×
10.08.2013
216.012.5c22

Результат интеллектуальной деятельности: КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ ОКСИДА УГЛЕРОДА И ВОДОРОДА В ЕГО ПРИСУТСТВИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к катализаторам получения алифатических углеводородов. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные частицы железа и сформированный in situ непосредственно в зоне реакции в процессе термообработки компонентов катализатора в токе водорода или оксида углерода в расплавленном парафине, характеризующийся тем, что наноразмерные частицы железа промотированы медью при следующем соотношении компонентов, % мас.: Cu 5-25; Fe - остальное. Описан способ получения алифатических углеводородов из оксида углерода и водорода в присутствии указанного катализатора. Технический результат - снижение содержания алкенов. 2 н. и 2 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии.

Смеси алифатических углеводородов, содержащих 5 и более атомов углерода (C5+), являются ценными полупродуктами для производства компонентов моторных топлив и смазочных масел, которые выделяют из этих смесей посредством дистилляции. Кроме того, твердые углеводороды (воски) находят применение в качестве составляющих сплавов для точного литья, компонентов парфюмерных и косметических композиций.

В последние годы все больший интерес приобретают методы получения углеводородов различных групп из альтернативного сырья - угля, природного и попутного нефтяного газа, биомассы различного происхождения. Подобные технологии известны из уровня техники и включают, как правило, две основные стадии:

- получение смеси монооксида углерода и водорода, называемой синтез-газом;

- последующее получение углеводородов из синтез-газа способом, известным как синтез Фишера-Тропша.

Из этих стадий вторая является основной, поскольку именно она определяет выход и состав целевых продуктов.

Катализаторы, которые подходят для проведения этой реакции, содержат, как правило, один или несколько каталитически активных переходных металлов VIII группы Периодической системы элементов, нанесенных на оксидные носители, такие как Al2O3, SiO2, TiO2 и т.д. В частности, железо, кобальт, никель и рутений хорошо известны как активные металлы для такого катализатора.

На железосодержащих катализаторах наряду с предельными углеводородами образуются и непредельные углеводороды, преимущественно α-алкены. Иногда содержание алкенов может доходить до 50% мас. (Химические вещества из угля. Пер. с нем. // Под редакцией И.В. Калечица. - М.: Химия, 1980. - 616 с.). Алкены склонны к реакциям присоединения с образованием взрывоопасных органических пероксидов и гидропероксидов, поэтому крайне нестабильны. Использование синтетических углеводородов, полученных в синтезе Фишера-Тропша, в качестве компонентов моторных топлив с высоким содержанием олефинов недопустимо. В частности содержание алкенов в соответствии с европейским экологическим стандартом ЕВРО-4 не должно превышать 18% мас.

Еще одним перспективным направлением использования технологии синтеза Фишера-Тропша является переработка попутного нефтяного газа непосредственно на месторождении с последующей подачей образующегося продукта в нефтепровод. Высокое содержание алкенов также повышает взрывоопасность транспортируемой смеси углеводородов.

Снизить содержание алкенов в продуктах синтеза можно за счет введения в состав катализатора, промотирующих добавок, которые способны усилить гидрирующую способность катализатора. Наиболее доступным и эффективным промотором в данном случае является медь (Li S., Meitzner G.D., Iglesia E. // Studies in Surface Science and Catalysis. 2001. V.136. P.387).

Наиболее перспективным методом получения углеводородных смесей с высоким содержанием восков в настоящее время считается проведение синтеза Фишера-Тропша в трехфазной системе газ - жидкость - твердое тело, то есть в присутствии катализатора, суспендированного в слое высококипящей жидкости (Guettel R., Kuntz U., Turek T. // Chem. Eng. Technol. 2008. V.31. №5. Р.746). Реакторы этого типа носят название жидкофазных или сларри. В условиях трехфазной системы используется мелкодисперсный катализатор, что позволяет снять внутреннюю диффузию и получать более тяжелые продукты.

Использование ультрадисперсных катализаторов с размером частиц менее 0,1 мкм («субмикронная область размеров» или область «наночастиц») позволяет практически полностью избежать внутридиффузионных ограничений и повысить эффективность работы катализатора.

Известен, например, способ получения углеводородов из CO и H2 в «сларри-реакторе» автоклавного типа в присутствии наноразмерного Fe-K-Mn катализатора со средним диаметром частиц 7-18 нм (Bai L., Xiang H.W., Li Y.W., Han Y.Z., Zhong B. // Fuel. 2002. V.81. P.1577). При 22 атм и 250-300°C этот катализатор позволяет получать смеси углеводородных продуктов преимущественно бензиновой фракции. Однако используемый в этом случае метод приготовлении катализатора не позволяет эффективно использовать выбранные промоторы.

