×
27.07.2013
216.012.5ad2

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ УСЛОВИЙ ФАЗЫ ДЛЯ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ С РЕГУЛИРУЕМОЙ СКОРОСТЬЮ РЕЗКИ

Вид РИД

Изобретение

№ охранного документа
0002488871
Дата охранного документа
27.07.2013
Аннотация: Изобретение относится к средству определения условий для механической обработки детали. Техническим результатом является повышение точности определения условий резки. Для этого предложен способ определения условий стадии механической обработки детали при регулировании скорости резки между деталью и станком, состоящий из следующих этапов: симуляция указанной стадии механической обработки путем предварительной установки параметров функции для регулирования скорости; получение из нее соответствующего состояния поверхности детали путем вычисления, после того как стадия механической обработки завершена; итерационное модифицирование указанных параметров регулирующей функции с симуляцией стадии механической обработки при каждой итерации для получения из нее соответствующего состояния поверхности, пока состояние поверхности не достигает допустимого значения; и выполнение стадии механической обработки, вызывая изменение скорости резки в приложении регулирующей функции, соответствующей допустимому значению состояния поверхности. 3 з.п. ф-лы, 1 ил.

Изобретение, в общем, относится к определению условий для механической обработки детали, которая может начать вибрировать во время механической обработки. Задача изобретения состоит в определении условий резки и, в частности, скорости резки для избежания появления вибрации.

Некоторые крупногабаритные детали, например диски ротора турбины, имеют колоколообразную форму со стенкой, которая довольно тонкая, и они имеют склонность к вибрации во время механической обработки.

Уже существуют станки для симуляции вибрации во время механической обработки, и при некоторых обстоятельствах они позволяют предупредить возникновение проблем вибрации при повороте или фрезеровке таких частей. Тем не менее, такие станки симуляции, в общем, основываются на частотном подходе, который подходит для изучения только тех систем, в которых скорость вращения постоянная. Однако во избежание того, чтобы такая деталь вошла в резонанс, предпочтительно периодически изменять скорость вращения (скорость поворота или фрезеровки) для предупреждения вхождения системы в резонанс и, таким образом, предупреждения появления вибрации. Такая функция для регулирования скорости резки характеризуется двумя параметрами - амплитудой скорости изменения и периодом изменения.

Тем не менее, для каждой стадии механической обработки остается необходимость определения подходящей регулирующей функции. До сих пор это производилось опытным путем. Это означает, что при подготовке плана процедуры для механической обработки каждой детали необходимо выполнить множество испытаний, тем самым вызывая существенные потери во времени и выбраковывание множества деталей, выполненных из дорогого сплава.

Изобретение обеспечивает решение этой проблемы, предлагая последовательные симуляции стадий механической обработки для обеспечения возможности оптимизации параметров регулирующей функции.

В частности, изобретение предлагает способ определения условий стадии механической обработки детали при регулировании скорости резки между деталью и станком, причем способ характеризуется следующими этапами: симуляция стадии механической обработки путем предварительной установки параметров функции для регулирования указанной скорости; получение из нее соответствующего состояния поверхности детали путем вычисления, после того как стадия механической обработки завершена; итерационное модифицирование указанных параметров регулирующей функции с симуляцией стадии механической обработки при каждой итерации для получения из нее соответствующего состояния поверхности, пока состояние поверхности не достигает допустимого значения; и выполнение стадии механической обработки, вызывая изменение скорости резки в приложении регулирующей функции, соответствующей допустимому значению состояния поверхности.

Изобретение может быть более понятным, и другие его характеристики станут более ясными в свете приведенного ниже описания примера способа определения условий стадии механической обработки детали с регулированием скорости резки между деталью и станком, предоставляемого исключительно в качестве примера и выполненного со ссылками на сопроводительный чертеж, на котором показана структурная схема с блок-схемой для итерационного процесса определения параметров, обеспечивающего управление механической обработкой.

На чертеже показана симуляция механической обработки. Предполагается, что проход механической обработки должен выполняться за заданное время T. Пусть ΔT - временной интервал в заданном времени T. Чем меньше значение, выбранное для ΔT, тем больше количество вычислений, которые требуется выполнить, но тем точнее можно описать признаки и форму детали, включая состояние ее поверхности в конце прохода механической обработки. Этот проход механической обработки является стадией механической обработки, во время которой станок продолжает непрерывно взаимодействовать с материалом детали.

Кроме того, различные модели доступны для представления деталей и узлов, которые составляют систему, в компьютерном виде и для описания взаимодействий между различными деталями и узлами. Большинство моделей, описывающих механическое поведение деталей и узлов, создаются посредством так называемой техники «конечного элемента». Деталь или узел представляется в виде набора элементов, формирующих сетку. Каждый узел сетки ассоциируется со значением, которое представляет описываемый признак. К примеру, для простого представления детали, которая предполагается как жесткая, координат узлов достаточно для формирования модели. Если часть, описываемая моделью, может варьироваться (деформироваться, перемещаться), то дополнительные степени свободы необходимы для трансформаций модели. В качестве примера, три степени свободы добавляются для вращения и три степени свободы - для смещения.

Модели, описывающие взаимодействия между различными деталями и элементами, могут быть нескольких видов: функция преобразования, описательная модель, уравнение.

Согласно изобретению различие проводится между следующими моделями:

- Gw является исходной геометрической моделью зоны детали, которая подвергается механической обработке.

