×
10.08.2013
216.012.5c39

Результат интеллектуальной деятельности: СПОСОБ ОСАЖДЕНИЯ НАНОЧАСТИЦ ЗОЛОТА НА МИКРОСФЕРЫ КРЕМНЕЗЕМА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области физической химии и может быть использовано в производстве фотонных кристаллов с заданными физическими свойствами. Сущность: подложку с предварительно нанесенными микросферами кремнезема помещают в реактор. Вакуумируют реакционную камеру до 10 торр. Затем подложку нагревают до температуры 192-230°С, напускают в зону реакции пары прекурсора с температурой 45-56°С. Выдерживают пары в течение, по меньшей мере, 1,5 секунд. Осуществляют подачу воздуха в реакционную камеру до давления 10 торр. Выдерживают реакционную смесь в течение, по меньшей мере, 2 секунд и откачивают реакционную систему до начального вакуума. Технический результат: упрощение способа, сокращение сроков выполнения работ, расширение функциональных возможностей за счет получения наночастиц золота контролируемого размера. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области физической химии и может быть использовано в производстве фотонных кристаллов с заданными оптическими свойствами.

Известны различные способы осаждения наночастиц золота на микросферы кремнезема, например, лазерная абляция, осаждение из жидкой фазы. Основными недостатками данных способов являются наличие множества стадий осаждения, сложность управления размерами наночастиц, а также возможная агрегация наночастиц после удаления растворителя.

Известен способ получения опалоподобных структур с золотыми наночастицами, в котором осаждение проводят в две стадии. Первая стадия включает в себя получение золотых наночастиц лазерной абляцией, перевод их в этанольный раствор, посредством воздействия лазерного излучения с длиной волны 1060 нм на золотую мишень, находящуюся в этанольном растворе. Под действием лазерного импульса наночастицы золота переходят в этанольный раствор. На второй стадии производят многократную инфильтрацию золотых наночастиц в матрицу опала, для чего образец с нанесенными микросферами кремнезема погружают в раствор, полученный на первой стадии, и высушивают на воздухе. Процедуру повторяют до 100 раз (см. V.S. Gorelik, L.I. Ziobina, V.A. Karavanskii, O.A. Troitskii, R.I. Chanieva. InorganicMaterials 46 (2010), р.862-865) [1].

К недостаткам данного способа можно отнести наличие двух стадий процесса осаждения, а также отсутствие контроля за размерами наночастиц золота как на стадии получения, так и на стадии инфильтрации.

Известны способы осаждение наночастиц золота в порах матрицы микросфер путем восстановления золотосодержащих растворов, например, золотохлористоводородной кислоты, различными восстановителями в присутствии стабилизаторов, ПАВ и др.

Например, известен способ осаждения золотых наночастиц на поверхность микросфер кремнезема, заключающийся в следующем: в 2-3 мл раствора, содержащего 0,01% НАuСl4, 0,01% дубильной кислоты, 0,04% цитрата натрия и 0,26 мМ раствора карбоната калия, помещают стеклянную подложку с нанесенными микросферами под углом в 65° и ждут, когда раствор полностью испарится и будет инфильтрован в матрицу микросфер кремнезема под действием капиллярных сил. В результате из раствора получают золотые наночастицы размерами от 3,5 до 6,5 нм (см. A.Z. Khokhar, F. Rahman, N.P. Johnsori. Journal of Physics and Chemistry of Solids 72 (2011), р.185-189 )[2].

Известный способ обладает существенными недостатками, такими как невозможность управления размерами наночастиц, наличием ПАВ; а также агрегацией наночастиц после удаления растворителя.