Наиболее близким к предлагаемому изобретению является наноразмерный катализатор состава, мас.%: 87-95 Fe, 2-9 K2O, 1-8 Al2O3, который получают и активируют непосредственно в реакторе Хаджиев С.Н., Лядов А.С., Крылова М.В., Крылова М.В. // Нефтехимия. Т.51. №1. С.25. Позднее этот же катализатор и процесс был опубликован в патенте №2443471, МПК B01J 23/745, B82B 1/00, B01J 23/78, B01J 21/04, C07C 1/04, опубл. 27.02.2012. Этот катализатор получают in situ разложением солей входящих в него компонентов в расплаве высокомолекулярных парафинов. Синтез осуществляют в сларри-реакторе автоклавного типа при температуре 200-350°C и давлении 20-30 атм. При этом конверсия CO достигает 90%, а выход углеводородов С5+ около 100 г/м3. Селективность катализатора в отношении образования углеводородов C5+ достаточно высока и достигает 45%.

Однако, недостатком этого катализатора является то, что образующаяся смесь алефатических углеводородов содержит до 45% алкенов, как указано в приведенной выше статье.

Задача предлагаемого изобретения заключается в создании катализатора для получения алифатических углеводородов с пониженным содержанием алкенов методом Фишера-Тропша, а также разработке способа получения алифатических углеводородов.

Поставленная задача решается тем, что предложен катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные частицы железа, промотированные медью, катализатор сформирован in situ, непосредственно в зоне реакции в процессе термообработки компонентов катализатора в токе водорода или оксида углерода и имеет следующий состав, % мас.:

Cu - 5-25; Fe - остальное.

Поставленная задача решается также тем, что предложен способ получения алифатических углеводородов из оксида углерода и водорода в трехфазном реакторе при повышенной температуре и давлении в присутствии наноразмерных, равномерно распределенных в расплавленном парафине частиц железосодержащего катализатора, активированного непосредственно в зоне реакции оксидом углерода и водородом, который проводят в присутствии этого катализатора.

Активацию катализатора проводят при температуре 250-400°C в течение времени, необходимого для образования оксида железа (II, III), после чего для синтеза углеводородов, используют смесь из оксида углерода и водорода, взятых в мольном отношении 1:(0,5-2).

Компоненты катализатора вводят в расплавленный нефтяной парафин или в виде механической смеси солей, или в виде их раствора в растворителе, не смешивающемся с жидкой фазой, например, спирт, вода, эфир.

В предлагаемом техническом решении, возможно, использовать катализаторы, которые подходят для проведения синтеза Фишера-Тропша, содержащие каталитически активные металлы VIII группы, в частности, железо, никель, рутений или кобальт (предпочтительно железо).

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в снижение содержания алкенов в продуктах синтеза до 25% мас.

Катализатор готовят из составляющих его компонентов непосредственно в реакторе синтеза углеводородов (in situ), для чего в жидкую среду, представляющую собой расплавленный нефтяной парафин, т.е. смесь тяжелых (парафиновых) углеводородов при интенсивном перемешивании и температуре вводят эффективное количество компонентов катализатора, главным образом солей. Это так называемый прекурсор катализатора, который используют в виде механической смеси или в виде раствора в растворителе, не смешивающемся с жидкой фазой (спирт, ацетон, вода, эфир и т.п.).

Затем прекурсор подвергают термообработке при температуре 40-450°C в токе водорода или оксида углерода.

В процессе приготовления катализатора образуется устойчивый коллоидный раствор. Согласно данным малоуглового рентгеновского рассеяния размер частиц катализатора 20-25 нм.

Катализатор подвергают активации in situ непосредственно в реакторе, восстанавливая его в токе водорода или оксида углерода, для чего через образовавшуюся суспензию, содержащую наночастицы катализатора при температуре 250-400°C, предпочтительнее 300-350°C, в течение 5-50 ч, предпочтительнее 20-30 ч пропускают водород или оксид углерода.

Затем в этот же реакторе, заполненный жидкой фазой с восстановленным катализатором, подают смесь оксида углерода и водорода, взятых в мольном отношении 1:(0,5-3) и проводят синтез алифатических углеводородов при температуре 200-350°C и давлении 1-50 атм с нагрузкой на катализатор 1-50 л/г кат. ч.

