×
20.08.2013
216.012.5f96

Результат интеллектуальной деятельности: СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при ремонте конструктивных элементов с заполнением сваркой углублений поврежденной области. Углубление (4) имеет контур (16), который ограничивает наружную поверхность (13) конструктивного элемента относительно углубления (4). Углубление (4) заполняют слоями сварочных валиков, предпочтительно с использованием лазерной сварки. Для предотвращения образования дефектов соединения и трещин слои накладывают так, что валики попадают на наружную поверхность (13) также за пределами контура (16) углубления (4). Используют несколько слоев сварочных валиков для заполнения углубления (4) до тех пор, пока последний слой полностью не будет выдаваться за поверхность (13). 18 з.п. ф-лы, 16 ил.

Изобретение касается способа заполнения углубления конструктивного элемента посредством сварки и конструктивного элемента.

При ремонте конструктивных элементов посредством сварки часто также заполняются углубления. Эти углубления возникают при образовании седловины поврежденной области, которая возникла во время эксплуатации конструктивного элемента. Для восстановления должен быть добавлен материал для получения геометрии конструктивного элемента, а также достаточной прочности этого конструктивного элемента. В зависимости от сварочного присадочного материала возможно частое образование дефектов соединения и трещин добавляемого материала.

Поэтому задачей изобретения является решить вышеназванную проблему.

Эта проблема решается с помощью способа по п.п.1, 2 или 14 и конструктивного элемента по п.15.

В зависимых пунктах перечислены другие предпочтительные меры, которые могут комбинироваться друг с другом произвольным образом для достижения других преимуществ.

Показано:

фиг.1-9: стратегии заполнения при сварке,

фиг.10-12: действия, выполняемые при термообработке сварного шва,

фиг.13: газовая турбина,

фиг.14: лопатка турбины,

фиг.15: топочная камера,

фиг.16: перечень суперсплавов.

Фигуры и описание представляют собой только примеры осуществления изобретения.

На фиг.1 показан конструктивный элемент 1, 120, 130, 155, у которого в области поверхности 13 имеется углубление 4. Конструктивный элемент 1 предпочтительно представляет собой лопатку 120, 130 турбины и состоит предпочтительно из никелевого суперсплава или суперсплава на основе кобальта (фиг.15).

Углубление 4 должно быть заполнено сварочным материалом. Углубление 4 ограничивается контуром 16 (замкнутая линия) относительно поверхности 13.

Углубление 4 имеет боковые поверхности 28, которые предпочтительно проходят наискосок и не перпендикулярно поверхности 13 вблизи контура 16 (фиг.5). Углы боковой поверхности (углы между боковой поверхностью 28 и воображаемым продолжением поверхности 13 над углублением 4) составляют предпочтительно от 30° до 40°.

Заполнение углубления 4 происходит предпочтительно посредством наплавки.

В качестве способа сварки предпочтительно применяется лазерная сварка.

Слой I, II, III сварки (фиг.8, 9) состоит из нескольких валиков 10', 10'', 10''', которые образуют сплошную поверхность. Валики 10', 10'', 10''' каждого слоя I, II, III сварки предпочтительно накладываются в форме меандра (фиг.2, 3, 4, 6, 7).

Основное направление 25 валиков 10', 10'', 10'''… представляет собой наиболее длинную протяженность валика 10', 10'', 10''' и изображено на фиг.2, 3, 4, 6, 7 и 10 в виде стрелки.

Однако валики 10', 10'', 10'''… переходят за контур 16 углубления 4 и попадают, таким образом, частично на поверхность 13 (фиг.2, 5, 6, 7, 8, 9). Предпочтительно валик 10', 10''… находится как на поверхности 13 конструктивного элемента 1, 120, 130, 155, так и в углублении 4.

Поперечное сечение таких наложенных друг на друга слоев I, II, III показано на фиг.8, 9.

Образовавшийся при этом бугор 22 (фиг.5), который выдается за поверхность 13, либо оставляется, либо позднее сошлифовывается или удаляется посредством фрезерования. Благодаря намеренному переходу за пределы, то есть благодаря дополнительному сварочному материалу в области поверхности 13, достигаются хорошие результаты сварки, и в готовом сварном конструктивном элементе 1, 120, 130, 155 не возникает трещин. Необходимо только еще предпочтительно удалить сварочный материал над поверхностью 13.

