×
20.08.2013
216.012.5f6f

Результат интеллектуальной деятельности: КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ С КАТАЛИТИЧЕСКОЙ ПОВЕРХНОСТЬЮ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ ЭТОГО КОНСТРУКТИВНОГО ЭЛЕМЕНТА

Вид РИД

Изобретение

№ охранного документа
0002490063
Дата охранного документа
20.08.2013
Аннотация: Изобретение относится к конструктивному элементу. Описан конструктивный элемент с катализаторной поверхностью (12), причем катализаторная поверхность (12) состоит из металлических составляющих участков (14) поверхности и соприкасающихся с ними составляющих участков (13) поверхности из MnO, и при этом доля составляющих участков (13) поверхности из MnO относительно суммы металлических составляющих участков (14) поверхности и составляющих участков (13) поверхности из MnO составляет от 10% до 60%. Описан способ изготовления катализаторной поверхности (12) на конструктивном элементе. Описано применение указанного выше конструктивного элемента для уменьшения содержания озона в проходящем по катализаторной поверхности газе. Технический результат - увеличение каталитической активности. 3 н. и 17 з.п. ф-лы, 6 ил.

Изобретение относится к конструктивному элементу с катализаторной поверхностью. Кроме того, изобретение относится к способу изготовления катализаторной поверхности на конструктивном элементе посредством напыления с помощью холодного газа. Наконец, изобретение относится к применению такого конструктивного элемента.

Катализаторные поверхности на конструктивном элементе известны, например, из US 2003/0228414 A1. Эта катализаторная поверхность может быть образована посредством непосредственного осаждения каталитически активного вещества на конструктивный элемент. Для этого применяют напыление с помощью холодного газа, при котором частицы слоя каталитического материала подают в так называемую струю холодного газа, т.е. имеющий превышающую скорость звука поток технологического газа. В струе холодного газа эти частицы ускоряются к поверхности подлежащего покрытию конструктивного элемента и прилипают к этой поверхности с преобразованием своей кинетической энергии.

Задачей изобретения является создание конструктивного элемента с катализаторной поверхностью, способа его изготовления, соответственно, применения этого конструктивного элемента, при этом катализаторная поверхность должна иметь сравнительно высокую каталитическую активность.

Эта задача решена с помощью указанного в начале конструктивного элемента, соответственно, способа холодного напыления тем, что катализаторная поверхность состоит из металлических участков и соприкасающихся с ними участков MnO2. Для изготовления такой поверхности, согласно изобретению предусмотрено, что в способе напыления с помощью холодного газа катализаторную поверхность создают посредством напыления частиц MnO2, при этом MnO2 образует лишь участки катализаторной поверхности и, кроме того, образуют металлические участки катализаторной поверхности, которые граничат с участками из MnO2. Металлические участки, как будет более подробно пояснено ниже, могут быть образованы за счет подлежащей покрытию металлической поверхности конструктивного элемента или посредством подмешивания металлических частиц в струю холодного газа.

За счет применения MnO2 в паре с металлом можно достигать, согласно изобретению, особенно высокой каталитической активности образованной катализаторной поверхности. Неожиданным образом было установлено, что каталитическая активность MnO2, которая сама по себе известна, может быть повышена за счет металлических участков поверхности, хотя в целом имеющаяся в распоряжении каталитическая поверхность MnO2 уменьшается. Это противоречит ожидаемому результату, что при уменьшении реально имеющейся в распоряжении поверхности MnO2 при неполном покрытии поверхности конструктивного элемента происходит пропорциональная потеря катализаторной активности.

Таким образом, можно предпочтительно изготавливать конструктивные элементы со сравнительно эффективной катализаторной поверхностью за счет покрытия участков катализаторной поверхности вместо MnO2 металлом. Таким образом, поверхность конструктивного элемента не следует полностью покрывать участками металла и участками MnO2. Достаточно уже частичного покрытия для достижения каталитического действия. Его следует выбирать в зависимости от случая применения настолько большим, что имеющаяся в распоряжении каталитическая поверхность достаточна для эффективного преобразования, например, озона. Доля участков MnO2 относительно образованной обоими участками поверхности должна составлять по меньшей мере 10%, предпочтительно 30-70%, в частности, 50%.

