×
20.08.2013
216.012.5f4f

Результат интеллектуальной деятельности: БРУШИТОВЫЙ ЦЕМЕНТ ДЛЯ КОСТНОЙ ХИРУРГИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины и может применяться для протезирования костных структур челюстно-лицевого скелета, в качестве системы доставки лекарственных средств и в качестве матрицы в конструкциях тканевой инженерии. Брушитовый цемент включает (масс.%): β-трехкальциевый фосфат - 34,5-45, монокальцифосфат моногидрат - 23-29,5, биоактивное стекло - 0,5-10, затворяющую жидкость на основе воды 25-32,5. В качестве биоактивных стекол применяют высокощелочные стекла состава (масс.%): SiO-40-60, СаО-10-25, NaO-22-35, РO-3-5, островного, цепочечного, кольцевого или слоистого кремне-кислородного мотива. Стекла вводят в аморфном или кристаллическом состоянии при дисперсности гранул от 30 до 80 и от 80 до 120 мкм. Композиция позволяет регулировать в материале поровую структуру, механические свойства, pH и растворимость в буферных растворах, а также позволяет интенсифицировать регенеративные процессы в травмированных костных структурах и сократить сроки лечения и восстановления целостности костной ткани. 7 з.п. ф-лы, 8 пр.

Изобретение относится к области медицины, в частности к составу брушитового цемента, применяемого в костной хирургии.

Известен кальций-фосфатный костный цемент, конечной фазой кристаллизации которого является гидроксиапатит. Цементный камень формируется при взаимодействии порошковой композиции состава тетракальциевый фосфат - Са4(PO4)2O и дикальциевый фосфат - CaHPO4 с затворяющей жидкостью, в качестве которой используют воду и растворы солей. Соотношение порошковых компонентов (масс.%): тетракальциевый фосфат - 70 и дикалициевый фосфат - 30. Соотношение порошковый компонент: жидкая фаза соответствует 3,3-5. Недостаток материала - необходимость проведения прессования цементного теста или его уплотнения путем инъекции (патент US 7473312, класс 106/691 от 6.01.2009).

Известен кальций-фосфатный цемент, получаемый с применением растворимых форм кремния. Конечной фазой кристаллизации цемента являются либо брушит, либо гидроксиапатит. Порошковая композиция содержит кальциевый, фосфатный или кальций-фосфатный компонент, при этом отношение Са:Р порошковой композиции изменяется в пределах от 4:1 до 0,5:1. Затворяющая жидкость содержит растворимые формы кремния (щелочные силикаты) в концентрации 1-15% (масс.). Недостаток материала - необходимость проведения прессования цементного теста, что обусловлено формированием в системе прослоек щелочных силикатов, препятствующих кристаллизации цемента, другой недостаток - высокие значения pH до 10 (патент US 7820191, класс 424/423 от 26.10.2010).

Наиболее близким по технической сущности и достигаемому результату является хирургический костный цемент, конечной фазой кристаллизации которого является брушит. Порошковая смесь состоит из двух компонентов: β-трехкальциевого фосфатата - β-Са3(PO4)2 и монокальциевого фосфата - Са(H2PO4)2 или монокальцийфосфата моногидрата - Са(H2PO4)2·H2O или раствора фосфорной кислоты. В качестве затворяющей жидкости применяют воду или растворы солей. Содержание компонентов в порошковой композиции (масс.г): β-трехкальциевый фосфатат - 1,2-1,3, монокальциевый фосфат 0,8-0,7. Соотношение порошковый компонент жидкая фаза изменяется в пределах 1,75-2,5. Недостаток материала - низкие значения pH формирующегося брушитового цементного камня на уровне 3,5-4 (патент US 6425949, класс 106/35 от 30.07.2002).

Техническим результатом изобретения является расширение арсенала костных имплантационных материалов, получение материалов с регулируемой поровой и прочностными характеристиками, значениями рН на уровне 3,8-5,9, благоприятным для кристаллизации брушита, высокой гидрофильностью, более высокой растворимостью (потери массы после выдержки в буферном растворе).