На фиг.3 показана другая стратегия заполнения, применяемая при сварке. При этом внутри углубления 4 сначала укладывается рамка 6, которая 6 повторяет контур 16. Эта рамка 6 (= первый валик) в случае прямоугольного углубления 4 также является прямоугольной.

Этот первый валик 6 может находиться внутри контура 16 (фиг.3, 4) или на поверхности 13 (фиг.6, 7). Предпочтительно валик 6 (фиг.6, 7) проходит за контуром 16, т.е. по поверхности 13 и в углублении 4.

Предпочтительно может быть наложен другой валик 7, который также соответствует наружному контуру углубления 4 и находится внутри первого валика 6 (фиг.4, 7).

Затем внутри контура 6, 7 выбирается траектория валика 10', 10'', … (фиг.3, 4, 6, 7) в форме меандра. Ориентация 25 наиболее длинной части 11 зигзагообразной кривой может быть направлена по кратчайшей ширине углубления 4 (фиг.3).

Наиболее длинная часть 11 зигзагообразной кривой может также проходить параллельно наиболее длинной ориентации углубления 16 (фиг.4, 6, 7). Ориентация основного направления 25 может также варьироваться послойно (I, II, III) (не изображено).

Нет необходимости в обязательном заполнении углублений. Материал может также наноситься поверхностно на каждую поверхность (фиг.2, 3, 4, 6, 7). Контур 16 представляет собой в этом случае ограничение покрываемой поверхности.

На фиг.8 показано поперечное сечение описанной выше стратегии заполнения (фиг.2) после сварки.

Углубление 4 предпочтительно полностью закрывается первым слоем I валиков (фиг.2), т.е. первый слой I сварки также предпочтительно доходит до контура 16 и выходит за него.

Затем наносится второй слой II сварки, конец которого также выдается за поверхность 13.

Второй слой II сварки предпочтительно полностью закрывает первый слой I сварки. Это наслоение продолжается до тех пор, пока предпочтительно последний слой III полностью не будет наложен на поверхность 13.

На фиг.9 показана другая стратегия заполнения при сварке, в частности, особый вариант осуществления стратегии, показанной на фиг.8.

Здесь первый слой I сварки посредством нескольких валиков (10', 10'', 10''') с основным направлением 25 накладываются параллельно плоскости чертежа (ориентация 25 является произвольной). Основное направление 2 представляет собой наиболее длинную протяженность 11 валика 10', 10'', … при его наложении в форме меандра (фиг.2).

Наложение второго слоя II сварки происходит посредством валиков в основном направлении 25, в направлении, отличающемся, предпочтительно перпендикулярном, основному направлению 25 слоя I сварки, т.е. из плоскости чертежа, при этом основное направление валиков 10', 10'', … третьего слоя III сварки предпочтительно снова проходит как первый слой I сварки.

На фиг.10 также показано, что линии, которые изображают валики на фиг.1-7, имеют ширину. Валики могут нахлестываться друг на друга или только примыкать друг к другу; это относится и к фиг.1-7.

На фиг.11, 12 слева изображены действия, выполняемые перед термообработкой сварного шва 28.

Как на фиг.11 слева, так и на фиг.12 слева изображены сварные швы/слои 28, которые изготовлены любым способом, но также выдаются за наружный первоначальный контур поверхности 13 субстрата. В качестве следующего шага обработки происходит реконтурирование сварки, т.е. валик/слой выглаживается и приводится в соответствие с высотой наружной поверхности 13, т.е. происходит снятие материала (-m) с целью восстановления первоначального аэродинамического контура.

В качестве последнего шага происходит, в зависимости от материала и конструктивного элемента, обычная термообработка (HT) сварного шва 28.

На фиг.13 показана в качестве примера газовая турбина 100 в частичном продольном сечении.

У газовой турбины 100 внутри имеется установленный с возможностью вращения вокруг оси 102 вращения ротор 103 с валом 101, который также называется вращающейся частью турбины.

Вдоль ротора 103 последовательно расположены всасывающий корпус 104, компрессор 105, имеющая, например, форму тора топочная камера 110, в частности, кольцевая топочная камера, снабженная несколькими расположенными коаксиально горелками 107, турбина 108 и корпус 109 газовыпускной системы.

