×
20.08.2013
216.012.6185

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОГО МЕТАЛЛА ЧЕРЕЗ ПРОТОЧНУЮ ЧАСТЬ ЦИРКУЛЯЦИОННОГО КОНТУРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники. Способ измерения расхода жидкого металла через проточную часть циркуляционного контура включает измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла, прокачку жидкого металла электромагнитным насосом через рабочий канал, измерение силы тока питания электромагнитного насоса и падения напряжения на его рабочем канале между токоподводящими шинами и вычисление расхода по формуле, учитывающей расход жидкого металла, силу тока питания насоса, падение напряжения на рабочем канале насоса, электрическое сопротивление рабочего канала насоса при нулевом расходе и постоянную величину, определяемую путем градуировки при рабочей температуре насоса. Технический результат заключается в упрощении циркуляционного контура. 2 ил.
Основные результаты: Способ измерения расхода жидкого металла через проточную часть циркуляционного контура, включающий измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла, прокачку жидкого металла электромагнитным насосом через рабочий канал, измерение силы тока питания электромагнитного насоса и падения напряжения на его рабочем канале между токоподводящими шинами, и вычисление расхода по формуле V=C(U-IR), где V - расход жидкого металла, м/с; I - сила тока питания насоса, А; U - падение напряжения на рабочем канале насоса, В; R - электрическое сопротивление рабочего канала насоса при нулевом расходе, Ом; С - постоянная величина, которую определяют градуировкой при рабочей температуре насоса, м/(с·B).

Изобретение относится к области измерительной техники, в частности к измерению расхода жидких металлов в циркуляционных контурах различных установок.

Известен электромагнитный способ измерения расхода жидкого металла, включающий прокачку его через участок трубопровода, снабженный двумя электродами, присоединенными диаметрально противоположно к его внешней поверхности, и помещенный в магнитное поле [Шерклиф Дж. Теория электромагнитного измерения расхода. М., Мир, 1965]. При движении жидкого металла вдоль трубопровода, помещенного в магнитное поле, в жидкости возникает электродвижущая сила (эдс) индукции, пропорциональная скорости жидкости и определяемая законом Фарадея. Измеряя разность потенциалов между электродами, определяют скорость и вычисляют расход жидкости.

Известен способ прокачки жидких металлов с помощью кондукционных электромагнитных насосов, содержащих магнитную систему и рабочий канал с перекачиваемым жидким металлом, снабженный токоподводящими шинами для пропускания через него постоянного тока в направлении, перпендикулярном магнитному полю. В соответствии с законом Ампера на проводник с током, находящийся в магнитном поле, действует сила, которая и заставляет жидкий металл двигаться вдоль рабочего канала насоса. При движении жидкого металла в магнитном поле такого насоса также возникает эдс индукции, пропорциональная скорости жидкости. Однако индуцированная эдс недоступна для непосредственного измерения, а разность потенциалов между токоподводящими шинами зависит не только от скорости жидкого металла, но и от силы тока, питающего насос.

Ни одно из указанных технических решений в отдельности не позволяет обеспечить комплексное решение задачи прокачки и измерения расхода жидкого металла в циркуляционном контуре. Поэтому требуется два устройства (насос и расходомер), каждое из которых имеет значительные размеры и массу, и соответствующую стоимость.

Цель данного изобретения состоит в исключении указанного недостатка, а именно в исключении излишнего оборудования циркуляционного контура.

Для исключения указанного недостатка предлагается:

- измерять электрическое сопротивление рабочего канала электромагнитного насоса при нулевом расходе жидкого металла при рабочей температуре;

- прокачивать жидкий металл с помощью электромагнитного насоса;

- измерять силу тока питания электромагнитного насоса I при прокачке жидкого металла;

- измерять падение напряжения U на рабочем канале электромагнитного насоса при прокачке жидкого металла;

- определять расход жидкого металла V по соотношению (1), с учетом измеренных величин, перечисленных выше, и градуировочного коэффициента С.

Способ измерения расхода жидкого металла через проточную часть циркуляционного контура осуществляют следующим образом.

1. При закрытом напорном вентиле циркуляционного контура измеряют электрическое сопротивление рабочего канала R0 при нулевом расходе жидкого металла, при рабочей температуре.

2. Открывают напорный вентиль циркуляционного контура и осуществляют прокачку жидкого металла в циркуляционном контуре с помощью электромагнитного насоса.

3. Измеряют силу тока питания электромагнитного насоса I.

4. Измеряют падение напряжения U на рабочем канале электромагнитного насоса между токоподводящими шинами.