Этот технический результат достигается брушитовым цементом для костной хирургии, включающим смесь порошковых компонентов - β-трехкальциевого фосфата, монокальцийфосфата моногидрата и воду, причем в исходную порошковую смесь компонентов дополнительно вводят измельченное в порошок биоактивное высокощелочное стекло, состава (масс.%): SiO2-40-60, CaO-10-25, Na2O-22-35, P2O5-3-5, при следующем соотношении компонентов смеси (масс.%):

β-трехкальциевый фосфат 34,5-45
Монокальцифосфат моногидрат 23-29,5
Биоактивное стекло 0,5-10
Вода 25-32,5

Дисперсность β-трехкальциевого фосфата изменяется от 0,5 до 80 мкм, дисперсность монокальциевого фосфат моногидрата изменяется от 0,5 до 80 мкм. В качестве биоактивного стекла применяют стекла островного, цепочечного, кольцевого или слоистого кремне-кислородного мотива в аморфном или кристаллическом состоянии, Дисперсность порошков стекла изменяется от 30 до 80 мкм и от 80 до 120 мкм, причем крупные агрегаты стекла характеризуются микропоровой структурой и получают путем спекания мелких гранул.

Технология изготовления заключается в следующем.

Высокотемпературный β-трехкальциевый фосфат, термообработанный при температуре 1200°С и времени выдержки 2 часа измельчают до получения фракции от 0,5 до 80 мкм, монокальциевый фосфат моногидрат измельчают до дисперсности от 0,5 до 80 мкм.

Для синтеза высокощелочных стекол применяют: песок - SiO2, соду - Na2CO3, мел - СаСО3, гидроксиапатит Са10(PO4)6(ОН)2, сульфат натрия - Na2SO4, используют реактивы марки "ч" и "хч". Высокощелочные стекла варят при температуре T=1400°С и отжигают при температуре T=500°С в течение 30 минут (получают аморфное стекло) или кристаллизуют при Т=700°С в течение 30 минут (получают кристаллическое стекло). Стекла измельчают в шаровой мельнице до получения частиц размером от 30 до 80 мкм, которые используют в качестве мелкой фракции. Мелкую фракцию стекла повторно спекают и дробят до получения фракции размером от 80 до 120 мкм, которые применяют в качестве крупной фракции в виде микропористых агрегатов.

Готовят порошковую смесь (масс.%): β-трехкальциевого фосфата - 34,5-45, монокальциевого фосфата моногидрата - 23-29,5, порошка стекла - 0,5-10. Смесь тщательно перемешивают до получения однородной порошковой композиции. Порошковую композицию затворяют водой - 25-32,5 (масс.%) до получения цементного теста нормальной густоты.

Пористость композиции изменяется в пределах от 19,3 до 50% и зависит от соотношения компонентов смеси, размеров применяемых гранул стекла. Прочность композиции зависит от ее пористости и находится в пределах: на изгиб от 0,57 до 5,9 МПа, на сжатие от 0,98 до 14,1 МПа; модуль упругости изменяется от 0,09 до 2,05 ГПа. Средний размер пор в цементе 10-90 мкм и обусловлен удалением физически связанной воды. Значения рН контактной среды через 7 суток на уровне 3,8-5,9. Гидрофильность материала определяется содержанием, составом и кремне-кислородным мотивом высокощелочного стекла в композиции, оценивается временем формирования активных Si-OH-групп после выдержки образцов в буферном растворе и находится в пределах 30 мин - 6 час. Потери массы образцов в течение 7 сут составляют от 14,7 до 28,4% и зависят от состава, дисперсности применяемых гранул стекла и поровой структуры материала. Высокие значения потерь массы образцов после выдержки в буферном растворе обеспечиваются растворимостью брушитового цемента и гранул биактивного стекла, содержащих высокорастворимые фазы - натриево-кальциевого фосфата, натриево-кальциевого силиката, силикокарнатита.

Пример 1 (Материал 1).

Готовят порошковую смесь состава (г, соответственно масс.%): β-трехкальциевый фосфат - 45, монокальциевый фосфат моногидрат - 29,5, биоактивное стекло - 0,5, смесь тщательно перемешивают и затворяют водой в количестве 25 г. В композицию вводят высокощелочное стекло состава (масс.%): SiO2-50,0, CaO-25,0, Na2O-22,0, P2O5-3,0 с цепочечно-кольцевым кремне-кислородным мотивом, причем стекло применяют кристаллическое с дисперсностью 30-80 мкм.

