×
20.08.2013
216.012.5f70

Результат интеллектуальной деятельности: КАТАЛИЗАТОРЫ И СПОСОБ ГИДРОАМИНИРОВАНИЯ ОЛЕФИНОВ

Вид РИД

Изобретение

№ охранного документа
0002490064
Дата охранного документа
20.08.2013
Аннотация: Изобретение относится к катализаторам гидроаминирования олефинов, их получению и применению. Предложен содержащий бор-бета-цеолиты катализатор гидроаминирования, легированный литием, причем молярное отношение атомов бора к атомам лития составляет от 5:1 до 50:1. Описан также способ получения аминов путем превращения аммиака или первичных, соответственно вторичных, аминов с олефинами при повышенных температурах и давлениях в присутствии указанного катализатора гидроаминирования. Предложен способ получения сырья для резиновой промышленности - ускорителей вулканизации, средств защиты растений или фармацевтических препаратов с использованием полученного сначала описанным выше способом трет-бутиламина. Технический эффект - повышение выхода амина. 3 н. и 7 з.п. ф-лы, 1 табл., 13 пр.

Изобретение относится к катализаторам гидроаминирования, их получению и применению. Другим объектом изобретения является способ получения аминов путем гидроаминирования олефинов, а также применение трет-бутиламина, получаемого предлагаемым в изобретении способом.

В международной заявке WO 97/07088 опубликован способ получения олефинов на бор-бета-цеолитах. В заявке сообщается о возможности модифицирования цеолитов, например, с целью повышения их селективности, срока службы или количества возможных регенераций. В соответствии с цитируемым изобретением катализаторы гидроаминирования можно модифицировать путем ионной замены, соответственно легирования цеолитов щелочными металлами, такими как натрий или калий, щелочноземельными металлами, такими как кальций или магний, земельными металлами, такими как таллий, переходными металлами, например, такими как марганец, железо, молибден, медь, цинк или хром, благородными металлами и/или редкоземельными металлами, например, такими как лантан, церий или иттрий. О легировании литием в публикации не сообщается.

В основу настоящего изобретения была положена задача повысить выход аминов при превращении аммиака или первичных, соответственно вторичных, аминов с олефинами по сравнению с уровнем техники.

Указанная задача согласно изобретению решается с помощью содержащего бор-бета-цеолиты катализатора гидроаминирования, который легирован литием.

Предлагаемый в изобретении катализатор гидроаминирования содержит бор-бета-цеолиты.

Получение бор-бета-цеолитов описано в международной заявке WO-A-98/07088, которую следует считать здесь соответствующей ссылкой.

Бор-бета-цеолиты можно получать, например, также согласно Gaodeng Xuexiao Huaxue Xuebao (1993), 14(2), 159-163 или Gaodeng Xuexiao Huaxue Xuebao (1989), 10(7), 677-682, а также в соответствии с международной заявке WO-A-92/20446.

Катализатор гидроаминирования может целиком состоять из бор-бета-цеолитов.

Предлагаемые в изобретении катализаторы гидроаминирования обычно содержат также связующие вещества, которые необходимы для изготовления формованных тел катализатора.

Катализаторы гидроаминирования помимо связующих веществ могут содержать также другие вспомогательные вещества, такие как поробразователи и пастообразующие добавки.

Содержание бор-бета-цеолитов в используемом катализаторе гидроаминирования преимущественно составляет от 10 до 100% масс., предпочтительно от 25 до 99% масс., особенно предпочтительно от 40 до 98% масс, в пересчете на массу подвергнутого сушке и прокаленного катализатора гидроаминирования.

Катализаторы гидроаминирования можно использовать в виде порошка или предпочтительно в виде формованных тел, таких как стренги, таблетки или расщепленный материал.

Общепринятыми способами изготовления формованных тел являются, например, экструзия, таблетирование, то есть механическое прессование, или пеллетирование, то есть прессование под действием кругообразных и/или ротационных движений (смотри, например, справочник Ertl, Knozinger, Weitkamp, "Handbook of heterogenoeous catalysis", издательство VCH, Вейнгейм, 1997, cc.98 и следующие, а также патент США US 4388288).