Согласно одному предпочтительному варианту выполнения изобретения предусмотрено, что MnO2 по меньшей мере частично находится в модификации γ. Модификация γ представляет структуру образованного с помощью MnO2 кристалла, который предпочтительно проявляет особенно сильное каталитическое действие. Однако реальная структура MnO2 обычно состоит не исключительно в модификации γ, но частично также в других модификациях (например, модификации β MnO2). Однако, согласно особому варианту выполнения изобретения, структурная доля MnO2 в модификации γ должна лежать выше 50 масс.%

Согласно другому варианту выполнения изобретения предусмотрено, что конструктивный элемент состоит из обеспечивающего металлические участки металла, и на этот конструктивный элемент наносят лишь частично покрывающий слой из MnO2. При этом речь идет о конструктивных элементах из Ag или Ni, которые на основании входящих в их состав материалов уже обеспечивают требуемый для изготовления каталитической поверхности конструктивный элемент. На этих конструктивных элементах обеспечивается особенно простая возможность изготовления поверхности, согласно изобретению, тем, что наносят не покрывающий слой из другого типа участков поверхности, а именно, MnO2.

С другой стороны, возможно также, что конструктивный элемент состоит из обеспечивающей участки из MnO2 керамики, и на этот конструктивный элемент наносят лишь частично покрывающий слой из металла. Например, конструктивный элемент может быть выполнен в виде нагружаемого на износ керамического конструктивного элемента. Он не должен состоять исключительно из MnO2. Например, возможно, что керамика выполнена в виде металлокерамики из различных видов частиц, при этом MnO2 представляет один вид этих частиц. Однако в этом варианте выполнения следует учитывать, что температура обработки конструктивного элемента должна лежать ниже 535°C, поскольку MnO2 при этой температуре превращается в MnO и тем самым теряет свои выдающиеся каталитические свойства в паре материалов, согласно изобретению.

Согласно другому варианту выполнения изобретения предусмотрено, что конструктивный элемент имеет покрытие, которое обеспечивает металлические участки и участки из MnO2 поверхности. В этом варианте выполнения можно покрывать конструктивные элементы из различных материалов, при этом каталитические свойства слоя предпочтительно обуславливаются лишь выполнением слоя, соответственно, образованной им каталитической поверхности. При этом для соответствующего материала конструктивного элемента необходимо выбирать подходящий способ покрытия.

Особенно предпочтительно, конструктивный элемент может иметь решетчатую структуру. Это может быть решетка с двумерной ориентацией, т.е. конструктивный элемент выполнен по существу плоским. Однако возможно также выполнение трехмерных решетчатых структур, которые можно изготавливать, например, с помощью технологий быстрого макетирования. Решетчатые структуры имеют то существенное преимущество, что, с одной стороны, увеличивается имеющаяся в распоряжении поверхность для нанесения каталитических рабочих пар, однако, с другой стороны, создаваемое решетчатыми структурами сопротивление потоку является сравнительно небольшим. Поэтому решетчатые конструктивные элементы можно предпочтительно применять в воздушных каналах. Особенно предпочтительным является применение, например, в вытяжных навесах, при этом решетчатая структура образует его выходную решетку для очищенного воздуха. Это применение используется в так называемых циркуляционных навесах, в которых в противоположность вытяжным навесам всасываемый воздух не выводится из здания, а остается в нем.

