×
27.07.2013
216.012.5aff

Результат интеллектуальной деятельности: ПОЛУПРОВОДНИКОВЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Полупроводниковый приемник инфракрасного излучения включает полупроводниковую подложку (1) AIIIBV с активной областью (2) в форме диска с отверстием в центре на основе гетероструктуры, выполненной из твердых растворов AIIIBV, первый омический контакт (4) и второй омический контакт (7). Первый омический контакт (4) нанесен на поверхность (3) активной области (2). Второй омический контакт (7) нанесен на поверхность (6) периферийной области (8) полупроводниковой подложки (1), противолежащую поверхности с активной областью (2). В поверхности (6) центральной области (9) полупроводниковой подложки (1), свободной от второго омического контакта (7), выполнено по меньшей мере одно углубление (10). Изобретение обеспечивает возможность изготовления полупроводникового приемника инфракрасного излучения, который наряду с расширенным диапазоном спектральной чувствительности в среднем ИК-диапазоне (2-5 мкм) имел повышенную квантовую эффективность и более низкую плотность обратных токов. 5 з.п. ф-лы, 9 ил.

Изобретение относится к оптоэлектронной технике, точнее к компактным фотоприемникам излучения в инфракрасном (ИК) диапазоне длин волн, применяемым в различных областях науки и техники, в промышленности, а именно в спектроскопии, в медицине, оптических системах связи и передачи информации, в оптических сверхскоростных вычислительных и коммутационных системах.

Особенностью фотодиодов (ФД) для средней ИК-области спектра (3-5 мкм), работающих при комнатной температуре, является сравнительно слабая квантовая эффективность (20-40%).

Известен полупроводниковый приемник (см. патент US 3542477, МПК G01S 1/02, опубликован 24.11.1970), содержащий корпус с окном за которым находится полусферическое вогнутое зеркало, направляющее излучение на фотодиод.

К недостаткам известной конструкции следует отнести подверженность зеркала воздействиям окружающей среды в процессе эксплуатации, таким как механические, химические и термические. Кроме того, полусферическое зеркало сложно в изготовлении и достаточно громоздко.

Известен полупроводниковый приемник инфракрасного излучения (см. US 2010320552, МПК H01L 31/00 опубликована 23.12.2010), состоящий из подложки, фотодиода, сформированного на подложке, в котором взаимодействующие части отделены одна от другой диэлектрическим материалом. Световой поток проникает, по крайней мере, через часть диэлектрического материала. Над световым потоком расположена микролинза, а еще выше - цветной светофильтр.

К недостаткам можно отнести то, что в известном приемнике инфракрасного излучения применяются внешние устройства (микролинза, светофильтр), усложняющие его конструкцию.

Известен иммерсионный приемник инфракрасного излучения (см. R.Clark Jones. - "Immersed radiation detectors". - Appl. Opt., 1, p.607-613, 1962), в котором чувствительный элемент находится в оптическом контакте с линзой с высоким показателем преломления.

При использовании линз достижение высоких значений чувствительности для длин волн 3-5 мкм при комнатной температуре зачастую сопровождается получением узкого угла зрения ФД, определяемого геометрией линзы и узкой полосой чувствительности (с полушириной спектра ~0.6 мкм, что не удовлетворяет требованиям некоторых применений).

Известен полупроводниковый приемник инфракрасного излучения на основе гетероструктур InAs/InAs0.88Sb0.12/InAsSbP для спектрального диапазона 2,5-4,9 мкм (см. Шерстнев В.В., Старостенко Д., Андреев И.А., Коновалов ГГ., Ильинская Н.Д., Серебренникова О.Ю., Яковлев Ю.П. - ПЖТФ, 2011, т.37, в.1, с.11-17). Значение плотности обратных темновых токов таких ФД составляет (1,3-7,5)·10-2 А/см2 при напряжении обратного смещения 0,2 В. Дифференциальное сопротивление в нуле смещения достигает величины 700-800 Ом.