Для изготовления формованных тел (формования) можно добавлять от 2 до 60% масс. (в пересчете на подлежащую формованию смесь) связующего вещества. В качестве последнего пригодны различные оксиды алюминия, предпочтительно бемит, аморфные алюмосиликаты с молярным отношением SiO2/Al2O3 от 25:75 до 95:5, диоксиды кремния, предпочтительно высокодисперсные диоксиды кремния, например, такие как силиказоли, смеси высокодисперсного диоксида кремния с высокодисперсным оксидом алюминия, высокодисперсный диоксид титана, а также глины.

Катализаторы гидроаминирования используют для гидроаминирования олефинов предпочтительно в виде стренг диаметром, например, от 1 до 4 мм или в виде таблеток диаметром, например, от 3 до 5 мм. Кроме того, катализаторы гидроаминирования предпочтительно можно использовать в виде расщепленного материала, образующегося в результате измельчения формованных тел катализатора.

После формования экструдаты или прессованные изделия обычно сушат при температуре от 80 до 150°C в течение промежутка времени, составляющего от 2 до 16 часов, а затем предпочтительно прокаливают.

Прокаливание как правило осуществляют при температуре выше 400°С, а, следовательно, оно сопровождается отверждением связующего вещества. Максимальная температура прокаливания в общем случае ограничена стабильностью бор-бета-цеолита, который при температурах выше 550°C утрачивает кристалличность. В промышленных условиях прокаливание как правило выполняют во вращающейся трубе при температуре от 400 до 560°C и времени пребывания от 2 до 4 часов. В лабораторных условиях прокаливание обычно выполняют в печи при температуре от 480 до 520°C в течение промежутка времени, составляющего от 2 до 32 часов.

Для повышения селективности, срока службы и количества возможных регенераций катализаторы гидроаминирования можно модифицировать различными методами.

Одна из возможностей модифицирования катализатора гидроаминирования состоит в том, что материал (формованный или неформованный) подвергают обработке кислотами, такими как соляная кислота (HCl), фтористоводородная кислота (HF), фосфорная кислота (H3PO4 серная кислота (H2SO4), щавелевая кислота (НО2С-СО2Н) или смеси указанных кислот.

Путем обработки кислотами бор-бета-цеолит в общем случае переводят в H-форму.

В особом варианте осуществления изобретения катализатор гидроаминирования перед формованием обрабатывают фтористоводородной кислотой с молярностью в интервале от 0,001 до 2, предпочтительно от 0,05 до 0,5 в течение промежутка времени, составляющего от 1 до 3 часов, при нагревании с обратным холодильником. После фильтрования и промывки катализатор как правило сушат при температуре от 100 до 160°C и прокаливают при температуре от 400 до 550°C.

Другой особый вариант осуществления изобретения предусматривает обработку гетерогенных катализаторов соляной кислотой после совместного формования со связующим веществом. При этом катализатор гидроаминирования обрабатывают при температурах от 60 до 80°С в течение промежутка времени, как правило составляющего от 1 до 3 часов, посредством соляной кислоты концентрацией от 3 до 25%, в частности, от 12 до 20%, затем промывают, сушат при температуре от 100 до 160°C и прокаливают при температуре от 400 до 550°С.

Другой возможностью модифицирования катализатора гидроаминирования является замещение солями аммония, например, NH4Cl, или моноаминами, диаминами или полиаминами, причем бор-бета-цеолит в общем случае переводят в аммониевую форму. При этом сформованный совместно со связующим катализатор гидроаминирования в течение двух часов при температуре, как правило составляющей от 60 до 80°C, непрерывно замещают раствором NH4Cl концентрацией от 10 до 25%, предпочтительно около 20%, при массовом соотношении между катализатором гидроаминирования и раствором хлорида аммония 1:15, а затем сушат при температуре от 100 до 120°C.

Предлагаемый в изобретении катализатор гидроаминирования легирован литием.

Легирование предпочтительно осуществляют, реализуя контакт содержащего бор-бета-цеолиты неформованного или формованного катализатора гидроаминирования с жидкостью, которая содержит ионы лития.

В качестве жидкости как правило используют жидкость, способную сольва-тировать источник ионов лития.

Предпочтительными жидкостями являются вода и полярные органические растворители, такие как спирты, например, метанол, этанол или изопропанол, или простые эфиры, например, тетрагидрофуран, диметилформамид, диметилсульфоксид или N-метилпирролидон. В особенно предпочтительном варианте осуществления изобретения жидкостью является вода.