Для достижения в вытяжных навесах, работающих по принципу циркуляции воздуха, не только очистки воздуха от твердых материалов, аэрозолей и мельчайших частиц, которые содержатся, например, в кухонных испарениях, но также очистки запахов, согласно уровню техники, применяют генераторы плазмы, которые имеют источник разряда высокого напряжения, с помощью которого обогащают воздух атомным кислородом. Он вызывает процесс разложения, соответственно, окисления, который разрушает ответственные за возникновение запахов углеродные соединения и тем самым уничтожает запахи. Однако в этом процессе возникает также озон, который с помощью конструктивных элементов, согласно изобретению, можно каталитическим путем преобразовывать в двухатомный кислород. За счет этого можно предпочтительно отказаться от фильтров из активированного угля, которые создают сравнительно высокое сопротивление потоку воздуха в вытяжном навесе и которые, кроме того, необходимо заменять с регулярными интервалами.

В качестве способа изготовления слоя на конструктивном элементе можно применять, например, напыление с помощью холодного газа, при этом каталитическая поверхность образуется за счет напыления частиц MnO2. При этом MnO2 образует лишь часть участков каталитической поверхности, а металлические участки образуются, например, с помощью Ag или Ni. Металлические участки могут обеспечиваться, как уже указывалось выше, либо самим конструктивным элементом, либо они добавляются в виде частиц в струю заготовки, так что металлические участки поверхности образуются за счет образуемого слоя.

В частности, можно применять частицы MnO2, которые имеют по меньшей мере частично модификацию γ структуры MnO2. При этом напыление с помощью холодного газа необходимо в любом случае выполнять ниже температуры распада модификации γ. Эта температура составляет 535°C. Технологически при выборе температуры струи холодного газа можно выдерживать определенный запас безопасности относительно этой температуры распада. В противоположность этому было установлено, что кратковременное превышение этой температуры при попадании частиц MnO2 на поверхность не оказывает влияния на структуру, поскольку повышение температуры происходит очень локально лишь в зоне поверхности частиц MnO2. Соответствующее ядро частиц, которое остается в не критичном диапазоне температур, способно в достаточной степени стабилизировать модификацию γ структуры частиц, так что модификация γ структуры MnO2 сохраняется также на каталитически активной поверхности частиц.

Кроме того, нагревание MnO2 свыше 450°C приводит к преобразованию MnO2 в Mn2O3. Однако этот процесс прогрессирует лишь медленно, так что кратковременное превышение температуры не приносит вреда.

Для сохранения выдающихся каталитических свойств MnO2, модификация γ структуры должна содержаться по меньшей мере частично в частицах MnO2. Это можно осуществлять посредством смешивания частиц MnO2 с частицами окиси марганца других модификаций (например, модификации β MnO2). Другая возможность состоит в том, что частицы состоят из фазовых смесей, так что модификация γ MnO2 присутствует не как единственная в частицах.

Кроме того, предпочтительно, когда в качестве частиц MnO2 применяются наночастицы с размером >100 нм. Под наночастицами в смысле данного изобретения следует понимать частицы, которые меньше 1 мкм в диаметре. А именно, неожиданным образом было установлено, что такие малые частицы из MnO2 можно осаждать на каталитической поверхности с высоким коэффициентом полезного действия. В противоположность этому, обычно исходят из того, что частицы меньше 5 мкм нельзя наносить посредством напыления с помощью холодного газа, поскольку на основании небольшой массы этих частиц придаваемая струей холодного газа кинетическая энергия не достаточна для нанесения. Почему это не относится специально к частицам MnO2, не удалось объяснить точно. Вероятно, что наряду с эффектом кинетической деформации действуют также другие механизмы прилипания в процессе образования слоя.

Применение наночастиц MnO2 имеет то преимущество, что с помощью сравнительно небольшого количества материала можно создавать сравнительно большую удельную поверхность и тем самым более сильное каталитическое действие. Тем самым предпочтительно сильно удлиняется также граничная линия между участками MnO2 и металлическими участками каталитической поверхности, что также сказывается на сильном проявлении каталитических свойств.