Наиболее близким к заявляемому является способ осаждения наночастиц фосфида индия (InP) методом химического осаждения их из газовой фазы из металлорганических предшественников, путем совместного осаждения прекурсоров триметилиндия и фосфина на подложку с предварительно нанесенными микросферами кремнезема с размерами от 230 до 535 нм. Подложку помещают в реактор при атмосферном давлении, нагревают до 200-400°С, далее подают пары прекурсоров из двух независимых источников, при этом температуры паров варьируют от 52 до 150°С для триметилиндия и 350°С для фосфина. Число циклов осаждения составляет от 2 до 10 для каждого реактанта, продолжительность циклов составляет от 25 минут до 1 часа.

В результате получают наночастицы InP с размером 50 нм (см. H.M. Yates, M.E. Pemble, H. Miguez, A. Blanco, C.Lopez, F. Meseguer, L. Vazquez. J. Crys. Growth 193 (1998), 9-15)[3].

Недостатками прототипа являются сложность и длительность процесса.

Задача, на решение которой направлено заявляемое изобретение, состоит в упрощении известного способа, сокращении сроков его выполнения и расширении функциональных возможностей заявляемого способа за счет получения наночастиц золота контролируемого размера.

Технический результат достигается путем применения заявляемого способа, заключающегося в следующем.

Подложку необходимого размера и толщины с предварительно нанесенными микросферами кремнезема помещают в реактор, вакуумируют реакционную камеру до 10-4 торр, подложку нагревают до температуры 192-230°С, напускают пары прекурсора с температурой 45-56°С, выдерживают пары в течение не менее 1,5 секунд, напускают воздух в реакционную камеру до давления 10-2 торр, выдерживают реакционную смесь в течение не менее 2 секунд и откачивают реакционную систему до начального вакуума. В качестве прекурсора используют летучий металлорганический комплекс: дипивалоилметаиат диметилзолота. Число циклов составляет от 30 до 100. В результате происходит химическая реакция восстановления золота из прекурсора до металлического состояния с образованием на поверхности микросфер наночастиц золота с размером 5-20 нм.

Определяющим отличием заявляемого способа, по сравнению с прототипом, является то, что осаждение микрочастиц золота производят в одну стадию из газовой фазы при оптимальных режимах, что позволяет расширить функциональные возможности способа за счет обеспечения возможности получения одиночных, не агрегированных наночастиц золота контролируемого размера, составляющего 5-20 нм.

Способ осуществляют на автоматизированной установке, включающей реактор, вакуумную систему, систему подачи газов, управляемые с помощью компьютера.

Изобретение иллюстрируется следующими примерами конкретного выполнения.

Пример 1.

Подложку размером 10×10 мм2, толщиной 2 мм с нанесенными микросферами кремнезема со средним диаметром 210 нм, помещают в реактор, который откачивают до 10-4 торр, нагревают подложку до 192°С, в реакционную камеру напускают пары дипивалоилметанат диметилзолота с температурой 45°С, выдерживают в течение 1,5 секунд, напускают воздух в реакционную камеру до давления 10-2 торр, выдерживают реакционную смесь в течение 2 секунд и откачивают реакционную систему до начального вакуума. Число циклов составляет 50. В результате получены наночастицы золота с размерами 5-10 нм на поверхности микросфер кремнезема. На Фиг.1 представлена микрофотография микросфер кремнезема с осажденными на них наночастицами золота со сканирующего электронного микроскопа, где указан размер одной из наночастиц.

Пример 2.

Подложку размером 10×10 мм2, толщиной 2 мм с нанесенными микросферами кремнезема со средним диаметром 210 нм, помещают в реактор, который откачивают до 10-4 торр, нагревают подложку до 200°С, в реакционную камеру напускают пары дипивалоилметанат диметилзолота с температурой 56°С, выдерживают в течение 2 секунд, напускают воздух в реакционную камеру до давления 10-2 торр, выдерживают реакционную смесь в течение 2,5 секунд и откачивают реакционную систему до начального вакуума. Число циклов составляет 100. В результате получены наночастицы золота с размерами 10-20 нм на поверхности микросфер кремнезема. На Фиг.2 представлена микрофотография микросфер кремнезема с осажденными на них наночастицами золота со сканирующего электронного микроскопа, где указан размер одной из наночастиц.