В качестве источника ионов лития предпочтительно используют растворимую соль лития или соединение лития, которое образует в используемой жидкости ионы лития. В качестве источника ионов лития особенно предпочтительно используют растворимую в жидкости соль лития.

К предпочтительным солям лития относятся гидроксид лития, нитрат лития, галогениды лития, такие как LiCl, LiBr, LiF и Lil, а также карбоксилаты лития, такие как оксалат, формиат, ацетат, оксалат или цитрат лития. Особенно предпочтительными солями лития являются гидроксид лития, нитрат лития, хлорид лития, цитрат лития и оксалат лития.

Соединениями литий, которые способны образовывать в жидкости ионы лития, являются, например, литийорганические соединения, такие как ариллитий или алкиллитий, в частности, бутиллитий, который, например, в воде превращается в гидроксид лития и бутан, причем гидроксид лития образует в воде ионы лития.

Другими соединениями лития, которые способны образовывать в жидкости ионы лития, являются алкоголяты лития, такие как метанолят лития, эта-нолят лития или пропанолят лития.

Содержание ионов лития в литре жидкости предпочтительно составляет от 0,01 до 100 молей, предпочтительно от 0,1 до 10 молей, особенно предпочтительно от 0,2 до 5 молей.

В предпочтительном варианте осуществления изобретения легирование бор-бета-цеолитов реализуют путем ионного обмена.

В предпочтительном варианте осуществления изобретения ионный обмен реализуют путем загрузки бор-бета-цеолитов в реактор в виде проточной трубы и пропускания через них содержащей ионы лития жидкости при температуре от 20 до 100°C.

В другом предпочтительном варианте осуществления изобретения легирование посредством ионного обмена реализуют путем пропитки бор-бета-цеолитов в водном или спиртовом растворе. Пропитку бор-бета-цеолитов можно выполнять обычными методами (смотри А.В.Stiles, Catalyst Manufacture - Laboratory and Commercial Preperations, издательство Marcel Dekker, Нью-Йорк, 1983), например, путем нанесения раствора, содержащего ионы лития, в одну или несколькой стадий пропитки. Пропитку можно выполнять также путем максимального увлажнения носителя пропиточным раствором (насыщения), степень которого соответствует поглощающей способности носителя. Пропитку можно осуществлять также в отстоявшемся растворе.

В случае многостадийной пропитки между отдельными стадиями процесса пропитки целесообразно осуществлять сушку и при необходимости прокаливание.

Подобный ионный обмен можно выполнять, используя катализаторы гидроаминирования, находящиеся, например, в немодифицированной форме, H-форме или аммониевой форме.

Легированные литием бор-бета-цеолиты, которые получены, например, путем ионного обмена, реализованного в виде пропитки или посредством пропитки, непосредственно после легирования как правило подвергают сушке и/или прокаливанию, условия которых указаны выше.

Молярное соотношение между атомами бора и лития в предлагаемом в изобретении катализаторе гидроаминирования особенно предпочтительно составляет от 2:1 до 50:1, еще более предпочтительно от 5:1 до 20:1.

Молярное соотношение между атомами бора и лития можно определять известными методами элементного анализа, например, методом атомно-абсорбционной спектрофотометрии, атомной эмиссионной спектроскопии, рентгенофлуоресцентного анализа или оптической спектрометрии индуктивно связанной плазмы.

Предлагаемые в изобретении катализаторы гидроаминирования предпочтительно используют для осуществления способа получения аминов путем превращения аммиака или первичных, соответственно вторичных аминов с олефинами при повышенных температурах и давлениях. Предлагаемые в изобретении катализаторы гидроаминирования еще более предпочтительно используют для осуществления способа получения трет-бутиламина.

Таким образом, другим объектом настоящего изобретения является способ получения аминов путем превращения аммиака или первичных, соответственно вторичных аминов с олефинами при повышенных температурах и давлениях в присутствии легированных литием бор-бета-цеолитов.

Легированные литием бор-бета-цеолиты можно получать, как указано выше.

В соответствии с предлагаемым в изобретении способом используют аммиак или первичные, соответственно вторичные амины. При этом первичные или вторичные амины предпочтительно содержат алкильные остатки с 1-20 атомами углерода, особенно предпочтительно алкильные остатки с 1-6 атомами углерода, в частности, метильные или этильные остатки.