Материал обладает следующими характеристиками, измеренными через 7 сут.

Пористость открытая: 19,3%.

Прочность на изгиб: 5,9 МПа.

Прочность на сжатие: 14,1 МПа.

Модуль Юнга: 2,05 ГПа.

pH контактного раствора: 3,9

Формирование активных ОН- - групп на поверхности материала через 2 час.

Потери массы после выдержки в буферном растворе: 20,6%.

Пример 2 (Материал 2).

Готовят порошковую смесь состава (г, соответственно масс.%): β-трехкальциевый фосфат - 43, монокальциевый фосфат моногидрат - 28,5, биоактивное стекло - 3, смесь тщательно перемешивают и затворяют водой в количестве 25,5 г. В композицию вводят высокощелочное стекло состава (масс.%): SiO2-50,0, CaO-23,0, Na2O-22,0, P2O5-5,0 с цепочечно-кольцевым кремне-кислородным мотивом, причем стекло применяют кристаллическое с дисперсностью 30-80 мкм.

Материал обладает следующими характеристиками, измеренными через 7 сут.

Пористость открытая: 25%.

Прочность на изгиб: 2,0 МПа.

Прочность на сжатие: 7,08 МПа.

Модуль Юнга: 1,3 ГПа.

pH контактного раствора: 4,6

Формирование активных ОН- - групп на поверхности материала через 2 час.

Потери массы после выдержки в буферном растворе: 22,8%.

Пример 3 (Материал 3).

Готовят порошковую смесь состава (г, соответственно масс.%): β-трехкальциевый фосфат - 38, монокальциевый фосфат моногидрат - 25,5, биоактивное стекло - 7, смесь тщательно перемешивают и затворяют водой в количестве 29,5 г. В композицию вводят высокощелочное стекло состава (масс.%): SiO2-60,0, CaO-10,0, Na2O-25,0, P2O5-5,0 с цепочечно-слоистым кремне-кислородным мотивом, причем стекло применяют кристаллическое с дисперсностью 80-120 мкм.

Материал обладает следующими характеристиками, измеренными через 7 сут.

Пористость открытая: 38,2%.

Прочность на изгиб: 0,78 МПа.

Прочность на сжатие: 1,41 МПа.

Модуль Юнга: 0,14 ГПа.

pH контактного раствора: 5,5

Формирование активных ОН- - групп на поверхности материала через 6 час.

Потери массы после выдержки в буферном растворе: 24,7%.

Пример 4 (Материал 4).

Готовят порошковую смесь состава (г, соответственно масс.%): β-трехкальциевый фосфат - 34,5, монокальциевый фосфат моногидрат - 23, биоактивное стекло - 10, смесь тщательно перемешивают и затворяют водой в количестве 32,5 г. В композицию вводят высокощелочное стекло состава (масс.%): SiO2-50,0, CaO-23,0, Na2O-22,0, P2O5-5,0 с цепочечно-кольцевым кремне-кислородным мотивом, причем стекло применяют кристаллическое с дисперсностью 30-80 мкм.

Материал обладает следующими характеристиками, измеренными через 7 сут.

Пористость открытая: 50%.

Прочность на изгиб: 0,57 МПа.

Прочность на сжатие: 0,98 МПа.

Модуль Юнга: 0,09 ГПа.

pH контактного раствора: 5,9

Формирование активных ОН- - групп на поверхности материала через 2 час. Потери массы после выдержки в буферном растворе: 28,4%.

Пример 5 (Материал 5).

Готовят порошковую смесь состава (г, соответственно масс.%): β-трехкальциевый фосфат - 45, монокальциевый фосфат моногидрат - 29,5, биоактивное стекло - 0,5, смесь тщательно перемешивают и затворяют водой в количестве 25 г. В композицию вводят высокощелочное стекло состава (масс.%): SiO2-40,0, CaO-20,0, Na2O-35,0, P2O5-5,0 с цепочечно-островным кремне-кислородным мотивом, причем стекло применяют аморфное с дисперсностью 80-120 мкм.

Материал обладает следующими характеристиками, измеренными через 7 сут.

Пористость открытая: 20,2%.

Прочность на изгиб: 5,7 МПа.

Прочность на сжатие: 13,8 МПа.

