×
10.08.2013
216.012.5cba

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в неорганической химии. Для получения магнитоактивного соединения путем окислительной конденсации раствора соли железа (II) конденсацию проводят в присутствии нитрозированных лигносульфонатов в условиях воздействия магнитного поля. Изобретение позволяет ускорить синтез и получить магнитоактивное соединение с высокой относительной магнитной восприимчивостью. 1 табл., 22 пр.
Основные результаты: Способ получения магнитоактивного соединения путем окислительной конденсации раствора соли железа (II), отличающийся тем, что конденсацию проводят в присутствии нитрозированных лигносульфонатов в условиях воздействия магнитного поля.

Изобретение относится к способам получения магнитоактивных соединений. Наноразмерные частицы магнитоактивных соединений являются основой магнитных жидкостей, обладающих уникальным сочетанием текучести и способностью взаимодействовать с магнитным полем. Их свойства определяются совокупностью характеристик твердой магнитной фазы, дисперсионной среды и стабилизатора.

Механическое диспергирование частиц магнетита в шаровых мельницах в течение 1000 ч явилось первым способом получения магнитных жидкостей. [Papell S.S. Low viskosity magnetic fluid obtaned by the colloidal suspension of magnetic particles. Patent USA №3215572, USA C1. 149-2. 1965] путем мокрого механического измельчения.

Способ получения магнитоактивного соединения из природного минерала - сидерита [Общая и неорганическая химия. М.Х. Карапетьянц. С.И. Дракин - с.571], также отличается низкой производительностью и, кроме того, он проводится при высокой температуре.

Кроме низкой производительности недостатками диспергирования в шаровой мельнице является загрязнение магнитной жидкости продуктами истирания шаров при работе мельницы и значительный разброс размеров частиц.

Кайзер усовершенствовал описанный Пейпелом процесс и получил магнитные жидкости, в которых дисперсной средой были вода, ароматические углеводороды и эфиры [Kaiser R., Miskolczy G. // J.Appl. Phys., 1970, V. 41, N3, P.1064-1072. Kaiser R. Ferrofluid composition. Patent USA №3700595, Int. C1. H01F 1/10, 1972].

Магнитоактивные частицы коллоидных размеров можно формировать за счет конденсации отдельных молекул. На размер образующихся частиц существенно влияют условия конденсации, поэтому для получения коллоидных частиц магнитных материалов используют различные варианты метода.

Химическая реакция (1) служит основой многих методов конденсации магнитоактивных соединений:

.

Например, для получения магнетита 10%-ные растворы FeCl2·4H2O и FeCl3·6H2O, взятые в таких объемах, чтобы соотношение солей F было 2 к 1, смешивают при 70°C и при постоянном перемешивании к ним добавляют избыток 10%-ного раствора NaOH. Для ограничения размера частиц конденсацию проводят при интенсивном перемешивании [Elmore W.С. // Phys. Rew., 1938, V. 54, P.309].

Замена при конденсации магнетита гидроксида натрия на гидроксид аммония позволяет проводить соосаждение солей при 25…40°C. (пат. СССР №568598, 861321, 966015, 978860).

Для стабилизации в водной среде частиц магнетита со средним размером около 10 нм, полученных химической конденсацией, Нилом предложено использовать - лигносульфонат натрия. Недостатками метода являются необходимость применения двух солей железа и продолжительная выдержка при повышенных температурах. Продукт, полученный при низких температурах, не обладает магнитной активностью. [Neal J.A. Clarification process. Patent USA 4088779 C02B 1/20, 1978.; Neal J.A. Clarification process. Patent USA 4110208 C02B 1/20, 1978].

Кроме того, известен способ, в соответствии с которым из раствора соли железа (II) осаждают карбонат железа (II), который в дальнейшем в течение 1 ч подвергают окислительной обработке при температуре 55…60°С. В результате карбонат железа(II) превращается в магнитоактивный магнетит. Продукт реакции промывают декантацией до рН 7 [пат. РФ №2230705. МПК7 C01G 49/08. Способ получения магнитоактивного соединения // Беликов В.Г., Курегян А.Г., Шахшаев Ш.О., Зилфикаров И.Н. Заявка: 2000109795/02, 19.04.2000. Опубликовано: 20.06.2004].

Наиболее близким к предлагаемому способу является получение чистого черного пигмента оксида железа (патент CN 102139927 High-purity iron oxide black pigment and production method thereof) из сульфата железа (II) в щелочной среде. Способ осуществляется следующим образом. Водный раствор FeSO4 первоначально подщелачивают раствором гидроксида натрия при нормальной температуре и выдерживают в течение 0,5…2 ч, контролируя рН 10…10,5. Далее проводят окисление кислородом воздуха при температуре 90…97°C в течение 1 ч. После завершения окисления из пигмента удаляют примеси тяжелых металлов, промывают на фильтр-прессе и сушат.

Недостатком указанного способа является большая продолжительность синтеза магнитоактивного соединения.

Целью является ускорение синтеза магнитоактивного соединения. Это достигается тем, что конденсацию магнитоактивного соединения из раствора солей железа производят в условиях воздействия магнитного поля.