Но такие приемники инфракрасного излучения характеризуются недостаточно высокой чувствительностью, которая в максимуме спектральной чувствительности составляет (5-8)·108 cм·Гц½·Bт-1.

Известен полупроводниковый приемник инфракрасного излучения (см. заявка US 2004171183, МПК H01L 21/00, H01L 31/00, опубликована 02.09.2004), состоящий из полупроводниковой подложки и последовательно нанесенных на нее буферного и светопоглощающего слоев. Эпитаксиальный слой, содержащий активную область в форме выпуклой линзы, сформирован из InP на верхней поверхности светопоглощающего слоя. На верхней поверхности эпитаксиального слоя сформирован диэлектрический слой, исключая активную область. Первый металлический электрод p-типа сформирован на верхней поверхности диэлектрического слоя, второй металлический электрод n-типа сформирован на нижней поверхности подложки. Буферный слой состоит из кристаллической структуры, идентичной структуре подложки.

Ключевым элементом известного фотодиода является выпуклая линза, расположенная внутри полупроводникового кристалла в активной области из фосфида индия (InP). Такой материал чувствителен к излучению в видимом и ближнем ИК-диапазоне, но не может быть использован для применения в среднем ИК-диапазоне (2-5) мкм.

Известен полупроводниковый приемник инфракрасного излучения (см. Письма в ЖТФ, том 37, вып.19, стр.95-103, 2011), совпадающий с заявляемым решением по наибольшему числу существенных признаков и принятый за прототип. Известный полупроводниковый приемник инфракрасного излучения, включает полупроводниковую подложку InAs с кольцевой активной областью на основе гетероструктуры, выполненной из твердых растворов InAsSb, первый омический контакт, нанесенный на поверхность кольцевой активной области, и второй сплошной омический контакт, нанесенный на всю поверхность полупроводниковой подложки, противолежащую поверхности с кольцевой активной областью.

Достоинством известного полупроводникового приемника-прототипа является расширенный диапазон спектральной чувствительности в среднем ИК-диапазоне (2-5) мкм. Однако известный полупроводниковый приемник имеет недостаточную квантовую эффективность, и высокую плотность обратных токов.

Задачей настоящего изобретения являлась разработка такого полупроводникового приемника инфракрасного излучения, который бы, наряду с расширенным диапазоном спектральной чувствительности в среднем ИК-диапазоне (2-5) мкм, имел повышенную квантовую эффективность и более низкую плотность обратных токов.

Поставленная задача решается тем, что полупроводниковый приемник инфракрасного излучения включает полупроводниковую подложку AIIIBV с активной областью в форме диска с отверстием в центре на основе гетероструктуры, выполненной из твердых растворов AIIIBV, первый омический контакт и второй омический контакт. Первый омический контакт нанесен на поверхность активной области. Второй омический контакт нанесен на поверхность периферийной области полупроводниковой подложки, противолежащую поверхности с активной областью. Новым является выполнение в поверхности полупроводниковой подложки, свободной от второго омического контакта, по меньшей мере одного углубления.

Площадь лицевой поверхности подложки, через которую падающий свет проникает в кристалл, должна быть существенно больше площади активной области в форме диска с отверстием в центре на основе гетероструктуры, выполненной из твердых растворов AIIIBV.

Углубление может иметь любую округло-криволинейную поверхность (сферическую, эллиптическую, параболическую).

Предпочтительно углубление может иметь глубину h, удовлетворяющую соотношению:

λ<h<d, мкм,

где λ - длина волны падающего света с энергией, равной ширине запрещенной зоны активной области полупроводникового приемника инфракрасного излучения, мкм;

d - толщина подложки, мкм.

Предпочтительно углубления выполнять во всей поверхности полупроводниковой подложки, свободной от второго омического контакта. При этом углубления могут быть выполнены как вплотную друг к другу, так и отстоять друг от друга.