Нижеследующие примеры иллюстрируют изобретение, но никоим образом не ограничивают область его применения.

Пример 1

43,29 г нитрата железа Fe(NO3)3·9H2O и 1,30 г нитрата меди Cu(NO3)2·5H2O растворяют в 25 мл дистиллированной воды.

Полученный из такой смеси катализатор имеет состав, % мас.:

Cu - 4,8; Fe - остальное.

Средний размер частиц полученного катализатора составляет 250-270 нм.

Катализатор активируют в автоклаве (in situ) в токе монооксида углерода при 300°C в течение 24 ч.

Затем на катализаторе осуществляют синтез углеводородов, пропуская через активированный катализатор «синтез-газ» с мольным отношением CO:H2, равным 1:1, в температурном интервале от 220°C до 320°C и давлении 30 атм.

Результаты эксперимента приведены в таблице.

Пример 2

43,29 г нитрата железа Fe(NO3)3·9H2O и 2,61 г нитрата меди Cu(NO3)2·5H2O растворяют в 25 мл дистиллированной воды.

Полученный из такой смеси катализатор имеет состав, % мас.:

Cu - 9,1; Fe - остальное.

Средний размер частиц полученного катализатора составляет 250-270 нм.

Приготовление катализатора, его активацию и синтез углеводородов из CO и H2 осуществляют аналогично описанным в примере 1.

Результаты эксперимента приведены в таблице.

Пример 3

43,29 г нитрата железа Fe(NO3)3·9H2O и 3,89 г нитрата меди Cu(NO3)2·5H2O растворяют в 25 мл дистиллированной воды.

Полученный из такой смеси катализатор имеет состав, % мас.:

Cu - 13,0; Fe - остальное.

Средний размер частиц полученного катализатора составляет 250-270 нм.

Приготовление катализатора, его активацию и синтез углеводородов из CO и H2 осуществляют аналогично описанным в примере 1.

Результаты эксперимента приведены в таблице.

Пример 4

43,29 г нитрата железа Fe(NO3)3·9H2O и 7,90 г нитрата меди Cu(NO3)2·5H2O растворяют в 25 мл дистиллированной воды.

Полученный из такой смеси катализатор имеет состав, % мас.:

Cu - 23,3; Fe - остальное.

Средний размер частиц полученного катализатора составляет 250-270 нм.

Приготовление катализатора, его активацию и синтез углеводородов из CO и H2 осуществляют аналогично описанным в примере 1.

Результаты эксперимента приведены в таблице.

Пример 5 (по прототипу)

Катализатор, содержащий 87,7 Fe, 8,8 K2O, 3,5 Al2O3 (средний размер частиц 650-750 нм), полученный как описано в прототипе, испытывают в реакции получения алифатических углеводородов методом Фишера-Тропша в условиях предлагаемого технического решения.

Результаты эксперимента приведены в таблице.

Таким образом, предлагаемый катализатор позволяет получать алифатические углеводороды методом Фишера-Тропша с высокой селективностью по отношению к C5+-углеводородам (на уровне прототипа), но со значительно более низким содержанием алкенов (до 25% по сравнению с 45% по прототипу).

Источник поступления информации: Роспатент

Показаны записи 71-80 из 149.
20.01.2018
№218.016.1631

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo, закрепленных на одностенных углеродных нанотрубках, и способ его получения

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания...
Тип: Изобретение
Номер охранного документа: 0002635254
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.16c6

Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей,...
Тип: Изобретение
Номер охранного документа: 0002635606
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.171b

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом...
Тип: Изобретение
Номер охранного документа: 0002635609
Дата охранного документа: 14.11.2017
13.02.2018
№218.016.1fa7

Способ получения наноразмерного катализатора синтеза фишера-тропша и способ синтеза фишера-тропша с его применением

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего...
Тип: Изобретение
Номер охранного документа: 0002641299
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.446b

Способ получения синтетической нефти из природного или попутного нефтяного газа (варианты)

Настоящее изобретение относится вариантам способа получения синтетической нефти из природного или попутного нефтяного газа. Один из вариантом способа включает стадию синтеза оксигенатов из исходного синтез-газа, полученного из указанного сырья, в присутствии металлооксидного катализатора, с...
Тип: Изобретение
Номер охранного документа: 0002649629
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4703

Способ измерения скорости циркуляции мелкодисперсного катализатора

Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора,...
Тип: Изобретение
Номер охранного документа: 0002650623
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4c18

