×
10.08.2013
216.012.5c25

Результат интеллектуальной деятельности: ЭЛЕМЕНТ КАТАЛИТИЧЕСКОЙ НАСАДКИ (ВАРИАНТЫ) И СПОСОБ ОСУЩЕСТВЛЕНИЯ ЭКЗОТЕРМИЧЕСКИХ КАТАЛИТИЧЕСКИХ РЕАКЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент каталитической насадки, в котором гранулы готового катализатора или катализатор, сформированный в объеме пористого носителя, размещены в емкости с перфорированными стенками из жаропрочного металла с величиной отверстий стенок емкости меньше размера гранул катализатора и расстоянием между стенками, превышающим размер гранулы катализатора или (второй вариант) гранулы готового катализатора, или катализатор, сформированный в объеме пористого носителя, размещены в емкости с перфорированными стенками из жаропрочного металла с величиной отверстий стенок емкости, превышающих размер гранул катализатора, а внутренняя сторона стенок емкости закрыта сеткой из жаропрочного металла с величиной ячейки меньше диаметра гранул катализатора. Описан также способ осуществления экзотермических реакций с использованием описанной выше каталитической насадки. Технический результат - увеличение срока службы каталитических насадок в условиях их эксплуатации при экологически чистом сжигании топлив в псевдоожиженном слое твердых дисперсных частиц инертного материала. 3 н.п. ф-лы, 5 пр., 1 табл.

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала.

Известен способ осуществления экзотермических каталитических реакций путем подачи реагентов в слой псевдоожиженных твердых частиц инертного материала - теплоносителя в присутствии катализатора, выполненного в виде организующей малообъемной насадки (RU 2084761, F23C 11/02, 20.07.1997). Присутствие каталитической насадки в псевдоожиженном слое инертного материала позволяет проводить процесс сжигания топлив при температурах ниже 800°C с сохранением преимуществ сжигания топлив в псевдоожиженном слое катализатора (SU 826798, 1983; RU 2057988, F23C 11/02, 10.04.96). Каталитическая насадка выполнена в виде неподвижного блока, элементы которого представляют собой решетки, блоки, насадки типа колец Рашига. Элементы каталитической насадки являются катализаторами глубокого окисления веществ, работающие в кинетической или внутридиффузионной области. Поэтому наряду с высокой каталитической активностью в отношении сжигания топлив элементы насадок должны обладать достаточной удельной поверхностью. Важными дополнительными требованиями является высокая механическая прочность насадок к истиранию, а также высокие термостабильность и теплопроводность.

Известны способы приготовления катализаторов для глубокого окисления углеводородов в установках каталитического сжигания топлив в виде монолитного блока из пенистой или многоканальной керамики, на поверхности которой сформирован каталитически активный материал из оксидов или смеси оксидов (RU 2055638, B01J 23/74, 10.04.1996; RU 2086298, B01J 23/70, 10.08.1997). Использование таких блоков для осуществления каталитических процессов в псевдоожиженном слое инертного материала затруднено из-за достаточно быстрого отслоения активного компонента от пористого носителя и последующего его выноса из состава носителя под воздействием значительных механических и термических нагрузок в кипящем слое.

Известен способ приготовления катализаторов для сжигания топлива, включающий изготовление пористого носителя, формирование катализатора путем пропитки носителя водным раствором солей металлов переходных групп с последующей сушкой и прокаливанием (RU 2039601, B01J 37/02, 20.07.1995). В качестве солей переходных металлов используют нитраты металлов, которые выбирают из группы, включающей кобальт, никель, хром, железо, а в качестве носителя используют неорганический волокнистый материал, например, кварцевое, кремнеземное, каолиновое или базальтовое волокно. При этом пропитку носителя ведут в водном растворе солей нитратов переходных металлов с добавлением мочевины и растворимого в воде многоатомного спирта или углевода в количестве 0,25-1,5 мас.%. Полученную заготовку сушат в потоке воздуха при температуре не выше 90-100°C до остаточной влажности 5-10%, а затем прокаливают бегущей тепловой волной с температурой 500-600°C, используя теплоту экзотермической реакции. Недостатком способа также является низкая механическая прочность связи активного компонента с носителем и как следствие истирание катализатора и потеря активности при использовании его в качестве каталитической насадки при сжигании топлив в псевдоожиженном слое.