Кольцевая топочная камера 110 сообщается, например, с кольцеобразным каналом 111 горячих газов. Там, например, четыре последовательно включенные ступени 112 турбины образуют турбину 108.

Каждая ступень 112 турбины образована, например, из двух колец лопаток. Если смотреть в направлении течения рабочей среды 113, в канале 111 горячих газов за рядом 115 направляющих лопаток следует образованный из рабочих лопаток 120 ряд 125.

Направляющие лопатки 130 при этом закреплены на внутреннем корпусе 138 статора 143, в отличие от чего рабочие лопатки 120 ряда 125 установлены, например, посредством диска 133 турбины на роторе 103.

С ротором 103 соединен генератор или рабочая машина (не изображена).

Во время эксплуатации газовой турбины 100 воздух 135 всасывается компрессором 105 через всасывающий корпус 104 и сжимается. Получаемый на обращенном к турбине конце компрессора 105 сжатый воздух направляется к горелкам 107 и там смешивается с горючим средством. Эта смесь затем сжигается в топочной камере 110 с образованием рабочей среды 113. Оттуда рабочая среда 113 течет по каналу 111 горячих газов по направляющим лопаткам 130 и рабочим лопаткам 120. На рабочих лопатках 120 рабочая среда 113 расширяется с передачей импульса, так что рабочие лопатки 120 приводят в движение ротор 103, а ротор - соединенную с ним рабочую машину.

Находящиеся под воздействием горячей рабочей среды 113 конструктивные элементы во время эксплуатации газовой турбины 100 подвергаются воздействию термических нагрузок. Направляющие лопатки 130 и рабочие лопатки 120 первой, если смотреть в направлении течения рабочей среды 113, ступени 112 турбины наряду с футеровочными элементами теплозащитного экрана кольцевой топочной камеры 110, подвергаются термическим нагрузкам в наибольшей степени.

Чтобы выдерживать возникающие там температуры, они могут охлаждаться с помощью охлаждающего средства.

Субстраты конструктивных элементов могут также иметь направленную структуру, т.е. они являются монокристаллическими (SX-структура) или содержат только продольно направленные зерна (DS-структура).

В качестве материала для конструктивных элементов, в частности, для лопаток 120, 130 турбины и конструктивных элементов топочной камеры 110 применяются, например, железные, никелевые суперсплавы или суперсплавы на основе кобальта.

Такие суперсплавы известны, например, из документов EP 1204776 B1, EP 1306454, EP 1319729 A1, WO 99/67435 или WO 00/44949.

Лопатки 120, 130 могут быть также снабжены покрытиями от коррозии (MCrAlX; M представляет собой по меньшей мере один элемент из группы железо (Fe), кобальт (Co), никель (Ni), X является активным элементом и обозначает иттрий (Y) или кремний, скандий (Sc) и/или по меньшей мере один элемент из редких земель или, соответственно, гафний.) Такие сплавы известны из документов EP 0486489 B1, EP 0786017 B1, EP 0412397 B1 или EP 0306454 A1.

На MCrAlX может также находиться теплоизоляционный слой, состоящий, например, из ZrO2, Y2O3-ZrO2, т.е. он не стабилизирован, частично или полностью, окисью иттрия и/или окисью кальция и/или окисью магния.

С помощью надлежащих способов нанесения покрытия, таких как, например, электронно-лучевое нанесение покрытий методом осаждения из паровой фазы (EB-PVD), получаются зерна стебельчатой формы в теплоизоляционном слое.

У направляющей лопатки 130 имеется обращенная к внутреннему корпусу 138 турбины 108 ножка направляющей лопатки (здесь не изображена) и находящаяся напротив ножки направляющей лопатки головка направляющей лопатки. Головка направляющей лопатки обращена к ротору 103 и установлена на крепежном кольце 140 статора 143.

На фиг.14 показан вид в перспективе рабочей лопатки 120 или направляющей лопатки 130 гидравлической машины, которая распространяется по продольной оси 121.

Гидравлическая машина может представлять собой газовую турбину самолета или электростанции, предназначенной для выработки электроэнергии, паровую турбину или компрессор.

У лопатки 120, 130 по продольной оси 121 имеется, последовательно, область 400 крепления, примыкающая к ней платформа 403 лопатки, а также рабочая часть 406 лопатки и вершина 415 лопатки.