Было обнаружено, что настоящий полупроводниковый приемник, наряду с расширенным диапазоном спектральной чувствительности, обладает повышенной квантовой эффективностью в средней ИК-области спектра (2-5) мкм за счет дополнительного поглощения в активной области гетероструктуры фотонов, многократно переотраженнных от криволинейных поверхностей углублений в полупроводниковой подложке.

Расширение спектра чувствительности полупроводникового приемника для на основе узкозонных полупроводниковых соединений может быть достигнуто либо за счет тонких подложек, либо за счет использования сильно легированных подложек n-типа проводимости с вырождением электронов в зоне проводимости, в которых из-за эффекта Мосса-Бурштейна край поглощения сдвинут в коротковолновую область спектра (см. E.Burstein. - Phys.Rev., v.83, p.632, 1954). Настоящее изобретений поясняется чертежом, где:

на фиг.1 показан вид сверху на полупроводниковый приемник-прототип;

на фиг.2 приведен поперечный разрез по А-А полупроводникового приемника-прототипа, показанного на фиг.1;

на фиг.3 показан вид сверху на полупроводниковый приемник по настоящему изобретению;

на фиг.4 приведен поперечный разрез по Б-Б одного варианта воплощения полупроводникового приемника, показанного на фиг.3;

на фиг.5 приведен поперечный разрез другого варианта воплощения полупроводникового приемника;

на фиг.6 показан вид снизу на другой вариант воплощения полупроводникового приемника по настоящему изобретению;

на фиг.7 приведен вид снизу на еще один вариант воплощения полупроводникового приемника по настоящему изобретению;

на фиг.8 приведены спектры фотоответа при температуре Т=300 К полупроводниковых приемников на основе InAs трех вариантов: 1 - полупроводниковый приемник-прототип (сплошной омический контакт на тыльной сторонеподложки); 2 - омический контакт расположен за пределами центральной области подложки диаметром 880 мкм; 3 - полупроводниковый приемник по настоящему изобретению (центральная область подложки диаметром 880 мкм заполнена вытравленными полусферами диаметром глубиной 60 мкм;

на фиг.9 приведены спектры фотоответа при температуре Т=300 К полупроводниковых приемников на основе GaSb трех вариантов: 4 - полупроводниковый приемник-прототип (сплошной омический контакт на тыльной стороне подложки); 5 - омический контакт расположен за пределами центральной области подложки диаметром 880 мкм; 6 - полупроводниковый приемник по настоящему изобретению (центральная область подложки диаметром 880 мкм заполнена вытравленными полусферами диаметром глубиной 60 мкм).

Полупроводниковый приемник инфракрасного излучения по настоящему изобретению (см. фиг.3, фиг.4) включает подложку 1 AIIIBV, на которой выращена активная область 2 в форме диска с отверстием в центре на основе гетероструктуры, выполненной из твердых растворов AIIIBV. На поверхности 3 кольцевой активной области 2 в ее средней части сформирован первый омический контакт 4. В отличие от полупроводникового приемника-прототипа (см. фиг.1, фиг.2), в котором второй омический контакт 5 нанесен на всю поверхность 6 полупроводниковой подложки 1, противолежащую поверхности 3 кольцевой активной области 2, в полупроводниковом приемнике инфракрасного излучения по настоящему изобретению (см. фиг.3 - фиг.4) второй омический контакт 7 нанесен лишь на поверхность 6 в периферийной области 8 полупроводниковой подложки 1, а в поверхности 6 центральной области 9 полупроводниковой подложки 1, свободной от второго омического контакта 7, выполнено по меньшей мере одно углубление 10 (см. фиг.4). Наибольший эффект достигается, когда углубления 10 выполнены во всей поверхности 6 центральной области 9 полупроводниковой подложки 1, свободной от второго омического контакта (см. фиг.5). При этом углубления 10 могут быть выполнены как вплотную друг к другу (см. фиг.6), так и отстоять друг от друга (см. фиг.7). Углубления 10 могут быть одинакового или различного размера.