Предпочтительно, когда применяется смесь из частиц MnO2 и металлических частиц для металлических участков каталитической поверхности, т.е. Ni и/или Ag. В частности, можно за счет подходящего выбора температуры и скорости частиц в струе холодного газа управлять вносом энергии в частицы так, что можно управлять образующей каталитическую поверхность удельной (или внутренней) поверхностью образуемого слоя. А именно, за счет более высокой пористости образуемого слоя можно увеличивать внутреннюю поверхность, с целью обеспечения увеличенной каталитической поверхности. За счет этого можно также усиливать сдерживающее образование зародышей действие. Однако в противоположность этому может быть также предпочтительным, когда поверхность выполнена возможно более гладкой, с целью противодействия склонности к загрязнению.

Наряду с нанесением посредством напыления с помощью холодного газа возможны, естественно, также другие способы изготовления. Например, каталитическую поверхность можно изготавливать электрохимически. При этом металлические участки каталитической поверхности наносят электрохимически в виде слоя из электролита, в котором взвешены частицы MnO2. Затем во время процесса электрохимического осаждения они встраиваются в образующийся слой и образуют тем самым также участки из MnO2 на поверхности слоя.

Другой способ может состоять в том, что слой изготавливают из содержащей по меньшей мере MnO2 керамики. Для этой цели можно образовывать смесь из предкерамических полимеров, которые образуют предварительные ступени желаемой керамики, и металлические частицы наносят в растворе на подлежащий покрытию конструктивный элемент. Сначала испаряется растворитель, затем можно с помощью тепловой обработки при температуре, которая предпочтительно лежит ниже температуры разложения модификации γ MnO2 (535°C), превращать их в керамику. Еще лучше температура остается ниже 450°C для предотвращения образования Mn2O3.

С помощью названных способов можно создавать, среди прочего, также следующие варианты выполнения конструктивного элемента, согласно изобретению. Так, например, изготовленное покрытие может иметь металлический слой, на который нанесен лишь частично покрывающий слой из MnO2. Тем самым металлический слой образует металлические участки поверхности, которые проявляются там, где нет слоя из MnO2. При таком выполнении конструктивного элемента предпочтительно необходима лишь очень небольшая часть MnO2. При этом возможно также применение указанных выше способов изготовления в комбинации. Например, можно металлический слой изготавливать гальванически, а лишь частично покрывающий слой из MnO2 - посредством напыления с помощью холодного газа.

Другая возможность состоит в том, что покрытие имеет обеспечивающий участки из MnO2 керамический слой, на который нанесен лишь частично покрывающий металлический слой. Это выполнение конструктивного элемента имеет значение, когда свойства керамического слоя конструктивно предпочтительны для конструктивного элемента (например, для защиты от коррозии).

Возможно также, что покрытие состоит из обеспечивающей участки из MnO2 керамики, в которую заделаны металлические частицы. Это предпочтительно, в частности, тогда, когда керамический слой нагружается на износ и при увеличивающемся износе, т.е. сносе слоя, должен сохранять свои каталитические свойства. Последнее обеспечивается тем, что при сносе керамического слоя снова и снова открываются частицы MnO2, которые обеспечивают, согласно изобретению, участки из MnO2 на поверхности. Естественно, возможно также, что слой имеет металлическую матрицу, в которую заделаны частицы из MnO2. Для этого слоя также справедливо то, что при сносе слоя сохраняются его каталитические свойства.

Конструктивный элемент может быть выполнен также так, что он или нанесенный на него слой состоят из отличного от металлических участков и участков из MnO2 материала и в нем (при нагрузке на износ, как указывалось выше) и/или на нем имеются частицы, которые обеспечивают металлические участки или участки из MnO2 на их поверхности (имеется в виду поверхность частиц). При этом речь идет предпочтительно о специальных частицах с каталитическими свойствами, которые можно универсально наносить на каждую поверхность или вводить в каждую матрицу. При этом необходимо выбирать пригодный для внесения, соответственно, нанесения способ. За счет этого можно, например, изготавливать также конструктивные элементы из пластмассы с каталитическими свойствами. Вносимые в слой или конструктивный элемент частицы открываются либо при последующей нагрузке на износ, соответственно, могут при пористой структуре конструктивного элемента участвовать в каталитическом действии, когда они образуют стенки пор.