Если лопатка 130 представляет собой направляющую лопатку 130, она может быть снабжена на своей вершине 415 лопатки другой платформой (не изображена).

В области 400 крепления выполнена ножка 183 лопатки, которая служит для крепления рабочих лопаток 120, 130 к валу или диску (не изображено).

Ножка 183 лопатки выполнена, например, в T-образной форме. Возможны другие варианты осуществления в виде елки или ласточкина хвоста.

У лопатки 120, 130 имеется кромка 409 набегания и кромка 412 сбегания для среды, которая протекает по рабочей части 406 лопатки.

У традиционных лопаток 120, 130 во всех областях 400, 403, 406 лопаток 120, 130 применяются, например, цельные металлические материалы, в частности, суперсплавы.

Такие суперсплавы известны, например, из документов EP 1204776 B1, EP 1306454, EP 1319729 A1, WO 99/67435 или WO 00/44949.

При этом лопатка 120, 130 может быть изготовлена методом литья, в частности, посредством направленной кристаллизации, методом ковки, методом фрезерования или их комбинаций.

Заготовки с монокристаллической структурой или структурами применяются в качестве конструктивных элементов машин, которые при эксплуатации подвержены высоким механическим, термическим и/или химическим нагрузкам.

Изготовление такого рода монокристаллических заготовок осуществляется, например, посредством направленной кристаллизации из расплава. При этом речь идет о способах литья, при которых жидкий металлический сплав кристаллизуется с получением монокристаллической структуры, т.е. монокристаллической заготовки, или направленно. При этом дендритные кристаллы ориентируются вдоль теплового потока и образуют либо стебельчатую кристаллическую зернистую структуру (колоннообразно, т.е. зерна, которые проходят по всей длине заготовки и здесь, выражаясь общепринятым языком, называются направленно кристаллизованными), или монокристаллическую структуру, т.е. вся заготовка состоит из одного единственного кристалла. В этом способе необходимо избегать перехода к глобулярной (поликристаллической) кристаллизации, так как при ненаправленном росте обязательно образуются поперечные и продольные границы зерен, которые сводят на нет хорошие свойства направленно кристаллизованного или монокристаллического конструктивного элемента.

Если речь идет о направленно кристаллизованных структурах в общем, то под ними подразумеваются как монокристаллы, которые не имеют границ зерен или, в крайнем случае, имеют границы зерен с малыми углами, так и стебельчатые кристаллические структуры, у которых, может быть, имеются проходящие в продольном направлении границы зерен, но нет поперечных границ зерен. В случае этих названных во вторую очередь кристаллических структур также говорят о направленно кристаллизованных структурах (directionally solidified structures).

Такие способы известны из документов US-PS 6024792 и EP 0892090 A1.

Лопатки 120, 130 могут быть также снабжены покрытиями от коррозии или окисления, например (MCrAlX; M представляет собой по меньшей мере один элемент из группы железо (Fe), кобальт (Co), никель (Ni), X является активным элементом и обозначает иттрий (Y) или кремний и/или по меньшей мере один элемент из редких земель или, соответственно, гафний (Hf)). Такие сплавы известны из документов EP 0486489 B1, EP 0786017 B1, EP 0412397 B1 или EP 0306454 A1.

Плотность предпочтительно составляет около 95% теоретической плотности.

Из слоя MCrAlX (как промежуточного слоя или крайнего наружного слоя) образуется защитный слой окиси алюминия (TGO=thermal grown oxide layer).

Предпочтительно состав слоя представляет собой Co-30Ni-28Cr-8Al-0,6Y-0,7Si или Co-28Ni-24Cr-10Al-0,6Y. Наряду с этими защитными покрытиями на основе кобальта применяются также предпочтительно защитные покрытия на основе никеля, такие как Ni-10Cr-12Al-0,6Y-3Re или Ni-12Co-21Cr-11Al-0,4Y-2Re, или Ni-25Co-17Cr-10Al-0,4Y-1,5Re.

На MCrAlX может также находиться теплоизоляционный слой, который предпочтительно является крайним наружным слоем и состоит, например, из ZrO2, Y2O3-ZrO2, т.е. он не стабилизирован, частично или полностью, окисью иттрия и/или окисью кальция и/или окисью магния.