Пример. 1. Изготовление полупроводникового приемника инфракрасного излучения по настоящему изобретению может быть проиллюстрировано на примере гетероструктуры, например, состава InAs/InAs0,94Sb0,06/InAsSbP/InAS0,88Sb0,12/InAsSbP. Гетероструктуру выращивали методом жидкофазной эпитаксии (ЖФЭ) на подложке толщиной 200 мкм n-InAs ориентации [100], легированной оловом до концентрации носителей 5×1018 см-3. В такой подложке (см. B.A.Matveev, M.Aydaraliev, N.V.Zotova, S.A.Karandashev, M.A.Remennyi, N.M.Stus, G.N.Talalakin. - Proc. SPIE, 4650, 173, 2002) происходит сдвиг фундаментального края поглощения в коротковолновую область спектра (сдвиг Мосса - Бурштейна), и она становится прозрачной для излучения с длиной волны больше 2,5 мкм, формируемого в активной области структуры. На подложке последовательно выращивали широкозонный эмиттерный слой InAsSbP толщиной 6,2 мкм, активный слой InAsSb0,12 толщиной 2,5 мкм, преднамеренно нелегированный (n~1×1015 см-3), и широкозонный эмиттерный слой из твердого раствора InAsSbP толщиной 1,4 мкм, легированный цинком до Р=2×1018 см-3. Для уменьшения деформации активной области между слоями и подложкой был выращен слой InAsSb0,06 толщиной 3,3 мкм. Широкозонный эмиттерный слой InAsSbP и слой InAsSb0.06 были получены N-типа за счет легирования Sn (оловом) до уровня 5×1017 см-3, при этом широкозонное "окно" P-InAsSbP легировали Mn (марганцем) до концентрации Р=(2-5)×1017 см-3. На выращенной структуре со стороны эпитаксиального слоя методом фотолитографии и травления были сформированы чипы в форме квадрата со стороной 950 мкм, на каждом из которых была сформирована активная область в форме диска с отверстем в центре. Внешний диаметр диска 770 мкм, диаметр отверстия 600 мкм и высота, отсчитываемая от верхнего эпитаксиального слоя, 18 мкм. За пределами диска с отверстием, т.е. внутри и снаружи, гетероструктура была стравлена до подложки. Площадь чувствительной площадки составила 0,1 мм2. Трехслойный первый омический контакт состава Cr/Au-Ge/Au, с внешним радиусом 350 мкм и шириной 15 мкм располагался в средней части диска с отверстием. Таким образом, только часть излучения, падающего на лицевую поверхность чипа, поглощалось дисковой структурой, а остальная часть излучения, падающая за пределами диска, свободно проникала в прозрачную для излучения подложку и достигала тыльной стороны чипа. После напыления многослойных контактов структура подвергалась термообработке в среде водорода для формирования первого и второго омических контактов. Затем чипы монтировались подложечной стороной на стандартный корпус для монтирования полупроводниковых чипов ТО-18 для проведения исследований электрических и фотоэлектрических характеристик при Т=300 К созданных полупроводниковых приемников инфракрасного излучения. Сопротивление Ro полупроводниковых приемников в нуле смещения измерялось в диапазоне (+10 мВ)÷(-10 мВ) и составляло для рассмотренных ниже приемников величину R0=5-30 Ом. Для изучения спектров чувствительности полупроводниковых приемников инфракрасного излучения использовался монохроматор SPM2 (Carl Zeiss). Измерения проводились по схеме синхронного детектирования с использованием прибора Stanford Research SR830.

