Вид РИД
Изобретение
Изобретение относится к области физической химии и может быть использовано в производстве фотонных кристаллов с заданными оптическими свойствами.
Известны различные способы осаждения наночастиц золота на микросферы кремнезема, например, лазерная абляция, осаждение из жидкой фазы. Основными недостатками данных способов являются наличие множества стадий осаждения, сложность управления размерами наночастиц, а также возможная агрегация наночастиц после удаления растворителя.
Известен способ получения опалоподобных структур с золотыми наночастицами, в котором осаждение проводят в две стадии. Первая стадия включает в себя получение золотых наночастиц лазерной абляцией, перевод их в этанольный раствор, посредством воздействия лазерного излучения с длиной волны 1060 нм на золотую мишень, находящуюся в этанольном растворе. Под действием лазерного импульса наночастицы золота переходят в этанольный раствор. На второй стадии производят многократную инфильтрацию золотых наночастиц в матрицу опала, для чего образец с нанесенными микросферами кремнезема погружают в раствор, полученный на первой стадии, и высушивают на воздухе. Процедуру повторяют до 100 раз (см. V.S. Gorelik, L.I. Ziobina, V.A. Karavanskii, O.A. Troitskii, R.I. Chanieva. InorganicMaterials 46 (2010), р.862-865) [1].
К недостаткам данного способа можно отнести наличие двух стадий процесса осаждения, а также отсутствие контроля за размерами наночастиц золота как на стадии получения, так и на стадии инфильтрации.
Известны способы осаждение наночастиц золота в порах матрицы микросфер путем восстановления золотосодержащих растворов, например, золотохлористоводородной кислоты, различными восстановителями в присутствии стабилизаторов, ПАВ и др.
Например, известен способ осаждения золотых наночастиц на поверхность микросфер кремнезема, заключающийся в следующем: в 2-3 мл раствора, содержащего 0,01% НАuСl4, 0,01% дубильной кислоты, 0,04% цитрата натрия и 0,26 мМ раствора карбоната калия, помещают стеклянную подложку с нанесенными микросферами под углом в 65° и ждут, когда раствор полностью испарится и будет инфильтрован в матрицу микросфер кремнезема под действием капиллярных сил. В результате из раствора получают золотые наночастицы размерами от 3,5 до 6,5 нм (см. A.Z. Khokhar, F. Rahman, N.P. Johnsori. Journal of Physics and Chemistry of Solids 72 (2011), р.185-189 )[2].
Известный способ обладает существенными недостатками, такими как невозможность управления размерами наночастиц, наличием ПАВ; а также агрегацией наночастиц после удаления растворителя.
Наиболее близким к заявляемому является способ осаждения наночастиц фосфида индия (InP) методом химического осаждения их из газовой фазы из металлорганических предшественников, путем совместного осаждения прекурсоров триметилиндия и фосфина на подложку с предварительно нанесенными микросферами кремнезема с размерами от 230 до 535 нм. Подложку помещают в реактор при атмосферном давлении, нагревают до 200-400°С, далее подают пары прекурсоров из двух независимых источников, при этом температуры паров варьируют от 52 до 150°С для триметилиндия и 350°С для фосфина. Число циклов осаждения составляет от 2 до 10 для каждого реактанта, продолжительность циклов составляет от 25 минут до 1 часа.
В результате получают наночастицы InP с размером 50 нм (см. H.M. Yates, M.E. Pemble, H. Miguez, A. Blanco, C.Lopez, F. Meseguer, L. Vazquez. J. Crys. Growth 193 (1998), 9-15)[3].
Недостатками прототипа являются сложность и длительность процесса.
Задача, на решение которой направлено заявляемое изобретение, состоит в упрощении известного способа, сокращении сроков его выполнения и расширении функциональных возможностей заявляемого способа за счет получения наночастиц золота контролируемого размера.
Технический результат достигается путем применения заявляемого способа, заключающегося в следующем.