5. Вычисляют расход жидкого металла V по соотношению:

где V - расход жидкого металла, м3/с; С - градуировочный коэффициент, определяемый экспериментально, м3/(с·В); U - падение напряжения на рабочем канале электромагнитного насоса, В; I - сила тока питания электромагнитного насоса. А; R0 - электрическое сопротивление рабочего канала при нулевом расходе жидкого металла, при рабочей температуре.

На фиг.1 представлена эквивалентная электрическая схема кондукционного электромагнитного насоса. На указанном фиг.1 приняты следующие обозначения:

I - ток питания насоса;

Iж - ток в жидком металле, заполняющем рабочий канал электромагнитного насоса;

Ic - ток в стенке рабочего канала электромагнитного насоса;

Е - электродвижущая сила, индуцируемая в жидком металле, движущемся в рабочем канале электромагнитного насоса;

U - напряжение на стенке рабочего канала электромагнитного насоса;

Rж - электрическое сопротивление жидкого металла, между токоподводящими шинами электромагнитного насоса;

Rc - электрическое сопротивление стенки рабочего канала между токоподводящими шинами электромагнитного насоса, т.е. сопротивление пустого канала.

Следует заметить, что Rж и Rc являются постоянными величинами для конкретного насоса и конкретного теплоносителя.

На основании закона Кирхгофа для электрической цепи можно записать два уравнения:

Кроме того, из закона Ома следует

Совместное решение этих уравнений дает выражение для индуцированной эдс в виде

Сомножитель при токе питания I представляет собой электрическое сопротивление параллельно включенных сопротивлений стенки рабочего канала и жидкого металла в нем, т.е. сопротивление насоса между токоподводящими шинами R0.

Тогда уравнение (5) можно переписать в виде:

Сопротивление R0 легко измерить, когда индуцированная эдс равна нулю, т.е. при неподвижном жидком металле в рабочем канале.

где U0 и I0 - напряжение и ток, измеренные на пустом канале электромагнитного насоса.

Итак, для осуществления способа необходимо измерить электрическое сопротивление рабочего канала насоса при нулевом расходе теплоносителя, т.е. при закрытом вентиле на напорной линии. При этом канал насоса должен быть разогрет до рабочей температуры, при которой будет эксплуатироваться насос.

С другой стороны, эдс, индуцированная в жидкости при ее движении в магнитном поле, в соответствии с законом Фарадея, равна

где В - магнитная индукция, известная и постоянная величина для конкретного насоса, W - скорость жидкости, L - размер канала между электродами. В случае круглой трубы это - внутренний диаметр, а в случае прямоугольного канала - его высота. В любом случае - это постоянная величина для конкретного канала.

Объемный расход жидкости V равен

где S - поперечное сечение канала.

Из формул (8, 9, 10) следует формула для определения расхода жидкого металла

Обозначив постоянную для конкретного насоса величину (1+Rж/Rc)S/BL коэффициентом С, получим приведенную выше формулу (1)

где С - постоянная величина, равная

Поэтому для определения расхода по предлагаемому способу достаточно измерить, кроме сопротивления R0, ток питания насоса и падение напряжения на рабочем канале между токоподводящими шинами.

Однако вычисление коэффициента С по формуле (12) сопряжено со значительными погрешностями физических величин, входящих в нее. Достаточно сказать, что измерение магнитной индукции доступными приборами дает погрешность 1,5-2,5%. Поэтому, как и в известном электромагнитном способе измерения расхода, нужно произвести экспериментальную градуировку и определить коэффициент С.

Таким образом, формула (1) позволяет определить расход жидкого металла, создаваемого кондукционным насосом, без применения каких бы то ни было расходомеров.

Пример конкретного осуществления способа

Данный способ был реализован в опытном образце кондукционного электромагнитного насоса, имеющего следующие параметры:

Диаметр подсоединительных патрубков, мм 11
Ширина сплющенной части рабочего канала, мм 3
Высота сплющенной части рабочего канала, мм 16
Магнитная индукция, Тл 0,184
Масса насоса, кг 5
Ток питания, А 200
Перекачиваемая среда натрий
Температура натрия, °С 425
Электрическое сопротивление рабочего канала насоса при неподвижном натрии при температуре 425°С, Ом 76,5·10-6
Напор на закрытый вентиль, Па 10000
Производительность насоса (расход), м3 10-4
Напряжение на рабочем канале, В 14,5·10-3

Рабочий канал насоса выполнен из нержавеющей стали Х18Н10Т, магнитное поле создавалось постоянными магнитами, изготовленными из железо-никель-кобальтового сплава ЮН 13ДК24.