Из одной гетероструктуры методами контактной фотолитографии и жидкостного химического травления были созданы три варианта полупроводникового приемника инфракрасного излучения. Схема первого варианта (приемника-прототипа) приведена на фиг.1 - фиг.2. Схема полупроводникового приемника инфракрасного излучения по настоящему изобретению показана на фиг.3, фиг.5. Третий вариант отличался от приемника инфракрасного излучения по настоящему изобретению, показанного на фиг.3, фиг.5, отсутствием углублений с тыльной стороны подложки. Со стороны эпитаксиального слоя все три вида приемников были идентичны. У полупроводникового приемника-прототипа второй омический контакт к подложке n-InAs состоял из последовательно нанесенных методом термического вакуумного напыления слоев Cr/Au-Te/Au и полностью закрывал подложечную поверхность фотодиодного чипа площадью 950×950 мкм2. Это, так называемый, сплошной контакт, традиционно применяемый при изготовлении оптоэлектронных приборов. Рассмотрим, как распределяются световые потоки для каждого из трех типов полупроводниковых приемников инфракрасного излучения. Для первого варианта полупроводникового приемника инфракрасного излучения (прототипа) световой поток, проходящий через отверстие диска, падает на подложку с нанесенным снаружи вторым сплошным омическим контактом и, в основном, поглощается на границе раздела подложка - второй омический контакт в области эвтектики. (Это подтверждается характером спектров фотоответа на фиг.8, кривая 1.). Второй вариант полупроводникового приемника инфракрасного излучения отличался от первого тем, что второй омический контакт нанесен на поверхность периферийной области полупроводниковой подложки, в то время как центральная область подложки диаметром 880 мкм была свободна от металлизации. Во втором варианте приемника световой поток, проходящий через отверстие диска, падает на поверхность подложки, свободную от второго омического контакта. В этом случае часть излучения в большей степени отражается от неметаллизированной центральной области подложки и частично поглощается активной областью в форме диска с отверстием в центре, давая вклад в увеличение фототока приемника (см. фиг.8, кривая 2). Однако в этом случае световые потоки не могут изменять угол падения и отражения от поверхности подложки. Третий вариант полупроводникового приемника инфракрасного излучения (по настоящему изобретению) отличался от двух предыдущих вариантов тем, что в поверхности центральной области полупроводниковой подложки, свободной от второго омического контакта, были выполнены углубления в виде полусфер глубиной 60 мкм, выполненные методом жидкостного химического травления. В третьем варианте полупроводникового приемника инфракрасного излучения световой поток, проходящий через отверстие диска, падает на поверхность подложки, в которой выполнены углубления. Отражаясь от криволинейной неметаллизированной поверхности подложки, образованной углублениями, световые потоки после многократного отражения изменяют свои направления в подложке и, в основном, либо поглощаются в активной области диска, либо выходят за пределы подложки (см. фиг.8, кривая 3).

В случае одного углубления (при тех же размерах) чувствительность возрастает в 1,05 раз.

Пример 2. Изготовление полупроводникового приемника инфракрасного излучения по настоящему изобретению может быть также проиллюстрировано на примере гетероструктуры, например, состава GaSb/Ga1-xInxASySb1-y/Ga1-xAlxASySb1-y. Гетероструктуру выращивали методом жидкофазной эпитаксии (ЖФЭ) на подложке толщиной 200 мкм n-GaSb ориентации [100], легированной теллуром до концентрации носителей ~(1-5)·1017 см-3. Изготовление чипов и измерения проводились аналогично тем, что описаны выше для InAs. Исследовались фотодиоды с диапазоном спектральной чувствительности 1,5-2,5 мкм. Спектры фотоответа приведены на фиг.9.

Проведенные измерения показали, что выполнение углублений в поверхности центральной области полупроводниковой подложки позволяет перераспределить потоки излучения в структуре и увеличить эффективную площадь сбора излучения. Об этом свидетельствуют результаты измерения фотоответа исследованных полупроводниковых приемников инфракрасного излучения. Чувствительность возрастает в 1,3-1,7 раз по сравнению с полупроводниковым приемником-прототипом. Соответственно возрастает квантовая эффективность преобразования излучения в фототек, которая проявляется в увеличении фотосигнала от фотодиода при освещении фотодиода светом данного спектрального диапазона.


ПОЛУПРОВОДНИКОВЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
ПОЛУПРОВОДНИКОВЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
ПОЛУПРОВОДНИКОВЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
ПОЛУПРОВОДНИКОВЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
ПОЛУПРОВОДНИКОВЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
ПОЛУПРОВОДНИКОВЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
ПОЛУПРОВОДНИКОВЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
ПОЛУПРОВОДНИКОВЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
ПОЛУПРОВОДНИКОВЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 115.
27.02.2016
№216.014.cf0a

Способ формирования многослойного омического контакта к прибору на основе арсенида галлия

Изобретение относится к технологии полупроводниковых приборов. Способ формирования многослойного омического контакта включает предварительное формирование фотолитографией маски из фоторезиста на поверхности арсенида галлия электронной проводимости, очистку свободной от маски поверхности...
Тип: Изобретение
Номер охранного документа: 0002575977
Дата охранного документа: 27.02.2016
10.04.2016
№216.015.2ccb

Система позиционирования и слежения за солнцем концентраторной фотоэнергоустановки

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий...
Тип: Изобретение
Номер охранного документа: 0002579169
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4875

Инжекционный лазер

Использование: для полупроводниковых инжекционных лазеров. Сущность изобретения заключается в том, что инжекционный лазер на основе полупроводниковой гетероструктуры раздельного ограничения, включающей многомодовый волновод, первый и второй широкозонные ограничительные слои, являющиеся...
Тип: Изобретение
Номер охранного документа: 0002587097
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4aec

Интегрально-оптический элемент

Интегрально-оптический элемент, включающий подложку из кристалла ниобата лития, встроенный в подложку оптический волновод, образованный термической диффузией титана из титановой полоски шириной 3-7 мкм и толщиной 60-80 нм, нанесенной на поверхность подложки. Глубина оптического волновода равна...
Тип: Изобретение
Номер охранного документа: 0002594987
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.5b6b

Способ определения тока в канале электрического пробоя диэлектрика

Изобретение относится к области физики электрического пробоя и может быть использовано для определения амплитуды и длительности импульса тока электрического пробоя в диэлектриках. Технический результат: повышение точности определения тока в канале электрического пробоя диэлектриков. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002589509
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.648e

Способ изготовления многопереходного солнечного элемента

Изобретение относится к солнечной энергетике и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления многопереходного солнечного элемента согласно изобретению включает последовательное формирование субэлемента из Ge с p-n...
Тип: Изобретение
Номер охранного документа: 0002589464
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6721

Устройство для определения положения объекта

Использование: для определения положения объекта с помощью источника модулированного оптического сигнала. Сущность изобретения заключается в том, что устройство содержит источник модулированного оптического сигнала, фотодетектор, оптически связанный с ним через устройство формирования сигнала,...
Тип: Изобретение
Номер охранного документа: 0002591302
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6cbe

Суперконденсатор

Изобретение относится к области микро- и наноэлектроники и может найти применение в приборостроении, энергетике, электронике, в приборах мобильной связи в качестве слаботочного источника питания. Предложенный суперконденсатор включает отрицательный электрод (4) и положительный электрод (5),...
Тип: Изобретение
Номер охранного документа: 0002597224
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7a01

Четырехпереходный солнечный элемент

Четырехпереходный солнечный элемент включает последовательно выращенные на подложке (1) из p-Ge четыре субэлемента (2, 3, 4, 5), согласованные по постоянной решетки с подложкой (1) из p-Ge и соединенные между собой туннельными р-n-переходами (6, 7, 8), и контактный слой (9), при этом первый...
Тип: Изобретение
Номер охранного документа: 0002599064
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7ab0