Подложку необходимого размера и толщины с предварительно нанесенными микросферами кремнезема помещают в реактор, вакуумируют реакционную камеру до 10-4 торр, подложку нагревают до температуры 192-230°С, напускают пары прекурсора с температурой 45-56°С, выдерживают пары в течение не менее 1,5 секунд, напускают воздух в реакционную камеру до давления 10-2 торр, выдерживают реакционную смесь в течение не менее 2 секунд и откачивают реакционную систему до начального вакуума. В качестве прекурсора используют летучий металлорганический комплекс: дипивалоилметаиат диметилзолота. Число циклов составляет от 30 до 100. В результате происходит химическая реакция восстановления золота из прекурсора до металлического состояния с образованием на поверхности микросфер наночастиц золота с размером 5-20 нм.
Определяющим отличием заявляемого способа, по сравнению с прототипом, является то, что осаждение микрочастиц золота производят в одну стадию из газовой фазы при оптимальных режимах, что позволяет расширить функциональные возможности способа за счет обеспечения возможности получения одиночных, не агрегированных наночастиц золота контролируемого размера, составляющего 5-20 нм.
Способ осуществляют на автоматизированной установке, включающей реактор, вакуумную систему, систему подачи газов, управляемые с помощью компьютера.
Изобретение иллюстрируется следующими примерами конкретного выполнения.
Пример 1.
Подложку размером 10×10 мм2, толщиной 2 мм с нанесенными микросферами кремнезема со средним диаметром 210 нм, помещают в реактор, который откачивают до 10-4 торр, нагревают подложку до 192°С, в реакционную камеру напускают пары дипивалоилметанат диметилзолота с температурой 45°С, выдерживают в течение 1,5 секунд, напускают воздух в реакционную камеру до давления 10-2 торр, выдерживают реакционную смесь в течение 2 секунд и откачивают реакционную систему до начального вакуума. Число циклов составляет 50. В результате получены наночастицы золота с размерами 5-10 нм на поверхности микросфер кремнезема. На Фиг.1 представлена микрофотография микросфер кремнезема с осажденными на них наночастицами золота со сканирующего электронного микроскопа, где указан размер одной из наночастиц.
Пример 2.
Подложку размером 10×10 мм2, толщиной 2 мм с нанесенными микросферами кремнезема со средним диаметром 210 нм, помещают в реактор, который откачивают до 10-4 торр, нагревают подложку до 200°С, в реакционную камеру напускают пары дипивалоилметанат диметилзолота с температурой 56°С, выдерживают в течение 2 секунд, напускают воздух в реакционную камеру до давления 10-2 торр, выдерживают реакционную смесь в течение 2,5 секунд и откачивают реакционную систему до начального вакуума. Число циклов составляет 100. В результате получены наночастицы золота с размерами 10-20 нм на поверхности микросфер кремнезема. На Фиг.2 представлена микрофотография микросфер кремнезема с осажденными на них наночастицами золота со сканирующего электронного микроскопа, где указан размер одной из наночастиц.
Пример 3.
Подложку размером 10×10 мм2, толщиной 2 мм с нанесенными микросферами кремнезема со средним диаметром 210 нм, помещают в реактор, который откачивают до 10-4 торр, нагревают подложку до 230°С, в реакционную камеру напускают пары дипивалоилметанат диметилзолота с температурой 55°С, выдерживают в течение 2,5 секунд, напускают воздух в реакционную камеру до давления 10-2 торр, выдерживают реакционную смесь в течение 3 секунд и откачивают реакционную систему до начального вакуума. Число циклов составляет 30. В результате получены наночастицы золота с размерами 8-15 нм на поверхности микросфер кремнезема. На Фиг.3 представлена микрофотография микросфер кремнезема с осажденными на них наночастицами золота со сканирующего электронного микроскопа, где указан размер одной из наночастиц.
Использование заявляемого способа обеспечивает получение наночастиц золота с размером 5-20 нм на поверхности микросфер кремнезема.