Наконец, изобретение относится к применению указанного конструктивного элемента для уменьшения содержания озона в проходящем по катализаторной поверхности газе. Этот газ может обеспечиваться, прежде всего, земной атмосферой. При определенных условиях воздух обогащен озоном, например, в жаркие летние дни во внутренних районах города или же в верхних слоях атмосферы, которые используются для полета самолетов. Поскольку озон воздействует вредно для здоровья на человеческий организм, то вдыхаемый воздух, который проникает из атмосферы во внутреннее пространство наземного транспортного средства или же нагнетается в пассажирский салон самолета, необходимо максимально освобождать от озона с помощью катализаторной поверхности, согласно изобретению. Естественно, возможно также применение в химической технологии.

Катализаторная поверхность может быть выполнена, например, в виде внутренней облицовки направляющих воздух трубопроводных систем. Это имеет то преимущество, что за счет предусмотрения катализаторной поверхности нет необходимости во встраивании в направляющие воздух каналы дополнительного препятствия для потока. Для увеличения имеющейся в распоряжении катализаторной поверхности можно направляющую воздух систему снабжать проницаемой для воздуха вставкой, через которую должен проходить поток всасываемого воздуха.

Описание других подробностей изобретения приведено ниже со ссылками на прилагаемые чертежи. Одинаковые или соответствующие друг другу элементы чертежей снабжены на отдельных фигурах одинаковыми позициями и поясняются повторно лишь в той мере, в какой имеются различия на отдельных фигурах. При этом на фигурах изображено:

фиг.1-5 - различные примеры выполнения конструктивного элемента, согласно изобретению, с различными каталитическими поверхностями; и

фиг.6 - кривые измерения каталитического действия примера выполнения катализаторной поверхности, согласно изобретению, по сравнению с опорными поверхностями.

На фиг.1-5 показан конструктивный элемент 11 с поверхностью 12, которая имеет каталитические свойства. Эти свойства созданы за счет того, что поверхность имеет участки 13, которые состоят из MnO2, и, кроме того, обеспечиваются металлические участки 14 из Ag или Ni. Конструктивный элемент может быть, например, направляющим воздух каналом, внутренние стенки которого образуют указанную поверхность.

Однако конструкция конструктивного элемента 11, который показан в разрезе, имеет различия. Конструктивный элемент, согласно фиг.1, состоит сам из Ni или Ag, так что его поверхность 12 автоматически обеспечивает металлические участки 14. Кроме того, на поверхности 12 образованы в виде островков зоны из MnO2, которые образуют участки 13. Они могут быть нанесены, например, в виде не сплошного покрытия посредством напыления с помощью холодного газа.

На фиг.2 показан конструктивный элемент 11, который состоит из не пригодного для создания каталитических свойств поверхности материала. Поэтому на этот конструктивный элемент 11 нанесен металлический слой 15 из Ni или Ag. На этот слой, который обеспечивает участки 14, нанесен MnO2 указанным применительно к фиг.1 образом, так что возникают участки 13.

На фиг.3 показано, что металлический слой может быть также легирован частицами из MnO2, т.е. что эти частицы находятся в металлической матрице 17 металлического слоя 15. Поэтому они образуют также ту часть поверхности 12, которая обеспечивает участки 13. Остаток поверхности образует участки 14.

На фиг.4 покрытие 15 образовано керамической матрицей 21, при этом она имеет поры 22, которые увеличивают внутреннюю поверхность по сравнению с наружной поверхностью 12 конструктивного элемента и тем самым усиливают также каталитическое действие. В керамической матрице 21 предусмотрены частицы 23, которые как обеспечивают участки 13 на поверхности, так и могут проявлять каталитическое действие также в порах. Так же как на фиг.2 и 3, показанный на фиг.4 конструктивный элемент 11 может состоять из любого материала, при этом должно быть обеспечено лишь прилипание покрытия 15 на конструктивном элементе 11.