Способ получения светопоглощающей кремниевой структуры

Изобретение относится к области солнечных фотоэлектрических преобразователей на основе монокристаллического кремния. Способ получения светопоглощающей кремниевой структуры включает нанесение на поверхность образца из монокристаллического кремния слоя ванадия толщиной от 50 нм до 80 нм,...
Тип: Изобретение
Номер охранного документа: 0002600076
Дата охранного документа: 20.10.2016
Показаны записи 31-40 из 69.
10.04.2016
№216.015.2ccb

Система позиционирования и слежения за солнцем концентраторной фотоэнергоустановки

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий...
Тип: Изобретение
Номер охранного документа: 0002579169
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4875

Инжекционный лазер

Использование: для полупроводниковых инжекционных лазеров. Сущность изобретения заключается в том, что инжекционный лазер на основе полупроводниковой гетероструктуры раздельного ограничения, включающей многомодовый волновод, первый и второй широкозонные ограничительные слои, являющиеся...
Тип: Изобретение
Номер охранного документа: 0002587097
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4aec

Интегрально-оптический элемент

Интегрально-оптический элемент, включающий подложку из кристалла ниобата лития, встроенный в подложку оптический волновод, образованный термической диффузией титана из титановой полоски шириной 3-7 мкм и толщиной 60-80 нм, нанесенной на поверхность подложки. Глубина оптического волновода равна...
Тип: Изобретение
Номер охранного документа: 0002594987
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.5b6b

Способ определения тока в канале электрического пробоя диэлектрика

Изобретение относится к области физики электрического пробоя и может быть использовано для определения амплитуды и длительности импульса тока электрического пробоя в диэлектриках. Технический результат: повышение точности определения тока в канале электрического пробоя диэлектриков. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002589509
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.648e

Способ изготовления многопереходного солнечного элемента

Изобретение относится к солнечной энергетике и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления многопереходного солнечного элемента согласно изобретению включает последовательное формирование субэлемента из Ge с p-n...
Тип: Изобретение
Номер охранного документа: 0002589464
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6721

Устройство для определения положения объекта

Использование: для определения положения объекта с помощью источника модулированного оптического сигнала. Сущность изобретения заключается в том, что устройство содержит источник модулированного оптического сигнала, фотодетектор, оптически связанный с ним через устройство формирования сигнала,...
Тип: Изобретение
Номер охранного документа: 0002591302
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6cbe

Суперконденсатор

Изобретение относится к области микро- и наноэлектроники и может найти применение в приборостроении, энергетике, электронике, в приборах мобильной связи в качестве слаботочного источника питания. Предложенный суперконденсатор включает отрицательный электрод (4) и положительный электрод (5),...
Тип: Изобретение
Номер охранного документа: 0002597224
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7a01

Четырехпереходный солнечный элемент

Четырехпереходный солнечный элемент включает последовательно выращенные на подложке (1) из p-Ge четыре субэлемента (2, 3, 4, 5), согласованные по постоянной решетки с подложкой (1) из p-Ge и соединенные между собой туннельными р-n-переходами (6, 7, 8), и контактный слой (9), при этом первый...
Тип: Изобретение
Номер охранного документа: 0002599064
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7ab0

Способ получения светопоглощающей кремниевой структуры

Изобретение относится к области солнечных фотоэлектрических преобразователей на основе монокристаллического кремния. Способ получения светопоглощающей кремниевой структуры включает нанесение на поверхность образца из монокристаллического кремния слоя ванадия толщиной от 50 нм до 80 нм,...
Тип: Изобретение
Номер охранного документа: 0002600076
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.81e0

Способ измерения магнитного поля

Изобретение относится к способам измерения магнитного поля и включает воздействие на кристалл карбида кремния гексагонального или ромбического политипа, содержащего спиновые центры с основным квадруплетным спиновым состоянием, вдоль его кристаллографической оси с симметрии сфокусированным...
Тип: Изобретение
Номер охранного документа: 0002601734
Дата охранного документа: 10.11.2016
+ добавить свой РИД