Способ получения винилиденовых олефинов

Изобретение относится к области промышленного получения ненасыщенных углеводородов с заданной структурой, а именно к способу получения винилиденовых олефинов. Способ включает димеризацию альфа-олефинов, таких как гексен-1, октен-1, децен-1, в присутствии продукта взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002652118
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4c27

Способ получения суспензии катализатора гидроконверсии тяжелого нефтяного сырья

Изобретение относится к области нефтепереработки и, более конкретно, к способам приготовления наноразмерных и ультрадисперсных катализаторов без носителя для гидрогенизационной переработки высокомолекулярного углеводородного сырья, в частности высококипящих остатков переработки нефти, природных...
Тип: Изобретение
Номер охранного документа: 0002652122
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4c35

Способ получения глюкозочувствительных полимерных гидрогелей

Изобретение относится к области биохимии и медицины, к способу получения глюкозочувствительных полимерных гидрогелей, которые могут применяться в качестве носителей для контролируемого выделения инсулина при появлении глюкозы. Способ получения глюкозочувствительных полимерных гидрогелей...
Тип: Изобретение
Номер охранного документа: 0002652126
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4ccd

Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом

Изобретение относится к области композиционных мембран разделения газовых смесей и/или смеси газов и паров органических растворителей, и/или первапорации водно-органических или органических-органических смесей. Способ получения композиционной мембраны для газоразделения и первапорации включает...
Тип: Изобретение
Номер охранного документа: 0002652228
Дата охранного документа: 25.04.2018
Показаны записи 71-80 из 96.
20.01.2018
№218.016.1631

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo, закрепленных на одностенных углеродных нанотрубках, и способ его получения

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания...
Тип: Изобретение
Номер охранного документа: 0002635254
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.16c6

Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей,...
Тип: Изобретение
Номер охранного документа: 0002635606
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.171b

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом...
Тип: Изобретение
Номер охранного документа: 0002635609
Дата охранного документа: 14.11.2017
13.02.2018
№218.016.1fa7

Способ получения наноразмерного катализатора синтеза фишера-тропша и способ синтеза фишера-тропша с его применением

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего...
Тип: Изобретение
Номер охранного документа: 0002641299
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.3a51

Способ получения катализатора (варианты) и способ алкилирования изобутана бутиленами в присутствии полученного катализатора (варианты)

Изобретение относится к способу производства катализаторов и может быть использовано для процесса алкилирования изопарафиновых углеводородов олефинами в нефтеперерабатывающей и нефтехимической промышленности. Для получения катализатора алкилирования изобутана олефинами на основе цеолита типа...
Тип: Изобретение
Номер охранного документа: 0002647575
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.446b

Способ получения синтетической нефти из природного или попутного нефтяного газа (варианты)

Настоящее изобретение относится вариантам способа получения синтетической нефти из природного или попутного нефтяного газа. Один из вариантом способа включает стадию синтеза оксигенатов из исходного синтез-газа, полученного из указанного сырья, в присутствии металлооксидного катализатора, с...
Тип: Изобретение
Номер охранного документа: 0002649629
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4703

Способ измерения скорости циркуляции мелкодисперсного катализатора

Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора,...
Тип: Изобретение
Номер охранного документа: 0002650623
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4c27

Способ получения суспензии катализатора гидроконверсии тяжелого нефтяного сырья

Изобретение относится к области нефтепереработки и, более конкретно, к способам приготовления наноразмерных и ультрадисперсных катализаторов без носителя для гидрогенизационной переработки высокомолекулярного углеводородного сырья, в частности высококипящих остатков переработки нефти, природных...
Тип: Изобретение
Номер охранного документа: 0002652122
Дата охранного документа: 25.04.2018
09.06.2018
№218.016.5b72

Способ получения стирола из отходов полистирола

Изобретение относится к способу получения стирола из отходов полистирола, включающему растворение отходов полистирола в органическом растворителе, введение полученного раствора в реактор и разложение полистирола в отсутствие катализатора при повышенной температуре и атмосферном давлении. Способ...
Тип: Изобретение
Номер охранного документа: 0002655925
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5f73

Способ гидрогенизационной переработки нефтяного шлама

Изобретение относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°С. Для подготовки нефтяного шлама осуществляют его контакт с...
Тип: Изобретение
Номер охранного документа: 0002656673
Дата охранного документа: 06.06.2018
+ добавить свой РИД