Кроме аммиака еще более предпочтительно используют монометиламин, диметиламин, моноэтиламин, диэтиламин, н-бутиламин, изопропиламин, диизопропиламин или ди-н-бутиламин. В особенно предпочтительном варианте используют аммиак.

Кроме того, в соответствии с предлагаемым в изобретении способом используют олефины.

В качестве олефинов предпочтительно можно использовать алифатические олефины с 2-20 атомами углерода. Указанные олефины могут быть неразветвленными или разветвленными. Предпочтительно используют олефины с 2-12 атомами углерода, в частности, олефины с 2-6 атомами углерода. Примерами пригодных олефинов являются этилен, пропилен, бутилен или изобутилен; пригодным является также 1,3-бутадиен. В особенно предпочтительном варианте осуществления изобретения в качестве олефина используют изобутилен.

В результате превращения аммиака или первичных, соответственно вторичных аминов с олефином получают продукт гидроаминирования.

Продуктами гидроаминирования, которые можно получать предлагаемым в изобретении способом, предпочтительно являются:

моноэтиламин, диэтиламин и/или триэтиламин, получаемые из этилена и аммиака,

диэтиламин и/или триэтиламин, получаемые из этилена и моноэтиламина,

трет-бутиламин, получаемый из изобутилена и аммиака,

1-амино-3-бутен и/или 2-амино-3-бутен, получаемый из 1,3-бутадиена и аммиака,

(2-бутенил)-н-бутиламин и/или (3-бутенил)-н-бутиламин, получаемые из 1,3-бутадиена и н-бутиламина, и

диизопропиламин, получаемый из пропилена и изопропиламина.

В особенно предпочтительном варианте продуктом гидроаминирования является mpem-бутиламин, получаемый из изобутилена и аммиака.

Превращение олефина с аммиаком и/или первичным, соответственно вторичным амином в присутствии бор-бета-цеолита можно осуществлять, например, как описано в европейских заявках на патент EP-A 132736, EP-A 752409 или EP-A 822179, а также в международной заявке WO-A-02/00597.

Реакцию можно осуществлять в непрерывном, периодическом или полупериодическом режиме.

В предпочтительном варианте, как правило, осуществляют смешивание аммиака и/или первичного амина или при необходимости вторичного амина с олефином в молярном отношении от 1:1 до 10:1, предпочтительно от 1:1 до 5:1, в частности, предпочтительно от 1:1 до 3:1, и последующее превращение компонентов полученной смеси в реакторе, содержащем стационарный или псевдоожиженный слой предлагаемого в изобретении катализатора гидроаминирования, при абсолютном давлении от 40 до 700 бар, предпочтительно от 200 до 300 бар, и температуре от 80 до 400°C, предпочтительно от 230 до 320°C, в газовой фазе или в сверхкритическом состоянии.

В качестве альтернативы гидроаминирование можно осуществлять в жидкой фазе при абсолютном давлении от 40 до 80 бар и температуре от 60 до 120°C в реакторе с движущимся слоем предлагаемого в изобретении катализатора гидроаминирования или в содержащем указанный катализатор проточном трубчатом реакторе.

Особый вариант осуществления указанного способа состоит в том, что аммиак и/или первичный, соответственно вторичный амин, смешанный с олефином или смесью олефинов в молярном отношении от 1:1 до 5:1, предпочтительно от 1:1 до 3:1, подают в реактор со стационарным слоем предлагаемого в изобретении катализатора гидроаминирования и превращают при абсолютном давлении от 100 до 320 бар, предпочтительно от 150 до 310 бар, в частности, от 200 до 300 бар, и температуре от 200 до 350°C, предпочтительно от 220 до 330°C, в частности, от 230 до 320°C, в газовой фазе или в сверхкритическом состоянии.

Положение равновесия реакции гидроаминирования, а, следовательно, превращение в целевой продукт, в значительной мере зависят от выбранного давления реакции. Более высокое давление способствует образованию продукта присоединения, однако с учетом технических и экономических обстоятельств оптимальное абсолютное давление в общем случае не превышает 300 бар. На селективность реакции гидроаминирования помимо таких параметров, как избыток аммиака/амина и тип катализатора, значительное влияние оказывает также ее температура. Скорость реакции присоединения по мере повышения температуры сильно возрастает, однако в некоторых случаях одновременно более интенсивно протекают побочные реакции, что обусловливает снижение селективности. Кроме того, повышение температуры в большинстве случаев оказывается неблагоприятным с термодинамической точки зрения. Температура гидроаминирования, оптимальная в отношении достигаемых превращений и селективности, определяется структурой олефина, используемого первичного амина и катализатора и в большинстве случаев находится в интервале от 220 до 320°C.