Способ реализуется следующим образом. К раствору соли железа (II) добавляется расчетное, количество нитрозированных лигносульфоновых кислот, полученный раствор подщелачивается и выдерживается в условиях действия внешнего магнитного поля. Выделяющийся бирюзовый осадок быстро уплотняется и через некоторое время превращается в магнитоактивное соединение с высокой относительной магнитной восприимчивостью.

Пример 1. Для осаждения магнитоактивного соединения смешивали 10 мл раствора нитрозированных лигносульфонатов, концентрацией 0,74 мг/мл, 0,8 мл раствора сульфата железа (II), концентрацией 27,8 мг/мл и 2 мл раствора NaOH, концентрацией 40 г/л.

Нитрозирование лигносульфонатов проводили следующим образом. В мерную колбу вместимостью 200 мл вносили 8 мл раствора исходных лигносульфонатов, концентрацией 1,86 г/л, 7,5 мл раствора нитрита натрия, концентрацией 2,5 г/л (расход нитрита натрия по отношению к лигносульфонатам составил 12,6%) и 1 мл раствора азотной кислоты концентрацией 10%, объем раствора доводили до метки дистиллированной водой. Реакцию нитрозирования проводили в течение 60 мин.

Пробирку с реакционной смесью выдерживали на постоянном магните в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 90,7%, ОМВ 14,8 г/гFe.

Пример 2. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 30 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 92,9%, ОМВ 17,6 г/гFe.

Пример 3. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 60 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 22,1 г/гFe.

Пример 4. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 90 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 24,1 г/гFe.

Пример 5. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что пробирку с реакционной смесью выдерживали на постоянном магните в течение 120 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 26,6 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 6. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 180 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 27,1 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 7. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 1200 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 37,3 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 8. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что конденсацию МС проводили без воздействия магнитного поля в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 77,9%, ОМВ 7,6 г/гFe.

Пример 9. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 30. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 84,2%, ОМВ 11,3 г/гFe.

Пример 10. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 60. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 87,1%, ОМВ 18,3 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 11. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 90. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 88,6%, ОМВ 21,4 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 12. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 120. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 88,6%, ОМВ 23,8 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 13. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 180. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 88,6%, ОМВ 26,1 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 14. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 1200. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 26,1%, ОМВ 30,8 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 15. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что реакцию нитрозирования лигносульфонатов проводили в течение 180 мин.

Пробирку с реакционной смесью выдерживали на постоянном магните в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 90,0%, ОМВ 13,2 г/гFe.

Пример 16. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 30 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 92,9%, ОМВ 17,1 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 17. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 60 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 20,9 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 18. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 90 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 22,9 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 19. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что конденсацию МС проводили без воздействия магнитного поля в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 61,4%, ОМВ 4,1 г/гFe.

Пример 20. Осаждение магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 30 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 77,1%, ОМВ 5,9 г/гFe.

Пример 21. Осаждение магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 60 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 82,9%, ОМВ 8,9 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 22. Осаждение магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 90 мин. Из мерили объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 85,7%, ОМВ 11,2 г/гFe. Осадок приобрел свойства магнитной жидкости.

Результаты, полученные при синтезе магнитоактивного соединения, сведены в таблице, из данных которой видно, что предлагаемое решение позволяет значительно ускорить синтез магнитоактивного соединения.

Пример Условия конденсации τ, мин Показатели
объем осадка, % от общего объема ОМВ, г/гFe внешний вид
1 под действием внешнего магнитного поля 15 90,7 14,8 осадок
2 под действием внешнего магнитного поля 30 92,9 17,6 осадок
3 под действием внешнего магнитного поля 60 94,3 22,1 осадок
4 под действием внешнего магнитного поля 90 94,3 24,3 осадок
5 под действием внешнего магнитного поля 120 94,3 26,6 жидкость
6 под действием внешнего магнитного поля 180 94,3 27,1 жидкость
7 под действием внешнего магнитного поля 1200 94,3 37,3 жидкость
8 естественные 15 77,9 7,6 осадок
9 естественные 30 84,3 11,2 осадок
10 естественные 60 87,1 18,3 жидкость
11 естественные 90 88,6 21,4 жидкость
12 естественные 120 88,6 23,8 жидкость
13 естественные 180 88,6 26,1 жидкость
14 естественные 1200 88,6 30,8 жидкость
15 под действием внешнего магнитного поля 15 90,0 13,2 осадок
16 под действием внешнего магнитного поля 30 92,9 17,1 жидкость
17 под действием внешнего магнитного поля 60 94,3 20,9 жидкость
18 под действием 90 94,3 22,9 жидкость
внешнего магнитного поля
19 естественные 15 61,4 4,1 осадок
20 естественные 30 77,1 5,9 осадок
21 естественные 60 82,9 8,9 жидкость
22 естественные 90 85,7 11,2 жидкость

Способ получения магнитоактивного соединения путем окислительной конденсации раствора соли железа (II), отличающийся тем, что конденсацию проводят в присутствии нитрозированных лигносульфонатов в условиях воздействия магнитного поля.
Источник поступления информации: Роспатент