Показанный на фиг.5 конструктивный элемент 11 имеет матрицу из любого материала 24, например, пластмассы. В нее введены частицы 25, поверхность которых имеет как металлические участки из Ni или Ag, так и участки из MnO2. В показанном на фиг.5 примере выполнения сами частицы 25 состоят из металла, и керамические участки образованы на поверхности частиц. Естественно, возможен также противоположный случай. Частицы лежат на поверхности 12 конструктивного элемента 11 частично открыто, за счет чего образуются металлические участки 14 и участки 13 из MnO2. Кроме того, имеются участки 26 поверхности 12 из пластмассы, которые не имеют каталитического действия. Соотношение названных участков можно непосредственно изменять за счет степени заполнения материала 24 частицами 25.

На фиг.6 представлены измерения конструктивного элемента с различными каталитическими поверхностями. При этом по оси Y нанесена концентрация озона в стационарно проходящем воздухе (в млн-1). На оси X показана длительность стационарного потока.

Содержание озона в стационарном потоке воздуха составляло между 980 и 1000 млн-1, что следует из кривой 30. При применении в качестве катализаторной поверхности поверхности с участками Ag и Pd, получается кривая 31. Из нее следует, что при длительном использования можно удалять примерно 90% содержащегося в стационарном потоке воздуха озона.

Кроме того, применялась имеющая одинаковую площадь проба из серебра, которая была полностью покрыта MnO2 (серебро было не образующей поверхность участков, а лишь материалом конструктивного элемента). С помощью этой пробы была измерена кривая 32, при этом из нее следует, что проба при длительном использовании удаляет 97% содержащегося в стационарном потоке воздуха озона.

С помощью катализаторной поверхности, согласно изобретению, состоящей на половину поверхности из Ag и наполовину из MnO2, можно достигать по сравнению с этим дополнительного улучшения каталитических свойств. Кривая 33 измерения показывает, что с помощью этой катализаторной поверхности можно в длительном режиме удалять более 99% содержащегося в стационарном потоке воздуха озона.


КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ С КАТАЛИТИЧЕСКОЙ ПОВЕРХНОСТЬЮ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ ЭТОГО КОНСТРУКТИВНОГО ЭЛЕМЕНТА
КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ С КАТАЛИТИЧЕСКОЙ ПОВЕРХНОСТЬЮ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ ЭТОГО КОНСТРУКТИВНОГО ЭЛЕМЕНТА
КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ С КАТАЛИТИЧЕСКОЙ ПОВЕРХНОСТЬЮ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ ЭТОГО КОНСТРУКТИВНОГО ЭЛЕМЕНТА
КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ С КАТАЛИТИЧЕСКОЙ ПОВЕРХНОСТЬЮ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ ЭТОГО КОНСТРУКТИВНОГО ЭЛЕМЕНТА
КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ С КАТАЛИТИЧЕСКОЙ ПОВЕРХНОСТЬЮ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ ЭТОГО КОНСТРУКТИВНОГО ЭЛЕМЕНТА
КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ С КАТАЛИТИЧЕСКОЙ ПОВЕРХНОСТЬЮ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ ЭТОГО КОНСТРУКТИВНОГО ЭЛЕМЕНТА
Источник поступления информации: Роспатент

Показаны записи 291-300 из 1 427.
20.11.2014
№216.013.08a0

Стабилизация пламени горелки

Горелка газовой турбины содержит реакционную камеру (5) и множество выходящих в реакционную камеру (5) реактивных сопел (6). Реактивными соплами (6) с помощью струи (2) флюида через выпускное отверстие (22) флюид подается в реакционную камеру (5). Реакционная камера (5) предназначена для...
Тип: Изобретение
Номер охранного документа: 0002533609
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.08dc

Способ реализуемого компьютером управления электрическим потреблением энергии множества потребителей энергии в электрической энергосети