По завершении гидроаминирования продукт превращения обычно выделяют, например, путем дистилляции, ректификации, фильтрования, водной промывки или адсорбции. Непревращенные эдукты или подаваемые в реактор инертные газы можно возвращать на гидроаминирование.

Получаемый согласно изобретению mpem-бутиламин можно использовать в качестве сырья в резиновой промышленности (ускорители вулканизации) или для синтеза средств защиты растений или фармацевтических препаратов.

Предлагаемые в изобретении катализаторы гидроаминирования позволяют повысить выход аминов при превращении аммиака или первичных, соответственно вторичных аминов с олефинами по сравнению с уровнем техники. Предлагаемые в изобретении катализаторы, которые можно получать в промышленном масштабе, обладают длительным сроком службы. Благодаря использованию предлагаемого в изобретении катализатора в общем случае при одинаковой степени превращения может быть обеспечена более высокая нагрузка на катализатор или при одинаковой нагрузке на катализатор могут быть достигнуты более высокие превращения.

Приведенные ниже примеры служат для более подробного пояснения настоящего изобретения.

Примеры

Синтез катализатора

Пример 1 Получение формованных тел бор-бета-цеолита

133 г бор-бета-цеолита (отношение SiO2:B2O3 20:1, синтез согласно международной заявке WO 97/07088) смешивают с 67 г бемита и 4 г муравьиной кислоты. Смесь уплотняют в смесителе и месят при осторожном добавлении воды (110 мл). Время соответствующей переработки составляет 60 минут. В штранг-прессе при давлении прессования 100 бар изготавливают стренги диаметром 2,5 мм, которые в течение 16 часов сушат при 110°C, а затем в течение 16 часов прокаливают при 500°C. Содержание бора в полученных стренгах составляет 100 ммол на 100 г стренг, водопо-глощение 0,6 мл/г.

Пример 2 Легирование формованных тел бор-бета-цеолита литием

100 г стренг пропитывают в ротационном испарителе раствором 0,73 г UNO3 (95%, 10 ммолей лития) в 60 мл воды при 20°C и частоте вращения 20 об/мин). Пропитанные стренги после кратковременной предварительной сушки при 50°C в вакууме в течение последующих 12 часов сушат при 120°C в сушильном шкафу, а затем в течение 8 часов прокаливают при 450°C во вращающейся трубчатой печи при пропускании 50 нл/ч воздуха.

Затем стренги измельчают и отсеивают фракцию с диаметром частиц от 1 до 1,6 мм.

Пример 3 Легирование формованных тел бор-бета-цеолита литием

Данный пример выполняют аналогично примеру 1, однако используют 0,36 г нитрита лития (5 ммолей лития).

Пример 4 Легирование формованных тел бор-бета-цеолита литием

Данный пример выполняют аналогично примеру 1, однако используют 1,10 г нитрита лития (15 ммолей лития).

Пример 5 Легирование формованных тел бор-бета-цеолита литием

Данный пример выполняют аналогично примеру 1, однако используют 1,46 г нитрита лития (20 ммолей лития).

Пример 6 Легирование формованных тел бор-бета-цеолита литием

Данный пример выполняют аналогично примеру 1, однако используют 3,6 г нитрита лития (50 ммолей лития).

Пример 7 Легирование формованных тел бор-бета-цеолита натрием

Данный пример выполняют аналогично примеру 1, однако используют 0,85 г нитрита натрия (10 ммолей натрия).

Пример 8 Легирование формованных тел бор-бета-цеолита натрием

Данный пример выполняют аналогично примеру 1, однако используют 1,7 г нитрита натрия (20 ммолей натрия).

Пример 9 Легирование формованных тел бор-бета-цеолита рубидием

Данный пример выполняют аналогично примеру 1, однако используют 1,48 г нитрита рубидия (10 ммолей рубидия).

Пример 10 Легирование формованных тел бор-бета-цеолита цезием

Данный пример выполняют аналогично примеру 1, однако используют 1,95 г нитрита цезия (10 ммолей цезия).

Пример 11 Легирование формованных тел бор-бета-цеолита калием

Данный пример выполняют аналогично примеру 1, однако используют 0,51 г нитрита калия (5 ммолей калия).