Испытания насоса и его градуировка в режиме расходомера производились на экспериментальном стенде, обеспечивающем возможность определения расхода натрия по времени заполнения мерного бака известного объема. Погрешность определения расхода, воспроизводимого на экспериментальном стенде, составляла ±0,8%. Градуировочная зависимость представлена на фиг.2 в виде (U-IR0)=f(V), где U - измеренное падение напряжения на рабочем канале, I - измеренный ток питания электромагнитного насоса,

R0 - измеренное электрическое сопротивление рабочего канала электромагнитного насоса,

V - расход натрия, вычисленный по формуле (1) описания изобретения.

Технический результат использования данного способа измерения расхода состоит в снижении капитальных затрат и стоимости эксплуатации циркуляционного контура.

Способ измерения расхода жидкого металла через проточную часть циркуляционного контура, включающий измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла, прокачку жидкого металла электромагнитным насосом через рабочий канал, измерение силы тока питания электромагнитного насоса и падения напряжения на его рабочем канале между токоподводящими шинами, и вычисление расхода по формуле V=C(U-IR), где V - расход жидкого металла, м/с; I - сила тока питания насоса, А; U - падение напряжения на рабочем канале насоса, В; R - электрическое сопротивление рабочего канала насоса при нулевом расходе, Ом; С - постоянная величина, которую определяют градуировкой при рабочей температуре насоса, м/(с·B).
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОГО МЕТАЛЛА ЧЕРЕЗ ПРОТОЧНУЮ ЧАСТЬ ЦИРКУЛЯЦИОННОГО КОНТУРА
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОГО МЕТАЛЛА ЧЕРЕЗ ПРОТОЧНУЮ ЧАСТЬ ЦИРКУЛЯЦИОННОГО КОНТУРА
Источник поступления информации: Роспатент

Показаны записи 231-240 из 555.
10.11.2015
№216.013.8ed9

Способ механических испытаний и стенд для его реализации

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Способ заключается в размещении в полости ствола контейнера со столом с установленным на нем ОИ. При воздействии на контейнер продуктов взрыва происходит его ускоренное...
Тип: Изобретение
Номер охранного документа: 0002568178
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb9

Стенд для испытания объекта на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний изделий на удар. Стенд содержит силовую раму с вертикальными стойками, устройство подъема, соединенное через устройство удержания и сброса с приспособлением для закрепления объекта испытания (ОИ), наковальню,...
Тип: Изобретение
Номер охранного документа: 0002568409
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c3

Спиральный взрывомагнитный генератор и способ кумуляции импульса тока

Изобретение относится к физике высоких плотностей энергии, в частности к преобразованию энергии взрывчатого вещества в электромагнитную энергию, и может быть использовано для кумуляции импульсов электрического тока мегаамперного уровня. Технический результат состоит в повышении мощности...
Тип: Изобретение
Номер охранного документа: 0002568675
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9380

Способ измерения пространственного распределения ионной температуры водородной плазмы

Изобретение относится способу измерения пространственного распределения ионной температуры водородной плазмы и характеризуется тем, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует...
Тип: Изобретение
Номер охранного документа: 0002569379
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.944a

Микроволновый одноканальный радиоинтерферометр с волноведущим зондирующим трактом

Изобретение относится к радиоэлектронной технике микроволнового диапазона и может быть использовано для измерения параметров быстропротекающих процессов движения различных материальных объектов, ударно-волновых и детонационных фронтов, плазмы. Техническим результатом является возможность...
Тип: Изобретение
Номер охранного документа: 0002569581
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95a7

Пространственный симметричный магнитопровод

Изобретение относится к электротехнике и может быть использовано в магнитопроводах электрооборудования. Технический результат состоит в повышении мощности, снижении потерь энергии на вихревые токи и тока хх. Магнитопровод выполнен из аморфного ферромагнитного ленточного материала и содержит...
Тип: Изобретение
Номер охранного документа: 0002569931
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.95ef

Радиопоглощающий материал

Изобретение относится к радиотехнике и может быть использовано для изготовления поглотителей электромагнитного излучения 5-миллиметрового диапазона (52-73 ГГц). Радиопоглощающий материал содержит полимерное связующее и наполнитель - углеродные нанотрубки, предварительно обработанные в смеси...
Тип: Изобретение
Номер охранного документа: 0002570003
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9653

Установка для термомеханических испытаний

Изобретение относится к испытательному оборудованию, а конкретно к оборудованию для испытаний на статические силовые воздействия при повышенных температурах. Установка содержит силовую раму, тепловую камеру с нагревателем и крышкой, приспособление для установки в камере объекта испытаний (ОИ),...
Тип: Изобретение
Номер охранного документа: 0002570103
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9698

Способ управления параметрами излучения фазированной антенной решетки на основе сверхвысокочастотного генератора клистронного типа