Использование: в области электротехники. Технический результат - обеспечение децентрализованного управления энергопотреблением. Согласно способу сетевые узлы (Р1, Р2,…, Р8) оценивают на основе обмена информацией с по меньшей мере одним другим сетевым узлом (Р1, Р2,…, Р8) общее потребление (ТЕ,...
Тип: Изобретение
Номер охранного документа: 0002533669
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0935

Устройство и способ для измерения многофазного потока флюида

Изобретение относится к области измерительной техники и может найти применение в системах измерения скорости потока многофазной смеси флюида. Технический результат - повышение точности. Для этого устройство (1) содержит средство (2) излучения, средство (3) детектирования и средство (4) анализа....
Тип: Изобретение
Номер охранного документа: 0002533758
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0a3b

Устройство для преобразования электрического параметра, имеющее реактор с нулевой точкой

Изобретение относится к преобразовательной технике. Для того чтобы предоставить устройство (1) для преобразования электрического параметра в области передачи и распределения электроэнергии с преобразователем (2), переключаемым между сетью (11) переменного напряжения и контуром (7) постоянного...
Тип: Изобретение
Номер охранного документа: 0002534027
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a40

Разрядник защиты от перенапряжений с изолирующей формованной оболочкой

Изобретение относится к импедансному устройству с первым (1) и вторым (2) арматурными телами, которые соединены между собой через импедансное тело, зажатое между арматурными телами (1, 2) посредством предохранительного элемента (4). Предохранительный элемент (4) имеет на конце радиально...
Тип: Изобретение
Номер охранного документа: 0002534032
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a4a

Способ разрядки промежуточного конденсатора двухзвенного вентильного преобразователя напряжения

Изобретение относится в способу разрядки промежуточного конденсатора (C) двухзвенного вентильного преобразователя (2) напряжения, в котором расположенный на стороне сети преобразователь (4) электроэнергии имеет выключаемые силовые полупроводниковые приборы (А1, …, А6) и предназначен для...
Тип: Изобретение
Номер охранного документа: 0002534042
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a9c

Способ и устройство для очистки загрязненного щелочного раствора соли аминокислоты

Изобретение относится к способу очистки загрязненного щелочного раствора соли аминокислоты. Сначала в раствор соли аминокислоты вводят диоксид углерода, в результате чего выпадает в осадок карбонат или его соли, которые отфильтровывают. Затем оставшийся фильтрат охлаждают, причем аминокислота...
Тип: Изобретение
Номер охранного документа: 0002534124
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0ad4

Сеть управления для рельсового транспортного средства

Изобретение относится к области управления транспортных средств. Сеть управления (1) для рельсового транспортного средства содержит устройства управления рельсового транспортного средства, которые кольцеобразно соединены друг с другом, по меньшей мере, двумя каналами связи. Первое устройство...
Тип: Изобретение
Номер охранного документа: 0002534180
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0ade

Компрессорная рабочая лопатка для осевого компрессора

Изобретение относится к компрессорной рабочей лопатке (10) для компрессоров с осевым потоком предпочтительно стационарных газовых турбин. Предусмотрено, что для уменьшения потерь в радиальном зазоре средняя линия (32) расположенных на стороне вершины лопатки профилей (30) пера (12)...
Тип: Изобретение
Номер охранного документа: 0002534190
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0c0c

Устройство энергоснабжения, устройство и система с таким устройством, а также способ для энергоснабжения по меньшей мере одного элемента участка пути, связанного с колеей транспорта

Изобретение относится к устройству энергоснабжения для по меньшей мере одного элемента пути связанного с колеей транспорта, содержащему приемное устройство на стороне участка пути для приема энергии, активно передаваемой посредством электромагнитной индукции передающим устройством связанного с...
Тип: Изобретение
Номер охранного документа: 0002534492
Дата охранного документа: 27.11.2014
Показаны записи 291-300 из 943.
27.09.2014
№216.012.f93f