Пример 12 Легирование формованных тел бор-бета-цеолита калием

Данный пример выполняют аналогично примеру 1, однако используют 1,01 г нитрита калия (10 ммолей калия).

Пример 13 Легирование формованных тел бор-бета-цеолита калием

Данный пример выполняют аналогично примеру 1, однако используют 2,02 г нитрита калия (20 ммолей калия).

Получение трет-бутиламина

Через трубчатый реактор (внутренний диаметр 6 мм) с 10 г измельченного катализатора в изотермических условиях при 270°C и давлении 270 бар пропускают 43 г/ч смеси изобутилена с аммиаком (мольное отношение 1:1), контролируя превращение методом непрерывной газовой хроматографии.

Экспериментальные результаты после 48-часовой эксплуатации указанных выше катализаторов (примеры 1-13) приведены в таблице.

Пример Селективность образования трет-бутил-амина, % Выход трет-бутил-амина, г/г исходных реагентов Молярное отношение бор-бета-цеолита к щелочному металлу в катализаторе гидроаминирования
1 Бор-бета-цеолит >99 14,0 -
2 10 ммоль лития >99 15,0 10:1
3 5 ммоль лития >99 15,1 20:1
4 15 ммоль лития >99 15,0 20:3
5 20 ммоль лития >99 14,9 5:1
6 50 ммоль лития >99 13,2 2:1
7 10 ммоль натрия >99 14,5 10:1
8 20 ммоль натрия >99 14,3 5:1
9 10 ммоль рубидия >99 14,3 10:1
10 10 ммоль цезия >99 14,1 10:1
11 5 ммоль калия >99 13,9 20:1
12 10 ммоль калия >99 14,5 10:1
13 20 ммоль калия >99 13,7 5:1

Как следует из приведенных в таблице данных, легирование катализатора натрием, калием, рубидием и цезием не приводит к повышению выхода или обеспечивает лишь незначительное увеличение выхода трет-бутиламина по сравнению с нелегированным бор-бета-цеолитом (максимум 0,5%), в то время как легирование литием позволяет повысить выход трет-бутиламина на величину, составляющую от 0,9 до 1,1%.

Источник поступления информации: Роспатент

Показаны записи 601-610 из 657.
27.03.2020
№220.018.1059

Система формирования эластомерных композиций для нанесения на металл

Настоящее изобретение относится к системе формирования эластомерной композиции для нанесения на подложку, эластомерной композиции, изделию и способу покрытия подложки. Указанная система включает 35,5-40 масс. долей изоцианатного компонента и компонента, реакционно-способного относительно...
Тип: Изобретение
Номер охранного документа: 0002717688
Дата охранного документа: 25.03.2020
28.03.2020
№220.018.1168

Способ получения эмульсионных полимеров

Изобретение относится к способу получения органических полых частиц путем получения многоступенчато синтезируемого эмульсионного полимера последовательной полимеризацией. Получаемые данным способом полимеры характеризуются структурой ядро-оболочка, причем в ядре применяется неионная,...
Тип: Изобретение
Номер охранного документа: 0002717795
Дата охранного документа: 25.03.2020
12.04.2020
№220.018.144e

Чистящие частицы и их применение

Настоящее изобретение относится к чистящим частицам, способам их получения, чистящим композициям и к их применению для стирки загрязненных материалов. Описаны чистящие частицы для стирки загрязненных материалов, содержащие термопластичный полиамид, представляющий собой алифатический полиамид,...
Тип: Изобретение
Номер охранного документа: 0002718644
Дата охранного документа: 10.04.2020
17.04.2020
№220.018.1516

Огнезащитные полиолефиновые соединения

Изобретение относится к огнезащитному изделию, содержащему полиолефиновую подложку, имеющую добавки, включенные в нее, причем добавки содержат: специфический фосфонатный сложный эфир формулы (1), синергист, содержащий N-алкокси затрудненный амин, и меламин цианурат. Изобретение также относится...
Тип: Изобретение
Номер охранного документа: 0002718926
Дата охранного документа: 15.04.2020
14.05.2020
№220.018.1c40

Строительная химическая композиция

Изобретение касается строительной химической композиции, которая отличается быстрым затвердеванием с возникновением незначительных напряжений и содержит сульфат кальция, образующий эттрингит компонент, активатор, заполнитель и полимерное связующее, а также применения указанной композиции для...
Тип: Изобретение
Номер охранного документа: 0002720550
Дата охранного документа: 12.05.2020
14.05.2020
№220.018.1cb1