Изобретение относится к сверхвысокочастотной (СВЧ) технике, может быть использовано при разработке мощных источников СВЧ излучения с высоким электронным КПД для целей радиолокации, навигации и передачи информации. В способе управления в процессе доускорения обеспечивают электронное управление...
Тип: Изобретение
Номер охранного документа: 0002570172
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96d0

Способ изготовления y-сочленения в виде системы переплетённых проводников

Изобретение относится к области радиотехники и может быть использовано для изготовления Y-сочленения в виде системы переплетенных плоских проводников при производстве циркуляторов на сосредоточенных элементах метрового и дециметрового диапазонов длин волн с высоким уровнем рабочей мощности....
Тип: Изобретение
Номер охранного документа: 0002570228
Дата охранного документа: 10.12.2015
Показаны записи 231-240 из 414.
10.11.2015
№216.013.8ed9

Способ механических испытаний и стенд для его реализации

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Способ заключается в размещении в полости ствола контейнера со столом с установленным на нем ОИ. При воздействии на контейнер продуктов взрыва происходит его ускоренное...
Тип: Изобретение
Номер охранного документа: 0002568178
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb9

Стенд для испытания объекта на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний изделий на удар. Стенд содержит силовую раму с вертикальными стойками, устройство подъема, соединенное через устройство удержания и сброса с приспособлением для закрепления объекта испытания (ОИ), наковальню,...
Тип: Изобретение
Номер охранного документа: 0002568409
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c3

Спиральный взрывомагнитный генератор и способ кумуляции импульса тока

Изобретение относится к физике высоких плотностей энергии, в частности к преобразованию энергии взрывчатого вещества в электромагнитную энергию, и может быть использовано для кумуляции импульсов электрического тока мегаамперного уровня. Технический результат состоит в повышении мощности...
Тип: Изобретение
Номер охранного документа: 0002568675
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9380

Способ измерения пространственного распределения ионной температуры водородной плазмы

Изобретение относится способу измерения пространственного распределения ионной температуры водородной плазмы и характеризуется тем, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует...
Тип: Изобретение
Номер охранного документа: 0002569379
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.944a

Микроволновый одноканальный радиоинтерферометр с волноведущим зондирующим трактом

Изобретение относится к радиоэлектронной технике микроволнового диапазона и может быть использовано для измерения параметров быстропротекающих процессов движения различных материальных объектов, ударно-волновых и детонационных фронтов, плазмы. Техническим результатом является возможность...
Тип: Изобретение
Номер охранного документа: 0002569581
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95a7

Пространственный симметричный магнитопровод

Изобретение относится к электротехнике и может быть использовано в магнитопроводах электрооборудования. Технический результат состоит в повышении мощности, снижении потерь энергии на вихревые токи и тока хх. Магнитопровод выполнен из аморфного ферромагнитного ленточного материала и содержит...
Тип: Изобретение
Номер охранного документа: 0002569931
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.95ef

Радиопоглощающий материал

Изобретение относится к радиотехнике и может быть использовано для изготовления поглотителей электромагнитного излучения 5-миллиметрового диапазона (52-73 ГГц). Радиопоглощающий материал содержит полимерное связующее и наполнитель - углеродные нанотрубки, предварительно обработанные в смеси...
Тип: Изобретение
Номер охранного документа: 0002570003
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9653

Установка для термомеханических испытаний

Изобретение относится к испытательному оборудованию, а конкретно к оборудованию для испытаний на статические силовые воздействия при повышенных температурах. Установка содержит силовую раму, тепловую камеру с нагревателем и крышкой, приспособление для установки в камере объекта испытаний (ОИ),...
Тип: Изобретение
Номер охранного документа: 0002570103
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9698

Способ управления параметрами излучения фазированной антенной решетки на основе сверхвысокочастотного генератора клистронного типа

Изобретение относится к сверхвысокочастотной (СВЧ) технике, может быть использовано при разработке мощных источников СВЧ излучения с высоким электронным КПД для целей радиолокации, навигации и передачи информации. В способе управления в процессе доускорения обеспечивают электронное управление...
Тип: Изобретение
Номер охранного документа: 0002570172
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96d0

Способ изготовления y-сочленения в виде системы переплетённых проводников

Изобретение относится к области радиотехники и может быть использовано для изготовления Y-сочленения в виде системы переплетенных плоских проводников при производстве циркуляторов на сосредоточенных элементах метрового и дециметрового диапазонов длин волн с высоким уровнем рабочей мощности....
Тип: Изобретение
Номер охранного документа: 0002570228
Дата охранного документа: 10.12.2015
+ добавить свой РИД