Модуль Юнга: 1,98 ГПа.

pH контактного раствора: 3,8

Формирование активных ОН- - групп на поверхности материала через 30 мин.

Потери массы после выдержки в буферном растворе: 19,8%.

Пример 6 (Материал 6).

Готовят порошковую смесь состава (г, соответственно масс.%): β-трехкальциевый фосфат - 43, монокальциевый фосфат моногидрат - 29, биоактивное стекло - 3, смесь тщательно перемешивают и затворяют водой в количестве 25 г. В композицию вводят высокощелочное стекло состава (масс.%): SiO2-60,0, CaO-10,0, Na2O-25,0, P2O5-5,0 с цепочечно-слоистым кремне-кислородным мотивом, причем стекло применяют аморфное с дисперсностью 30-80 мкм.

Материал обладает следующими характеристиками, измеренными через 7 сут. Пористость открытая: 26%. Прочность на изгиб: 3,33 МПа.

Прочность на сжатие: 10,79 МПа.

Модуль Юнга: 1,58 ГПа.

pH контактного раствора: 4,6,

Формирование активных ОН- - групп на поверхности материала через 6 час.

Потери массы после выдержки в буферном растворе: 16,7%.

Пример 7 (Материал 7).

Готовят порошковую смесь состава (г, соответственно масс.%): β-трехкальциевый фосфат - 40,5, монокальциевый фосфат моногидрат - 27, биоактивное стекло - 7,5, смесь тщательно перемешивают и затворяют водой в количестве 25 г. В композицию вводят высокощелочное стекло состава (масс.%): SiO2-50,0, CaO-23,0, Na2O-22,0, P2O5-5,0 с цепочечно-кольцевым кремне-кислородным мотивом, причем стекло применяют аморфное с дисперсностью 30-80 мкм.

Материал обладает следующими характеристиками, измеренными через 7 сут.

Пористость открытая: 27,7%.

Прочность на изгиб: 2,94 МПа.

Прочность на сжатие: 8,36 МПа.

Модуль Юнга: 0,98 ГПа.

pH контактного раствора: 5

Формирование активных ОН- - групп на поверхности материала в SBF через 2 час.

Потери массы после выдержки в буферном растворе: 16,3%.

Пример 8 (Материал 8).

Готовят порошковую смесь состава (г, соответственно масс.%): β-трехкальциевый фосфат - 39, монокальциевый фосфат моногидрат - 26, биоактивное стекло - 10, смесь тщательно перемешивают и затворяют водой в количестве 25 г. В композицию вводят высокощелочное стекло состава (масс.%): SiO2-50,0, CaO-25,0, Na2O-22,0, P2O5-3,0 с цепочечно-кольцевым кремне-кислородным мотивом, причем стекло применяют аморфное с дисперсностью 30-80 мкм.

Материал обладает следующими характеристиками, измеренными через 7 сут.

Пористость открытая: 30%.

Прочность на изгиб: 2,1 МПа.

Прочность на сжатие: 5,67 МПа.

Модуль Юнга: 0,72 ГПа.

pH контактного раствора: 5,4

Формирование активных ОН- - групп на поверхности материала через 2 час.

Потери массы после выдержки в буферном растворе: 14,7%.

Предлагаемая композиция брушитового цемента с биоактивным стеклом является универсальной в планах создания широкого ассортимента имплантационных материалов для заместительной и восстановительной костно-пластической хирургии и позволяет получать материалы плотной и высокопористой структуры. Композиция позволяет получать различные виды материалов (гранулят, блоки, изделия сложной формы), имеющих широкую область функциональной пригодности - в виде систем доставки лекарственных средств, в виде имплантационных материалов, в виде пористых матриц - носителей биологических молекул (морфогенетические, рекомбинантные белки) в конструкциях тканевой инженерии. Цемент может быть установлен в зону дефекта во время оперативного вмешательства инъекционно.

