для плавки стали. Печь выполнена с возможностью измерения температуры металла и шлака на выходе из выпускного отверстия летки посредством радиационного пирометра. Устройство для газодинамической отсечки...
Тип: Изобретение
Номер охранного документа: 0002561628
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7568

Способ газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака при выпуске металла через выпускное отверстие летки агрегата. Осуществляют предварительную отсечку шлака внутри рабочего пространства печи путем подачи потока инертного газа на...
Тип: Изобретение
Номер охранного документа: 0002561631
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.756a

Устройство газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака от металла при выпуске его через выпускное отверстие летки дуговой сталеплавильной печи. Устройство снабжено радиационным пирометром, предназначенным для автоматического определения по разнице...
Тип: Изобретение
Номер охранного документа: 0002561633
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75f7

Способ определения коэффициента вязкости микроразрушения тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов (варианты)

Изобретение относится к области исследования физических свойств металлов и сплавов, а именно к анализу вязкости разрушения тонких пленок многокомпонентных аморфно-нанокристаллических металлических сплавов (АНКМС) после их перехода из одного состояния в другое, в результате термической...
Тип: Изобретение
Номер охранного документа: 0002561788
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76c0

Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов. Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с...
Тип: Изобретение
Номер охранного документа: 0002561989
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77fb

Способ добычи железомарганцевых конкреций из илистых донных отложений и устройство для его осуществления

Группа изобретений относится к способу и устройству для подводной добычи железомарганцевых конкреций из илистых донных отложений. Технический результат заключается в повышении эффективности использования трала за счет уменьшения количества холостых ходов, повышении полноты выемки полезного...
Тип: Изобретение
Номер охранного документа: 0002562304
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d03

Сверхчувствительный интеллектуальный магнитоимпедансный датчик с расширенным диапазоном рабочих температур

Изобретение относится к измерительной технике и представляет собой сверхчувствительный интеллектуальный магнитометрический датчик (МИ датчик) с расширенным диапазоном рабочих температур области. Датчик включает магнитоимпедансный элемент (МИ элемент) с двумя катушками, выполненными одна над...
Тип: Изобретение
Номер охранного документа: 0002563600
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d0f

Способ извлечения серебра из лома серебряно-цинковых аккумуляторов, содержащих свинец

Изобретение относится к пирометаллургии. Способ извлечения серебра из лома серебряно-цинковых аккумуляторов, содержащих свинец, включает плавку лома при температуре нагрева 1150-1200°C, охлаждение полученного расплава со скоростью от 1950°C/час до 2050°C/час до температуры 400°C и плавку...
Тип: Изобретение
Номер охранного документа: 0002563612
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d35

Способ получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена с повышенными радиационно-защитными свойствами

Изобретение относится к способу получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена для изготовления конструкционных изделий радиационной защиты. Способ включает предварительную сушку при температуре 100-130°C порошков сверхвысокомолекулярного полиэтилена,...
Тип: Изобретение
Номер охранного документа: 0002563650
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e28

Способ взрывания на открытых разработках разнопрочных слоистых массивов горных пород

Изобретение относится к горной промышленности и строительству, а именно к способам взрывания на открытых разработках слоистых массивов горных пород с нижним менее прочным слоем породы и верхним более прочным слоем. Способ включает бурение нисходящих скважин, их заряжание комбинированными...
Тип: Изобретение
Номер охранного документа: 0002563893
Дата охранного документа: 27.09.2015
+ добавить свой РИД