Пример 3.

Подложку размером 10×10 мм2, толщиной 2 мм с нанесенными микросферами кремнезема со средним диаметром 210 нм, помещают в реактор, который откачивают до 10-4 торр, нагревают подложку до 230°С, в реакционную камеру напускают пары дипивалоилметанат диметилзолота с температурой 55°С, выдерживают в течение 2,5 секунд, напускают воздух в реакционную камеру до давления 10-2 торр, выдерживают реакционную смесь в течение 3 секунд и откачивают реакционную систему до начального вакуума. Число циклов составляет 30. В результате получены наночастицы золота с размерами 8-15 нм на поверхности микросфер кремнезема. На Фиг.3 представлена микрофотография микросфер кремнезема с осажденными на них наночастицами золота со сканирующего электронного микроскопа, где указан размер одной из наночастиц.

Использование заявляемого способа обеспечивает получение наночастиц золота с размером 5-20 нм на поверхности микросфер кремнезема.


СПОСОБ ОСАЖДЕНИЯ НАНОЧАСТИЦ ЗОЛОТА НА МИКРОСФЕРЫ КРЕМНЕЗЕМА
СПОСОБ ОСАЖДЕНИЯ НАНОЧАСТИЦ ЗОЛОТА НА МИКРОСФЕРЫ КРЕМНЕЗЕМА
СПОСОБ ОСАЖДЕНИЯ НАНОЧАСТИЦ ЗОЛОТА НА МИКРОСФЕРЫ КРЕМНЕЗЕМА
Источник поступления информации: Роспатент

Показаны записи 121-130 из 135.
18.05.2019
№219.017.5670

Жидкокристаллический проекционный экран

Изобретение относится к оптическому приборостроению. Жидкокристаллический проекционный экран включает жидкокристаллический материал, помещенный между двумя прозрачными пластинами, на которые с внутренней стороны нанесены слои прозрачного электропроводного материала. На внешнюю сторону...
Тип: Изобретение
Номер охранного документа: 0002399076
Дата охранного документа: 10.09.2010
18.05.2019
№219.017.5710

Способ и система для распознавания лица с учетом списка людей, не подлежащих проверке

Изобретение относится к биометрическим системам идентификации личности по изображению лица человека. Техническим результатом является распознавание личности в условиях неравномерного освещения и для широкого диапазона углов поворота лица на изображении. В способе формируют галерею изображений...
Тип: Изобретение
Номер охранного документа: 0002381553
Дата охранного документа: 10.02.2010
24.05.2019
№219.017.6060

Оптическая проекционная система

Система содержит оптический модулятор, оптическую часть переноса, проекционную оптическую часть, асферическое зеркало и отражающий экран. Оптическая часть переноса содержит собственную часть, включающую в себя, по меньшей мере, один оптический элемент, расположенный на первой оптической оси....
Тип: Изобретение
Номер охранного документа: 0002403602
Дата охранного документа: 10.11.2010
29.05.2019
№219.017.65a6

Способ увеличения разрешения цифровой видеопоследовательности

Изобретение относится к способам обработки видеоданных, а более конкретно к способам увеличения размерности видеопоследовательностей. Технический результат заключается в обеспечении увеличения размера изображения в четыре и более раз без заметных искажений. Способ увеличения размерности...
Тип: Изобретение
Номер охранного документа: 0002393540
Дата охранного документа: 27.06.2010
29.05.2019
№219.017.68ff

Десятикратный ультракомпактный вариообъектив с макрорежимом

Объектив состоит из четырех последовательно расположенных компонентов: первого - положительного, второго - отрицательного, третьего и четвертого - положительных. Первый компонент неподвижен в режиме зуммирования и подвижен в макрорежиме и представляет собой склейку положительной и отрицательной...
Тип: Изобретение
Номер охранного документа: 0002433434
Дата охранного документа: 10.11.2011
29.05.2019
№219.017.6a24