Известен способ приготовления катализатора для сжигания топлива, содержащего оксиды железа и алюминия, включающий смешение каталитически активных оксидов металлов с неорганическими связующими материалами, измельчение с получением однородной смеси, формирование заготовки требуемой формы и прокаливания. В качестве каталитически активных компонентов используют шламовые железосодержащие отходы гальванического производства, а в качестве связующего - смесь природных материалов, содержащих оксид алюминия: глину, каолин, а также неорганические добавки: тальк, волластонит или тремолит и порообразующую добавку - древесный уголь (RU 2058190, B01J 23/745, 20.04.1996).

Способ позволяет приготовить каталитические насадки, которые длительное время сохраняют свою активность при использовании их при сжигании топлив в псевдоожиженном слое, так как при истирании равномерно удаляется как носитель, так и активный компонент. Однако срок службы насадок остается сравнительно небольшим.

Известен способ приготовления катализатора для сжигания топлива, (RU 2275961, B01J 37/02, 10.05.2006) включающий изготовление высокопористого носителя с заданными магнитными свойствами, используя временную подложку из открытопористого органического полимерного материала: пористого полиуретана или полипропилена с размером ячеек 0,4-1 мм и объемом пор 95-97%, которую размещают в водной суспензии порошка металла, выбранного из группы переходных металлов:

железа, кобальта, хрома, никеля или их сплавов, или ванадия и клея органического в качестве связующего до полного пропитывания подложки. Соотношение массы порошка и жидкости в суспензии подбирают таким образом, чтобы пропитанная после отжатия заготовка носителя имела заданную плотность. Отжатую заготовку носителя сушат на воздухе, затем удаляют временную подложку путем выжигания ее в печи в вакууме при температуре 750°C, после чего осуществляют процесс спекания при температуре 900-1300°C. Для повышения эффективности катализатора создают переменную плотность пористой структуры носителя с максимумом плотностью на внешней (одной) стороне носителя прокаткой. Процесс прокатки осуществляют с помощью прокатного ролика на глубину 1-3 мм. Затем осуществляют процесс образования на носителе слоя катализатора толщиной 50-80 мкм в виде оксидов или шпинелей. Для получения слоя катализатора заданной толщины носитель погружают в водный раствор ацетатов или сульфатов металлов переходных групп: кобальта, хрома, ванадия, железа, никеля или их сплавов, чередуя с сушкой при комнатной температуре и прокаливанием в печи до получения слоя катализатора 50-80 мкм. При этом прокаливание осуществляют путем одно- или многократного нагрева при температуре от 400 до 1100°C в воздушной среде или инертной среде в течение 30-120 мин с добавками активаторов или без них. В другом варианте этого способа получения катализатора - газофазном, изготовленный носитель размещают внутри печи, куда нагнетают в течение 60-120 мин пары карбонила металла, выбранного из группы переходных металлов, с одновременным прокаливанием, которое осуществляют путем постепенного подъема температуры в печи от комнатной до 850°C. Процесс ведут до наращивания слоя катализатора толщиной 50-80 мкм. Недостатками является сложность и трудоемкость приготовления катализатора по этому способу. При использовании его в качестве элемента каталитической насадки при сжигании топлив в псевдоожиженном слое относительно низкая механическая прочность связи активного компонента с носителем приводит к его отслоению и выносу его из состава катализатора, что приводит к быстрой потери активности каталитической насадки.

Известен способ приготовления композитных микроканальных пластин, содержащих катализатор и металлический носитель, включающий внесение катализатора в виде суспензии в поры металлического носителя (RU 2323047, B01J 37/02, 27.04.2008). При этом металлический носитель, помещенный в суспензию катализатора, подвергают ультразвуковой обработке, сушке и дальнейшему прессованию в пресс-форме с заданным рисунком каналов. Суспензия состоит из порошка катализатора и различных жидкостей, таких как, воды, растворов солей, органических растворителей, их смесей и др. Суспензия содержит 2-70 мас.% катализатора и не более 70 мас.% связующего компонента, например, псевдобемит, гамма-оксид алюминия. В качестве пористого металлического носителя используют пенометаллы различной пористости, металлический войлок, металлическая вата из никеля, меди, нержавеющей стали, различных сплавов, обладающей пластичностью.

Недостатками известного способа являются быстрое высыпание катализатора из объема прессованных образцов под действием высоких температур и механических воздействий в псевдоожиженном слое и, как следствие, потеря каталитической активности.