Система и способ для определения состояния подшипника

Изобретение относится к измерительной технике, в частности для определения состояния подшипника электрической машины. Способ заключается в том, что посредством сенсорного блока (20) определяют измеренное значение (21). Измеренное значение передают на блок (22) моделирования. Посредством блока...
Тип: Изобретение
Номер охранного документа: 0002529644
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9ba

Способ для генерации пара с высоким кпд

Изобретение относится к генерации пара из рабочего тела парогенератора, который предпочтительно выполнен как парогенератор на отходящем тепле. Предлагается способ преобразования в пар рабочего тела парогенератора, при котором в теплообменнике для преобразования в пар рабочего тела тепловая...
Тип: Изобретение
Номер охранного документа: 0002529767
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9c0

Быстродействующая дистанционная защита для сетей энергоснабжения

Изобретение относится к способу для распознавания короткого замыкания (16) в линии (10) многофазной электрической сети энергоснабжения с заземленной нейтралью. Сущность: принимаются значения выборок тока и напряжения и формируется сигнал неисправности, если выполненная электрическим устройством...
Тип: Изобретение
Номер охранного документа: 0002529773
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fa7c

Топливная трубка для горелки

Топливная трубка для горелки, в частности для горелки газовой турбины, содержит конец, который имеет поверхность под форсунки, а также, по меньшей мере, две топливные форсунки. Поверхность под форсунки снабжена шлицами между топливными форсунками и выполнена в виде конической кольцевой...
Тип: Изобретение
Номер охранного документа: 0002529970
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd46

Подставка для горелки камеры сгорания газовой турбины и газовая турбина

Изобретение относится к энергетике. Камера сгорания газовой турбины, у которой предусмотрены вставка для горелки, которая имеет стенку с холодной и горячей сторонами и край, ограничивающий стенку вставки для горелки. Край имеет, по меньшей мере, частично охватывающее, выступающее над холодной...
Тип: Изобретение
Номер охранного документа: 0002530684
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe6c

Электрический контактный элемент с главной осью

Изобретение относится к электрическому контактному элементу. Электрический контактный элемент имеет главную ось (2). Главная ось (2) пересекает многоугольную базовую поверхность (1) контактного элемента. Вокруг главной оси (2) расположена контактная втулка (3). Входное отверстие контактной...
Тип: Изобретение
Номер охранного документа: 0002530988
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fed6

Переходный канал газотурбинного двигателя и способ его изготовления, а также газотурбинный двигатель

Переходный канал для соединения камеры сгорания и турбинной части газотурбинного двигателя содержит оболочку, включающую первую и вторую поверхности. Первая и вторая поверхности оболочки соединены пробиванием, а оболочка переходного канала выполнена по меньшей мере из одного листа,...
Тип: Изобретение
Номер охранного документа: 0002531094
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00ed

Каскадный ускоритель

Заявленное изобретение относится к ускорительной технике. В заявленном каскадном ускорителе предусмотрено два набора конденсаторов, соответственно соединенных последовательно и включенных через диоды. Каскадный ускоритель содержит образованный посредством отверстий в электродах конденсаторов...
Тип: Изобретение
Номер охранного документа: 0002531635
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.011e

Устройство сепарации намагничиваемых частиц из суспензии

Изобретение относится к сепарации намагничиваемых частиц. Устройство сепарации намагничиваемых частиц из суспензии, представляющей собой поток веществ, содержащий металлические и неметаллические компоненты и обладающий заданным массовым потоком включает, в себя цилиндрически симметричный...
Тип: Изобретение
Номер охранного документа: 0002531684
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.013c

Система горелки для установки для сжигания топлива в виде текучей среды и способ работы такой системы горелки

Изобретение относится к области энергетики. Система горелки для сжигания топлива в виде текучей среды имеет ступицу, по меньшей мере один подводящий воздух канал и для каждого вида топлива по меньшей мере один подводящий топливо канал (9, 12, 13, 16), при этом по меньшей мере один подводящий...
Тип: Изобретение
Номер охранного документа: 0002531714
Дата охранного документа: 27.10.2014
+ добавить свой РИД