Теплоизоляционный слой покрывает весь слой MCrAlX. С помощью надлежащих способов нанесения покрытия, таких как, например, электронно-лучевое нанесение покрытий методом осаждения из паровой фазы (EB-PVD), получаются зерна стебельчатой формы в теплоизоляционном слое.

Возможны другие способы нанесения покрытий, например, атмосферное плазменное напыление (APS), LPPS, VPS или CVD. Для улучшения стойкости к тепловому удару теплоизоляционный слой может содержать пористые, имеющие микро- или макротрещины зерна. То есть теплоизоляционный слой предпочтительно является более пористым, чем слой MCrAlX.

Восстановление (Refurbishment) означает, что конструктивные элементы 120, 130 после их применения при необходимости должны быть освобождены от защитных слоев (например, посредством пескоструйной обработки). После этого осуществляется удаление коррозионных и/или оксидных слоев или, соответственно, продуктов. При необходимости осуществляется также ремонт трещин в конструктивном элементе 120, 130. После этого происходит повторное нанесение покрытия на конструктивный элемент 120, 130 и повторное применение конструктивного элемента 120, 130.

Лопатка 120, 130 может быть выполнена полой или цельной. При необходимости охлаждения лопаток 120, 130 она является полой и при необходимости снабжена отверстиями для пленочного охлаждения (обозначены штриховой линией).

На фиг.15 показана топочная камера 110 газовой турбины. Топочная камера 110 выполнена, например, в виде так называемой кольцевой топочной камеры, у которой множество расположенных в окружном направлении вокруг оси 102 вращения горелок 107, которые создают пламя 156, впадают в одно общее пространство 154 топочной камеры. Для этого топочная камера 110 выполнена в совокупности в виде кольцеобразной структуры, которая расположена вокруг оси 102 вращения.

Для достижения сравнительно высокого коэффициента полезного действия топочная камера 110 рассчитана на сравнительно высокую температуру рабочей среды M, составляющую примерно от 1000°C до 1600°C. Чтобы даже при этих неблагоприятных для материалов рабочих параметрах обеспечить возможность сравнительно долгого срока службы, стенка 153 топочной камеры на своей обращенной к рабочей среде M стороне снабжена внутренней футеровкой, образованной из элементов 155 теплозащитного экрана.

Каждый элемент 155 теплозащитного экрана, изготовленный из сплава, оснащен со стороны рабочей среды особенно жаропрочным защитным слоем (слой MCrAlX и/или керамическое покрытие) или изготовлен из высокожаропрочного материала (массивные керамические кирпичи).

Эти защитные слои могут быть аналогичны лопаткам турбины, то есть MCrAlX, например, означает: M представляет собой по меньшей мере один элемент из группы железо (Fe), кобальт (Co), никель (Ni), X является активным элементом и обозначает иттрий (Y) или кремний и/или по меньшей мере один элемент из редких земель или, соответственно, гафний (Hf). Такие сплавы известны из документов EP 0486489 B1, EP 0786017 B1, EP 0412397 B1 или EP 0306454 A1.

На MCrAlX может также находиться, например, керамический теплоизоляционный слой, состоящий, например, из ZrO2, Y2O3-ZrO2, т.е. он не стабилизирован, частично или полностью, окисью иттрия и/или окисью кальция и/или окисью магния.

С помощью надлежащих способов нанесения покрытия, таких как, например, электронно-лучевое нанесение покрытий методом осаждения из паровой фазы (EB-PVD), получаются зерна стебельчатой формы в теплоизоляционном слое.

Возможны другие способы нанесения покрытий, например, атмосферное плазменное напыление (APS), LPPS, VPS или CVD. Для улучшения стойкости к тепловому удару теплоизоляционный слой может содержать пористые, имеющие микро- или макротрещины зерна.

Восстановление (Refurbishment) означает, что элементы 155 теплозащитного экрана после их применения при необходимости должны быть освобождены от защитных слоев (например, посредством пескоструйной обработки). После этого осуществляется удаление коррозионных и/или оксидных слоев или, соответственно, продуктов. При необходимости осуществляется также ремонт трещин в элементе 155 теплозащитного экрана. После этого происходит повторное нанесение покрытия на элемент 155 теплозащитного экрана и повторное применение элементов 155 теплозащитного экрана.