Наиболее близким по технической сущности является способ приготовления элементов каталитических насадок для сжигания топлив в псевдоожиженном слое (RU 2383389, B01J 37/02, 10.03.2010), который включает внесение суспензии катализатора в поры металлического носителя с объемной пористостью до 95% из пенометаллов, металлического войлока, металлической ваты из никеля, нержавеющей стали, различных сплавов, обладающей пластичностью, под действием вибрации, сушку и прессование. Формирование элементов каталитических насадок осуществляют путем внедрения в объем заготовки носителя под действием вибрации пластифицированного гидроксида алюминия в смеси с бихроматами меди и магния или пластифицированного гидроксида алюминия в смеси с порошком катализатора полного окисления веществ, или водной суспензии порошка катализатора полного окисления веществ и клея органического поверхностно-активного вещества ПВА, сушки заготовки при температуре до 110°C, накрывания заготовки сверху и снизу металлопористыми заготовками носителя толщиной 4-6 мм, прессование заготовки, прокаливания прессованной заготовки при температуре 700°C в воздушной среде.

В другом варианте этого способа приготовления элементов каталитических насадок между двух металлопористых заготовок носителя с объемной пористостью до 95% размещают гранулы катализатора полного окисления веществ и прессуют заготовки путем поверхностного сжатия посредством пресса или прокатного ролика и прокаливают прессованные заготовки при температуре 700°C в воздушной среде.

Недостатками известного способа являются сложность технологии изготовления элементов каталитической насадки, низкая конструкционная прочность элементов при изготовлении насадки, забивание внешней пористой оболочки элементов насадки частицами инертного материала с последующим снижением каталитической активности насадки.

Изобретение решает задачу упрощения технологии приготовления элементов насадки, повышения механической прочности насадок с сохранением их высокой каталитической активности.

Техническим результатом изобретения является увеличение срока службы каталитических насадок в условиях их эксплуатации при экологически чистом сжигании топлив в псевдоожиженном слое твердых дисперсных частиц инертного материала.

Задача решается конструкцией элемента каталитической насадки (первый вариант), в которой гранулы готового катализатора или катализатор, сформированный в объеме пористого носителя, размещены в емкости с перфорированными стенками из жаропрочного металла с величиной отверстий стенок емкости меньше размера гранул катализатора и расстоянием между стенками, превышающим размер гранулы катализатора.

Задача решается конструкцией элемента каталитической насадки (второй вариант), в которой гранулы готового катализатора или катализатор, сформированный в объеме пористого носителя, размещены в емкости с перфорированными стенками из жаропрочного металла с величиной отверстий стенок емкости, превышающих размер гранул катализатора, а внутренняя сторона стенок емкости закрыта сеткой из жаропрочного металла с величиной ячейки меньше диаметра гранул катализатора.

Задача решается также способом осуществления экзотермических каталитических реакций в процессе сжигания топлив в псевдоожиженном слое дисперсных частиц инертного материала, в котором используют каталитические насадки, приготовленные из описанных выше элементов.

Сущность изобретения иллюстрируется следующими примерами и таблицей.

Пример 1 (прототип).

Между двумя заготовками носителя в виде пластин из пористого никеля с объемной пористостью 95%, длиной 32 мм, шириной 21 мм и толщиной 5 мм размещают сферические гранулы катализатора полного окисления веществ марки ИК-12-73 (ТУ 6-68-102-89) состава CuMgCr2O4/γ-Al2O3 со средним диаметром гранул 1 мм в соотношении 0,2 см3 катализатора на 1 см3 пластины. Затем полученную заготовку прессуют до толщины 6 мм и прокаливают на воздухе при температуре 700°C в течение 2 ч.

Пример 2.

Из перфорированных пластин с величиной перфорационных отверстий 1 мм готовят емкости прямоугольной формы длиной 32 мм, шириной 21 мм и расстоянием между стенками 6 мм. Материал пластин нержавеющая сталь толщиной 0,8 мм. Дно и крышка емкости перфорированы отверстиями 1 мм. Емкость заполняют гранулами катализатора полного окисления веществ марки ИК-12-73 (ТУ 6-68-102-89) состава CuMgCr2O4/γ-Al2O3 с диаметром частиц 1,5-2,5 мм.

Пример 3.