Источник поступления информации: Роспатент

Показаны записи 11-14 из 14.
25.08.2017
№217.015.cd03

Способ получения биологически активных имплантатов

Изобретение относится к области медицины и представляет собой способ получения биологических имплантатов, характеризующийся тем, что хирургически очищенный и механически фрагментированный исходный биоматериал из костной ткани подвергают двум-трем циклам замораживания-размораживания, проводят...
Тип: Изобретение
Номер охранного документа: 0002619870
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.d551

Цемент для костной хирургии и способ его получения

Группа изобретений относится к области медицины. Описан цемент для костной хирургии, который включает (масс. %) компоненты сухой смеси: β-трикальцийфосфат - 36-71,5, монокальцийфосфат моногидрат - 10-52, дискретное стекловолокно - 0,5-2 и затворяющий раствор - дистиллированную воду или раствор...
Тип: Изобретение
Номер охранного документа: 0002623211
Дата охранного документа: 22.06.2017
21.05.2023
№223.018.6a7a

Способ получения кальцийфосфатного матрикса на основе самосхватывающейся композиции с антибактериальными свойствами для коррекции патологии опорно-двигательной системы пациента

Изобретение относится к области медицины, а именно к хирургической остеологии, и может быть использовано при хирургическом лечении пациентов с повреждением костных тканей в условиях травматолого-ортопедических, стоматологических, хирургических и других стационаров. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002795082
Дата охранного документа: 28.04.2023
21.05.2023
№223.018.6a7b

Способ получения кальцийфосфатного матрикса на основе самосхватывающейся композиции с антибактериальными свойствами для коррекции патологии опорно-двигательной системы пациента

Изобретение относится к области медицины, а именно к хирургической остеологии, и может быть использовано при хирургическом лечении пациентов с повреждением костных тканей в условиях травматолого-ортопедических, стоматологических, хирургических и других стационаров. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002795082
Дата охранного документа: 28.04.2023
Показаны записи 11-16 из 16.
10.05.2016
№216.015.3aeb

Способ получения эпоксидно-фенольной композиции

Изобретение относится к области получения полимерных материалов, таких как эпоксидно-фенольные композиции, и может найти применение в качестве покрытий для антикоррозионной защиты консервной тары. Получение эпоксидно-фенольной композиции осуществляют при перемешивании и диспергировании в...
Тип: Изобретение
Номер охранного документа: 0002583098
Дата охранного документа: 10.05.2016
10.08.2016
№216.015.52e7

Способ получения редиспергируемого в воде полимерного порошка

Изобретение относится к способу производства редиспергируемых в воде полимеров, которые могут быть использованы в качестве гидрофобизаторов для песка, глины, бумаги, текстиля, для получения защитных покрытий, сухих строительных смесей и других целей. Способ заключается в получении...
Тип: Изобретение
Номер охранного документа: 0002594215
Дата охранного документа: 10.08.2016
25.08.2017
№217.015.cd03

Способ получения биологически активных имплантатов

Изобретение относится к области медицины и представляет собой способ получения биологических имплантатов, характеризующийся тем, что хирургически очищенный и механически фрагментированный исходный биоматериал из костной ткани подвергают двум-трем циклам замораживания-размораживания, проводят...
Тип: Изобретение
Номер охранного документа: 0002619870
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.d551

Цемент для костной хирургии и способ его получения

Группа изобретений относится к области медицины. Описан цемент для костной хирургии, который включает (масс. %) компоненты сухой смеси: β-трикальцийфосфат - 36-71,5, монокальцийфосфат моногидрат - 10-52, дискретное стекловолокно - 0,5-2 и затворяющий раствор - дистиллированную воду или раствор...
Тип: Изобретение
Номер охранного документа: 0002623211
Дата охранного документа: 22.06.2017
21.05.2023
№223.018.6a7a

Способ получения кальцийфосфатного матрикса на основе самосхватывающейся композиции с антибактериальными свойствами для коррекции патологии опорно-двигательной системы пациента

Изобретение относится к области медицины, а именно к хирургической остеологии, и может быть использовано при хирургическом лечении пациентов с повреждением костных тканей в условиях травматолого-ортопедических, стоматологических, хирургических и других стационаров. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002795082
Дата охранного документа: 28.04.2023
21.05.2023
№223.018.6a7b

Способ получения кальцийфосфатного матрикса на основе самосхватывающейся композиции с антибактериальными свойствами для коррекции патологии опорно-двигательной системы пациента

Изобретение относится к области медицины, а именно к хирургической остеологии, и может быть использовано при хирургическом лечении пациентов с повреждением костных тканей в условиях травматолого-ортопедических, стоматологических, хирургических и других стационаров. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002795082
Дата охранного документа: 28.04.2023
+ добавить свой РИД