Способ обработки звукового сигнала

Изобретение относится к способам обработки цифровых сигналов, в частности к сжатию сигнала и передаче огибающей спектра. Способ обработки звукового сигнала включает операции по преобразованию временного сигнала в спектральные коэффициенты, извлечению огибающей спектра сигнала в виде средней...
Тип: Изобретение
Номер охранного документа: 0002464649
Дата охранного документа: 20.10.2012
09.06.2019
№219.017.7d98

Интегральное оптическое устройство для записи микроголограмм

Устройство состоит из лазерного источника когерентного излучения, оптического устройства, разделяющего исходящий из лазерного источника пучок на сигнальный и опорный, оптического устройства, расширяющего сигнальный пучок, пространственного модулятора света, преобразующей оптической системы...
Тип: Изобретение
Номер охранного документа: 0002470337
Дата охранного документа: 20.12.2012
19.06.2019
№219.017.88b8

Устройство воспроизведения изображения (варианты)

Изобретение относится к области оптики, а именно к устройствам воспроизведения изображения. Устройство содержит, по меньшей мере, одно средство отображения, оптический элемент с полным внутренним отражением (ПВО), соединенный с приводом, и, по меньшей мере, один оптический элемент распределения...
Тип: Изобретение
Номер охранного документа: 0002413264
Дата охранного документа: 27.02.2011
19.06.2019
№219.017.8b3e

Полимер на основе поли(ферроценил)силана, способ его получения и пленка, включающая в себя полимер на основе поли(ферроценил)силана

Изобретение относится к полимерам на основе поли(ферроценил)силана, использующимся в фотонных полупроводниковых матрицах. Предложен ячеистый полимер на основе поли(ферроценил)силана, включающий в себя повторяющиеся блоки трех типов структур, способ его получения, основанный на пространственном...
Тип: Изобретение
Номер охранного документа: 0002441874
Дата охранного документа: 10.02.2012
29.06.2019
№219.017.9df1

Проекционная оптическая система

Изобретение относится к проекционным оптическим системам. Проекционная система содержит первую оптическую часть, вторую оптическую часть и третью оптическую часть, каждая оптическая часть содержит, по меньшей мере, одну оптическую линзу. Вторая оптическая часть дополнительно содержит средство...
Тип: Изобретение
Номер охранного документа: 0002338232
Дата охранного документа: 10.11.2008
Показаны записи 81-83 из 83.
13.01.2017
№217.015.73c9

Способ мониторинга малых примесей ацетона в выдыхаемом воздухе пациента и устройство для его реализации

Изобретение относится к медицине, а именно к медицинской диагностике наличия ацетона в выдыхаемом воздухе пациента. Способ измерения концентрации ацетона в выдыхаемом воздухе основан на измерении уровня содержания ацетона по эмиссионным линиям разряда при пониженном давлении пробы выдыхаемого...
Тип: Изобретение
Номер охранного документа: 0002597943
Дата охранного документа: 20.09.2016
26.08.2017
№217.015.e34b

Способ анализа концентрации аналита и оптический хемосенсор

Изобретение относится к области технической физики, к устройствам, предназначенным для детектирования молекул газов или жидкостей на основе многолучевой интерференции света, явления полного внутреннего отражения и капиллярной конденсации в порах пленки опалоподобного кремнезема. Способ основан...
Тип: Изобретение
Номер охранного документа: 0002626066
Дата охранного документа: 21.07.2017
02.10.2019
№219.017.cefa

Дозатор порошков металлоорганических материалов

Изобретение относится к устройствам для циклической дозированной подачи порошков металлоорганических соединений при осаждении покрытий. Сущность: устройство включает электродвигатель (2), соединенный с вращающимся валом (3). Соосно валу (3) установлены вращающийся диск (5) с дозирующими...
Тип: Изобретение
Номер охранного документа: 0002700044
Дата охранного документа: 12.09.2019
+ добавить свой РИД