В связи с высокими температурами внутри топочной камеры 110 для элементов 115 теплозащитного экрана или, соответственно, для элементов их крепления может быть предусмотрена система охлаждения. Элементы 115 теплозащитного экрана являются, например, полыми и при необходимости снабжены также впадающими в пространство 154 топочной камеры отверстиями для охлаждения (не изображены).


СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПОСОБ СВАРКИ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 1 756.
20.06.2014
№216.012.d31c

Многоуровневый преобразователь в качестве компенсатора реактивной мощности с симметрированием активной мощности

Использование: в области электротехники. Технический результат - повышение быстродействия и надежности. Многоуровневый преобразователь (7) имеет несколько преобразовательных ветвей (8-10), которые соединены по схеме звезды или треугольника с фазами (2-4) трехфазной сети. На основе значений...
Тип: Изобретение
Номер охранного документа: 0002519815
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d325

Система и способ распределения мощности

Изобретение относится к системе и способу для распределения мощности. Технический результат заключается в создании улучшении качества распределения мощности. Система (10) содержит множество систем (12, 14, 16, 18) генератора, при этом каждая система (12, 14, 16, 18) генератора содержит...
Тип: Изобретение
Номер охранного документа: 0002519824
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d559

Способ и система для контроля системы, связанной с безопасностью

Группа изобретений относится к средствам контроля по меньшей мере одного процесса, происходящего в системе, связанной с безопасностью. Технический результат заключается в обеспечении возможности гибкой и обобщенной сертификации связанных с безопасностью систем. Для этого предложен способ...
Тип: Изобретение
Номер охранного документа: 0002520395
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d599

Способ регулирования для зеркала расплава в кристаллизаторе непрерывной разливки

Подачу жидкого металла в кристаллизатор непрерывной разливки устанавливают посредством блокирующего устройства. Частично отвердевшее металлическое прессованное изделие выпускают из кристаллизатора непрерывной разливки с помощью разгрузочного устройства. Измеренное фактическое значение (hG)...
Тип: Изобретение
Номер охранного документа: 0002520459
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d5ee

Способ определения очищенного ценного газа из газовой смеси, а также устройство для осуществления этого способа

Изобретение относится к способу и устройству для отделения очищенного ценного газа из газовой смеси. Способ и устройство содержат, главным образом, углекислый газ, по меньшей мере, один ценный газ, а также, по меньшей мере, одно вредное вещество, причем проводится конденсация углекислого газа,...
Тип: Изобретение
Номер охранного документа: 0002520544
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d640

Экономящая энергию эксплуатация рельсовых траснспортных средств с, по меньшей мере, двумя приводными блоками

Cпособ управления приводом рельсового транспортного средства, которое имеет привод с несколькими приводными блоками, согласно которому приводные блоки подключают к приводу и отключают от него, так что сумма приводных усилий приводных блоков больше, чем требуемая сила тяги. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002520626
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d77c

Способ функционирования энергетической автоматизированной системы и энергетическая автоматизированная система

Изобретение относится к способу функционирования энергетической автоматизированной системы (10) для электрической сети энергоснабжения, которая имеет локальное устройство (11) обработки данных, которое предоставляет программу, которая при ее выполнении предоставляет функции для управления и/или...
Тип: Изобретение
Номер охранного документа: 0002520942
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d961

Высоковольтный силовой выключатель с раствором контактов, снабженным отклоняющими коммутационный газ элементами

Изобретение касается системы коммутационного аппарата с раствором (6) контактов, который по меньшей мере частично окружен изоляционным соплом (7). Изоляционное сопло (7) имеет сопловой канал (8), который входит в объем (10) нагревания газа. Внутри объема (10) нагревания газа расположен...
Тип: Изобретение
Номер охранного документа: 0002521427
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d9c6

Газотурбинный двигатель

Газотурбинный двигатель включает лопатку статора для направления горячих газов сжигания на роторные лопатки. Лопатка статора включает платформу, расположенную на радиально внутренней стороне лопатки относительно оси вращения двигателя. Платформа имеет часть задней кромки по потоку ниже...
Тип: Изобретение
Номер охранного документа: 0002521528
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.db52