Из перфорированных пластин с величиной перфорационных отверстий 5 мм готовят емкости прямоугольной формы длиной 32 мм, шириной 21 мм и расстоянием между стенками 6 мм. Материал пластин нержавеющая сталь толщиной 0,8 мм. Дно и крышка емкости перфорированы отверстиями 5 мм. Внутреннюю поверхность емкости покрывают проволочной сеткой из нержавеющей стали с ячейками 1 мм и толщиной проволоки 0,5 мм. Емкость заполняют гранулами катализатора полного окисления веществ марки ИК-12-73 (ТУ 6-68-102-89) состава CuMgCr2O4/γ-Al2O3 с диаметром частиц 1,5-2,5 мм.

Пример 4.

Водную суспензию гидроксида алюминия псевдобемитной структуры с соотношением 100 г гидроксида на 150 г воды пластифицируют раствором азотной кислоты до пастообразного состояния. В пасту гидроксида при перемешивании добавляют порошок катализатора глубокого окисления веществ марки ИК-12-73 (ТУ 6-68-102-89) состава CuMgCr2O4/γ-Al2O3 в соотношении 100 г пасты: 60-80 г порошка катализатора. На заготовку носителя в виде пластины из пористого никеля с объемной пористостью 95% длиной 31,5 мм, шириной 20,5 мм и толщиной 5,5 мм наносят равномерный слой пластифицированной катализаторной массы в соотношении 1 см массы на 1 см3 пластины. Пластину с катализаторной массой подвергают механической вибрации в течение 5-10 мин до полного проникновения массы в объем пластины. Пластину помещают в сушильный шкаф и сушат при 110°C в течение 2 ч, а затем прокаливают на воздухе при температуре 700°C в течение 2 ч. Пластину помещают в емкость по примеру 2.

Пример 5.

В перфорированную трубу диаметром 38 мм вставляют перфорированную трубу диаметром 30 мм. Материал труб нержавеющая сталь толщиной 0,5 мм. Величина перфорационных отверстий 1 мм. Высота труб 50 мм. Кольцевое пространство между трубами заполняют гранулами катализатора полного окисления веществ марки ИК-12-73 (ТУ 6-68-102-89) состава CuMgCr2O4/γ-Al2O3 с диаметром частиц 1,5-2,5 мм. Сверху и снизу кольцевое пространство между трубами закрыто кольцевыми дном и крышкой, перфорированными отверстиями 1 мм.

Испытания активности и стабильности элементов каталитических насадок, приготовленных согласно настоящему изобретению, проводят на стендовой установке с псевдоожиженным слоем инертного дисперсного материала.

В реактор с внутренним диаметром 40 мм загружают каталитическую насадку из емкостей или пластин с размерами 32×12×6 мм, изготовленных в соответствии с примерами 1-4 или цилиндрическими емкостями по примеру 5. Количество емкостей или пластин по примерам 1-4 в насадке 66 шт., высота насадки 462 мм. Пластины или емкости в каждом ряду насадки расположены попарно на расстоянии 16 мм, следующий ряд пластин расположен с поворотом на 90° относительно предыдущего ряда пластин. По примеру 5 количество цилиндрических емкостей 10 шт. Емкости располагаются в реакторе одна над другой. Далее в реактор загружают 600 см3 песка с размером частиц 0.63-1.25 мм. В нижнюю часть реактора через газораспределительную решетку подают воздух для псевдоожижения частиц песка и окисления топлива 1.8 м3/час. В качестве топлив используют метан, дизельное топливо, бурый уголь Ирша-Бородинского месторождения с диаметром частиц менее 0,5 мм. Газообразное топливо и дизельное топливо подается через форсунку в нижнюю часть реактора. Уголь шнековым дозатором также подается в нижнюю часть реактора. Процесс сжигания топлив проводят при температуре 700°C. Избыток выделяющейся теплоты отводится теплообменником, расположенным в верхней части реактора. В процессе длительных испытаний (120 ч) контролируют степень окисления топлив.

Для насадок из элементов, приготовленных в соответствии с примером 1 изменение степени окисления топлив в зависимости от времени работы при температуре 700°C приведены в таблице. Для насадок из элементов, приготовленных в соответствии с примерами 2-5, за 120 ч работы при 700°С изменения степени окисления топлив не обнаружено.