Показаны записи 21-22 из 22.
20.01.2018
№218.016.118a

Способ получения магнитоактивного соединения

Изобретение может быть использовано при создании магнитоактивных катализаторов. Способ получения раствора магнитоактивного соединения включает конденсацию из раствора сульфата железа (II), содержащего лигносульфонаты, и раствора окислителя при их смешении. В качестве окислителя используют...
Тип: Изобретение
Номер охранного документа: 0002634026
Дата охранного документа: 23.10.2017
12.07.2018
№218.016.6ff4

Органический компонент питательной смеси для растений

Изобретение относится к сельскому хозяйству. Применение лигносульфонатов, модифицированных нитрованием, с помощью концентрированной азотной кислоты, или нитрозированием, с помощью нитрита натрия и раствора уксусной кислоты, в качестве органического компонента питательной смеси для растений....
Тип: Изобретение
Номер охранного документа: 0002660929
Дата охранного документа: 11.07.2018
Показаны записи 31-40 из 100.
27.12.2014
№216.013.145d

Круглопильный станок

Изобретение относится к деревообрабатывающей промышленности и может быть использовано для продольной распиловки древесины. Круглопильный станок содержит станину, кольцевую пилу, опорный диск и боковые направляющие пилы. На направляющие пилы установлен воздухоприемник с отверстиями-соплами....
Тип: Изобретение
Номер охранного документа: 0002536637
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1dbf

Способ прокладки дюкера в северных условиях

Изобретение относится к области строительства гидротехнических сооружений и, в частности, к прокладке нефтегазопроводов, туннелей по дну водоемов, включая мелководный шельф арктических морей. Технический результат - обеспечение долговечности и безопасности эксплуатации дюкеров в северных...
Тип: Изобретение
Номер охранного документа: 0002539043
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e21

Способ захоронения промышленных отходов

Изобретение относится к области охраны окружающей среды. Для захоронения промышленных отходов отрывают котлован. Отходы обезвоживают и перемешивают с «тяжелой» нефтью, нагревают и термоокисляют полученную смесь, укладывают слой смеси на дно и откосы котлована с созданием в процессе...
Тип: Изобретение
Номер охранного документа: 0002539141
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.209b

Устройство для тренировки прыгунов в высоту

Изобретение относится к спорту, производству спортивно-тренировочного инвентаря и может быть использовано при изготовлении устройств для тренировки прыгунов в высоту с шестом. Устройство содержит платформу 1, служащую опорой для спины тренирующегося, и снабженный пружиной 2 стартовый элемент в...
Тип: Изобретение
Номер охранного документа: 0002539795
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.230d

Способ определения состава сухой строительной смеси для бетона

Изобретение относится к теоретическому и прикладному материаловедению и может быть использовано в различных областях науки и техники в целях создания новых и совершенствования известных методик создания сухих строительных смесей для бетона с заданными эксплуатационными свойствами. Сущность...
Тип: Изобретение
Номер охранного документа: 0002540426
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2948

Наноструктурированный древесно-минеральный композитный материал

Изобретение относится к производству строительных материалов и может быть использовано при производстве древесно-минеральных плит и отделочных материалов в промышленном и гражданском строительстве. Технический результат заключается в повышении прочности, водостойкости. Нанострутурированный...
Тип: Изобретение
Номер охранного документа: 0002542025
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3d5c

Фундамент

Изобретение относится к строительству и может быть использовано при устройстве фундаментов малоэтажных зданий на сезоннопромерзающих грунтах. Фундамент включает ленточный ростверк с отверстиями, пропущенные через отверстия винтовые сваи и стаканы, вмещающие головы свай. Стаканы имеют резьбовое...
Тип: Изобретение
Номер охранного документа: 0002547196
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e45

Способ разработки лесосек

Изобретение относится к лесной промышленности и может быть использовано при производстве лесосечных работ. Способ включает валку и укладку срезанных деревьев в пачки на землю комлями в сторону лесопогрузочного пункта, выполняемые валочно-пакетирующей машиной. Пачки деревьев укладывают под углом...
Тип: Изобретение
Номер охранного документа: 0002547429
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f5d

Отжимная направляющая ленточной пилы

Изобретение относится к деревообрабатывающей промышленности, в частности к лесопильному оборудованию. Отжимная направляющая ленточной пилы содержит гибкий корпус с плоской рабочей поверхностью, подпружиненный со стороны пильного шкива. На направляющей со стороны тыльной части полотна пилы...
Тип: Изобретение
Номер охранного документа: 0002547709
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4363

Устройство для измерения деформаций грунта при сезонном промерзании-оттаивании

Изобретение относится к области строительства и предназначено для измерения деформаций грунта при сезонном промерзании-оттаивании. Устройство представляет собой гофрированную обсадную трубу, внутри которой установлен шток, соединенный с вертикальным анкерным стержнем при помощи упругой связи,...
Тип: Изобретение
Номер охранного документа: 0002548749
Дата охранного документа: 20.04.2015
+ добавить свой РИД