Дистилляционное устройство, включающее колонну с тремя или более отделениями, выполненными с возможностью последовательного протекания через них жидкости, и способ дистилляции или экстрактивной дистилляции с применением дистилляционного устройства

Изобретение касается дистилляционного устройства. Дистилляционное устройство включает колонну (К) для разделения питающего потока (1) на поток головного продукта (2), поток кубового продукта (3) и при необходимости один или несколько боковых выводимых потоков, снабженную тремя или более...
Тип: Изобретение
Номер охранного документа: 0002720775
Дата охранного документа: 13.05.2020
20.05.2020
№220.018.1dea

Применение композиции для стабилизации геологических образований в нефтяных месторождениях, газовых месторождениях, на площадках откачки воды, при добыче полезных ископаемых или строительстве туннелей

Группа изобретений относится к применению композиции для стабилизации геологического образования в нефтяных месторождениях, газовых месторождениях, на площадках откачки воды, при добыче полезных ископаемых или строительстве туннелей. Применение композиции для стабилизации геологического...
Тип: Изобретение
Номер охранного документа: 0002721046
Дата охранного документа: 15.05.2020
30.05.2020
№220.018.22b1

3-фенил-бензофуран-2-оновые производные, содержащие фосфор, в качестве стабилизаторов

Настоящее изобретение относится к композиции, содержащей органический материал, подверженный окислительной, термической или индуцированной светом деструкции. Описана композиция для защиты органического материала, подверженного окислительной, термической или индуцированной светом деструкции,...
Тип: Изобретение
Номер охранного документа: 0002722188
Дата охранного документа: 28.05.2020
31.05.2020
№220.018.22e8

Модульные каталитические монолиты

Изобретение относится к реактору для осуществления химических реакций, применению реактора в способе получения оксидов азота, способу получения оксидов азота в реакторе и способу получения азотной кислоты в реакторе. Реактор содержит устройство, которое включает проницаемое для газа и/или...
Тип: Изобретение
Номер охранного документа: 0002722375
Дата охранного документа: 29.05.2020
06.06.2020
№220.018.24a0

Способ получения смеси соли щелочного металла метилглициндиуксусной кислоты и соли щелочного металла глутаминовой диуксусной кислоты, смесь l- и d-энантиомеров указанных солей и водный раствор указанной смеси для получения моющих композиций для стирки и очистки

Изобретение относится к способу получения смеси L- и D-энантиомеров моно-, ди- или трисоли щелочного металла метилглициндиуксусной кислоты (MGDA) или их смесей, содержащей преимущественно соответствующий L-изомер с энантиомерным избытком (эи) в интервале от 25 до 96% и L- и D-энантиомеров...
Тип: Изобретение
Номер охранного документа: 0002722803
Дата охранного документа: 03.06.2020
Показаны записи 381-383 из 383.
17.02.2018
№218.016.2dc1

Композиция для химико-механической полировки (смр), содержащая неионное поверхностно-активное вещество и карбонатную соль

Изобретение относится к композиции для химико-механической полировки (СМР). Композиция содержит (А) неорганические частицы, органические частицы или их смесь, или их композит, где частицы находятся в форме кокона, (В) амфифильное неионное поверхностно-активное вещество на основе...
Тип: Изобретение
Номер охранного документа: 0002643541
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.3077

Способ добычи нефти третичными методами

Изобретение относится к добыче нефти третичными методами. Способ добычи нефти, в котором водный нагнетаемый агент, содержащий, по меньшей мере, растворимый в воде (со)полимер полиакриламида - ПАА, растворенный в жидкости на водной основе, закачивают через по меньшей мере одну нагнетательную...
Тип: Изобретение
Номер охранного документа: 0002644773
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.31a1

Защитные элементы и способ их получения

Защитный элемент содержит подложку из прозрачного полимера, слой с модуляцией показателя преломления, представляющий собой объемную голограмму. На указанном слое нанесено покрытие на по меньшей мере части слоя с модуляцией показателя преломления, содержащее частицы переходного металла в форме...
Тип: Изобретение
Номер охранного документа: 0002645161
Дата охранного документа: 16.02.2018
+ добавить свой РИД