Таблица
Активность элементов насадок по примеру 1 в процессе окисления топлив до продуктов глубокого окисления СО3 и H2O
Время, ч Степень окисления топлив, мас.%
Метан Дизельное топливо Бурый уголь
30 99 99 99
60 99 99 98
90 98,5 98 96
120 98 97 95

Таким образом, насадки, приготовленные из элементов по примеру 1, в течение длительных испытаний при сжигании топлив теряют свою активность в отношении глубокого окисления топлив за счет частичного забивания внешней поверхности пористых элементов насадки пылью частичек песка. Причем при сжигании бурого угля процесс забивания поверхности протекает быстрее за счет участия частичек золы топлива (таблица).

Элементы каталитических насадок, приготовленных в соответствии с изобретением (примеры 2-5), полностью сохраняют свою активность при окислении газообразного, жидкого и твердого топлива в течение всего времени испытаний 120 ч.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 117.
20.08.2016
№216.015.4bac

Способ активации катализатора для получения фторсодержащих углеводородов

Изобретение относится к области химической промышленности, к способу активации хромсодержащих катализаторов, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан способ активации катализатора для получения фторсодержащих углеводородов...
Тип: Изобретение
Номер охранного документа: 0002594485
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6776

Способ приготовления катализатора глубокого окисления

Изобретение относится к области разработки способов приготовления катализаторов глубокого окисления CO и органических веществ. Описан способ приготовления катализатора глубокого окисления. Оксидный носитель пропитывают солями переходных металлов, затем сушат и прокаливают. В качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002591955
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6872

Способ получения о-алкенилфенолов и катализатор для его осуществления

Изобретение относится к способу получения о-алкенилфенолов, являющихся перспективными исходными соединениями для синтеза лекарственных препаратов и душистых веществ в косметической и пищевой промышленности. Способ заключается во взаимодействии фенола или замещенного фенола с алифатическим...
Тип: Изобретение
Номер охранного документа: 0002591954
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.72d8

Способ получения производных 1-пиразолина

Изобретение относится к области органического синтеза, более конкретно к получению трициклических производных 1-пиразолина, содержащих от 9 до 13 атомов углерода, альдегидную группу и 5-членный цикл с диаза-группой. Способ основан на реакции C-C омега-алкенилпроизводных норборнена, например...
Тип: Изобретение
Номер охранного документа: 0002598077
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7852

Устройство внутритрубной дефектоскопии

Заявляемое изобретение относится к области неразрушающего контроля трубопроводного транспорта, в частности к устройствам внутритрубной диагностики, и предназначено для пространственной привязки результатов их измерений, привязки координат обнаруженных дефектов к координатам земной поверхности....
Тип: Изобретение
Номер охранного документа: 0002599072
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a91

Способ приготовления гранулированного носителя и адсорбента

Изобретение относится к способу получения носителя для катализатора паровой конверсии и высокотемпературных абсорбентов диоксида углерода. Описан способ получения носителя из оксида иттрия, включающий получение композиции указанного выше материала с этиленгликолем, укладку композиции в...
Тип: Изобретение
Номер охранного документа: 0002600449
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7acf

Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен

Изобретение относится к способу получения катализатора окислительной конверсии (окислительного дегидрирования) этана в этилен. Описан способ получения оксидных катализаторов состава MoVTeNbO, где а=0,20-0,40, b=0,15-0,35, с=0,05-0,25, x - количество атомов кислорода, требуемых для соблюдения...
Тип: Изобретение
Номер охранного документа: 0002600455
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7b5b

Способ метилирования бензола

Изобретение относится к способу метилирования бензола. Способ характеризуется тем, что в качестве метилирующего агента используют диметилдисульфид, процесс осуществляют в присутствии катализатора - высококремнистого цеолита HZSM-5, в газовой фазе при атмосферном давлении, при температуре...
Тип: Изобретение
Номер охранного документа: 0002600453
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7ba0

Катализатор (варианты), способ его приготовления и способ получения ацетальдегида

Изобретение относится к катализаторам (вариантам) для получения ацетальдегида в процессе изомеризации окиси этилена, а также к способу приготовления заявленных катализаторов. При этом в качестве активного компонента катализатор содержит цеолит структуры: МТТ, TON, имеющие состав: x AlO - y ElO...
Тип: Изобретение
Номер охранного документа: 0002600452
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.83ca