Сплав, защитный слой и деталь

Изобретение относится к области металлургии, в частности к сплавам на основе никеля защитных покрытий деталей газовой турбины. Сплав на основе никеля для защитного покрытия деталей газовой турбины содержит, мас.%: 24-26 кобальта, 16-25 хрома, 9-12 алюминия, 0,1-0,7 иттрия и/или по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002521924
Дата охранного документа: 10.07.2014
Показаны записи 231-240 из 1 073.
27.05.2014
№216.012.c822

Способ стабилизации сетевой частоты электрической сети электропитания

Изобретение относится к способу стабилизации сетевой частоты электрической сети электропитания. Двухвальная газовая турбина содержит мощную турбину и газогенератор, причем мощная турбина посредством первого вала соединена с первым генератором с возможностью передачи крутящего момента. Также...
Тип: Изобретение
Номер охранного документа: 0002517000
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c827

Турбинная или компрессорная лопатка

Лопатка для турбины или компрессора содержит перо и хвостовик. Перо лопатки изготовлено из согнутой слоистой полосы из армированной волокном пластмассы, в которой в зоне фальца образована удерживающая петля, причем из лежащих друг на друге концов полосы сформирована поверхность лопатки....
Тип: Изобретение
Номер охранного документа: 0002517005
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c918

Пневматическая флотационная машина и способ флотации

Группа изобретений относится к способам флотации с применением пневматических флотационных машин, может быть использована для обогащения полезных ископаемых и при переработке предпочтительно минеральных веществ с содержанием от низкого до среднего полезного компонента или соответственно ценного...
Тип: Изобретение
Номер охранного документа: 0002517246
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c9c2

Способ определения массового расхода всасывания газовой турбины

Группа изобретений относится к определению массового расхода всасывания газовой турбины. Технический результат заключается в определении массового расхода всасывания, что обеспечивает возможность надежного прогноза ожидаемого выигрыша по мощности. Для этого предложен способ определения...
Тип: Изобретение
Номер охранного документа: 0002517416
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cc79

Система воздушной контактной сети

Изобретение касается системы воздушной контактной сети, включающей в себя потолочные контактные рельсы (1, 16), каждый из которых в своей центральной области посредством неподвижной точки зафиксирован на строительном сооружении (14), а кроме того, соединен со строительным сооружением (14) через...
Тип: Изобретение
Номер охранного документа: 0002518116
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ce00

Короткозамкнутый ротор

Изобретение относится к короткозамкнутому ротору для асинхронного электродвигателя. Технический результат заключается в повышении электрического коэффициента полезного действия состоящего из двух материалов короткозамкнутого ротора. Ротор содержит листовой пакет (1) ротора с канавками (3), на...
Тип: Изобретение
Номер охранного документа: 0002518507
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ced6

Устройство для определения углового положения поворотной направляющей лопатки компрессора

Изобретение касается устройства для определения углового положения установленной в компрессоре поворотной вокруг своей продольной оси направляющей лопатки компрессора, для которой предусмотрена синхронно вращающаяся с ней гладкая измерительная поверхность. Угловое положение вращающейся вокруг...
Тип: Изобретение
Номер охранного документа: 0002518721
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cee3

Уплотнение вала для турбомашины

Изобретение относится к уплотнению вала для турбомашины. Уплотнение вала для турбомашины содержит нагружаемое технологическим газом и запираемое со стороны процесса уплотнение технологического газа и нагружаемое воздухом и запираемое со стороны атмосферы атмосферное уплотнение. Вокруг вала...
Тип: Изобретение
Номер охранного документа: 0002518734
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cef2

Секция ротора для ротора турбомашины

Секция ротора турбомашины содержит крепежные пазы для рабочих лопаток, распространяющиеся в осевом направлении. В каждом крепежном пазу установлена рабочая лопатка, включающая обращенную радиально внутрь контактную поверхность. Для пропускания охлаждающего средства по торцевой поверхности...
Тип: Изобретение
Номер охранного документа: 0002518749
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf0a

Многоотражательный многослойный комплекс для охлаждения стенки и способ изготовления такого многоотражательного многослойного комплекса (варианты)

Изобретение относится к охлаждению двигателя внутреннего сгорания. Многоотражательный многослойный комплекс выполнен для контактирования с поверхностью подлежащей охлаждению стенки плоско и с обеспечением теплопроводности и имеет множество перфорированных экранных слоев с множеством выполненных...
Тип: Изобретение
Номер охранного документа: 0002518773
Дата охранного документа: 10.06.2014
+ добавить свой РИД