Способ селективного гидрирования ацетиленовых углеводородов

Изобретение относится к способу селективного гидрирования ацетиленовых углеводородов в среде олефинов и диолефинов, включающему пропускание через слой катализатора потока водорода, олефинов и/или диолефинов, содержащих примеси ацетиленовых углеводородов. Способ характеризуется тем, что в...
Тип: Изобретение
Номер охранного документа: 0002601751
Дата охранного документа: 10.11.2016
Показаны записи 71-80 из 166.
13.01.2017
№217.015.6776

Способ приготовления катализатора глубокого окисления

Изобретение относится к области разработки способов приготовления катализаторов глубокого окисления CO и органических веществ. Описан способ приготовления катализатора глубокого окисления. Оксидный носитель пропитывают солями переходных металлов, затем сушат и прокаливают. В качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002591955
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6872

Способ получения о-алкенилфенолов и катализатор для его осуществления

Изобретение относится к способу получения о-алкенилфенолов, являющихся перспективными исходными соединениями для синтеза лекарственных препаратов и душистых веществ в косметической и пищевой промышленности. Способ заключается во взаимодействии фенола или замещенного фенола с алифатическим...
Тип: Изобретение
Номер охранного документа: 0002591954
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.72d8

Способ получения производных 1-пиразолина

Изобретение относится к области органического синтеза, более конкретно к получению трициклических производных 1-пиразолина, содержащих от 9 до 13 атомов углерода, альдегидную группу и 5-членный цикл с диаза-группой. Способ основан на реакции C-C омега-алкенилпроизводных норборнена, например...
Тип: Изобретение
Номер охранного документа: 0002598077
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7852

Устройство внутритрубной дефектоскопии

Заявляемое изобретение относится к области неразрушающего контроля трубопроводного транспорта, в частности к устройствам внутритрубной диагностики, и предназначено для пространственной привязки результатов их измерений, привязки координат обнаруженных дефектов к координатам земной поверхности....
Тип: Изобретение
Номер охранного документа: 0002599072
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a91

Способ приготовления гранулированного носителя и адсорбента

Изобретение относится к способу получения носителя для катализатора паровой конверсии и высокотемпературных абсорбентов диоксида углерода. Описан способ получения носителя из оксида иттрия, включающий получение композиции указанного выше материала с этиленгликолем, укладку композиции в...
Тип: Изобретение
Номер охранного документа: 0002600449
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7acf

Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен

Изобретение относится к способу получения катализатора окислительной конверсии (окислительного дегидрирования) этана в этилен. Описан способ получения оксидных катализаторов состава MoVTeNbO, где а=0,20-0,40, b=0,15-0,35, с=0,05-0,25, x - количество атомов кислорода, требуемых для соблюдения...
Тип: Изобретение
Номер охранного документа: 0002600455
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7b5b

Способ метилирования бензола

Изобретение относится к способу метилирования бензола. Способ характеризуется тем, что в качестве метилирующего агента используют диметилдисульфид, процесс осуществляют в присутствии катализатора - высококремнистого цеолита HZSM-5, в газовой фазе при атмосферном давлении, при температуре...
Тип: Изобретение
Номер охранного документа: 0002600453
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7ba0

Катализатор (варианты), способ его приготовления и способ получения ацетальдегида

Изобретение относится к катализаторам (вариантам) для получения ацетальдегида в процессе изомеризации окиси этилена, а также к способу приготовления заявленных катализаторов. При этом в качестве активного компонента катализатор содержит цеолит структуры: МТТ, TON, имеющие состав: x AlO - y ElO...
Тип: Изобретение
Номер охранного документа: 0002600452
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.83ca

Способ селективного гидрирования ацетиленовых углеводородов

Изобретение относится к способу селективного гидрирования ацетиленовых углеводородов в среде олефинов и диолефинов, включающему пропускание через слой катализатора потока водорода, олефинов и/или диолефинов, содержащих примеси ацетиленовых углеводородов. Способ характеризуется тем, что в...
Тип: Изобретение
Номер охранного документа: 0002601751
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.85d5

Катализатор, способ его приготовления и способ фотокаталитического получения водорода

Изобретение относится к способам получения катализатора на основе оксидов и гидроксидов меди и никеля, нанесенных на твердый раствор сульфидов кадмия и цинка, применяемого преимущественно в качестве фотокатализатора для процессов фотокаталитического выделения водорода из водных растворов...
Тип: Изобретение
Номер охранного документа: 0002603190
Дата охранного документа: 27.11.2016
+ добавить свой РИД