- Gt является геометрической моделью активных частей станка. Gt может быть постоянной, хотя можно предусмотреть и описать медленное изменение в этой модели с целью учета, например, износа станка. Более конкретно, эта геометрическая модель фактически является набором моделей, описывающих различные отдельные инструменты (зубцы, вставки, лезвия). Геометрическая модель является моделью поверхности. Она представляет активные части станка, в частности его режущие поверхности.

Если активные части станка могут деформироваться, геометрическая модель может включать в себя деформации активных частей с течением времени в качестве функции взаимодействия между станком и деталью.

- Fc является моделью силы резания (локальная режущая взаимосвязь), полученная из взаимодействия станка и детали. В качестве примера можно использовать режущую взаимосвязь типа Кинцле, которая известна специалистам в области техники и которая служит для локального определения мгновенных сил резания в виде функции от участка удаляемого материала (тонкость и толщина среза, т.е. размеры стружки) и в виде функции от динамики «станок-деталь». Мгновенные силы резания являются силами, приложенными станком к детали, и противодействием к точкам, выбранным для точного описания взаимодействия между станком и деталью.

- Dwmt является динамической моделью системы «деталь-станок». Эта модель Dwmt обычно является моделью «конечного элемента», служащей для описания динамического поведения системы во время механической обработки. Динамическая модель Dwmt задействует параметры M, C и K в виде матриц и одностолбцовую матрицу q, как описано ниже.

Далее следует описание симуляции механической обработки, причем описание приведено со ссылкой на чертеж, на котором различные модели, определенные выше как принимающие участие в процессе, показаны в контуре блок-схемы, которая иллюстрирует алгоритм 10 для определения функции для моделирования скорости резки.

Момент t=0 является началом стадии симуляции предполагаемой механической обработки. Для каждого t=t+Δt можно определить скорость подачи станка относительно детали (блок 12). Эта скорость подачи изменяется во времени, поскольку она зависит от функции регулирования скорости резки. Например, скорость резки может быть выражена следующим образом:

Ω(t)=ΩN+ΔΩ×Fω(t)

где -1<Fω(t)<1,

причем Fω(t) - периодическая функция с периодом 2π/ω, ΩN - номинальная скорость, а ΔΩ - амплитуда отклонения от номинальной скорости.

Предпочтительно, чтобы Fω(t) являлась синусоидой.

Производится поиск параметров этой регулирующей функции, которые позволяют достичь удовлетворительного состояния поверхности, т.е. когда «шероховатость» или «волнистость» меньше заданного значения.

Исходя из этого описания 12 скорости подачи «станок-деталь» и из моделей Gw и Gt, можно описать (блок 13) взаимодействие (пересечение) между деталью и станком. Результат этого взаимодействия и модель Fc служат для описания локальных сил Fcut(t) (блок 14).

Используя динамическую модель Dwmt и локальные силы Fcut(t), можно записать и решить систему дифференциальных уравнений (блок 15):

где - - одностолбцовая матрица набора параметров qi(t);

- - первая производная q(t);

- - вторая производная q(t);

- Qc(t) представляет обобщенные силы, полученные из взаимодействия между станком и деталью. Они возникают из локальных сил Fcut(t), полученных при использовании модели резки;

- Qb(t) представляет обобщенные силы помимо Qc. Оно относится, в частности, к силе зажима;

- M(t,Ω) - матрица масс;

- C(t,Ω) - матрица демпфирования; и

- K(t,Ω) - матрица жесткости.

Матрицы M, C и K могут изменяться (медленно) во время механической обработки для учета потерь в массе и жесткости в результате удаления материала. Эти матрицы также включают в себя гироскопический эффект, который является функцией от Ω.

Для каждого заданного приращения времени Δ(t) решается система дифференциальных уравнений. Таким образом, зная q(t) для t, лежащего в промежутке [0,T], можно получить q(t+Δt) при условии, что наращенные временные интервалы ΔT в сумме меньше T, т.е. при условии, что предполагаемая стадия механической обработки не прервалась. На каждом приращении реализуется алгоритм 16 съема материала. Задача этого алгоритма снятия материала состоит в симуляции снятия материала на каждом временном интервале, т.е. в уточнении модели Gw.

Поскольку полная стадия механической обработки была симулирована для времени (T), состояние Gw сравнивается с образцом Gwr (испытание 17), в частности, для возможности оценки состояния поверхности детали в конце стадии механической обработки, как правило, одного прохода станка.

Если состояние поверхности Gw удовлетворительно, т.е. по меньшей мере равно состоянию поверхности Gwr, то параметры регулирующей функции, которая обеспечивает достижение этого результата, сохраняются (блок 18). Эти параметры ΔΩ и ω используются затем для изменения скорости вращения (стержня при повороте) в приложении регулирующей функции во время фактической механической обработки продолжительности T.

Если состояние поверхности неудовлетворительно, параметры регулирующей функции изменяются (блок 19) для модификации характеристик подачи «станок-деталь», и симуляция стадии механической обработки запускается повторно, что происходит так часто, как это необходимо для получения уточненной модели Gw, которая представляет удовлетворительное состояние поверхности.

Следует отметить, что алгоритмы, реализуемые описанными выше шагами, были опубликованы. Ссылки на эти публикации представлены ниже:

Диссертации

Kaled Dekelbab, 1995, "Modelisation et simulation du comportement dynamique de l'ensemble Piece-Outil-Machine en usinage par outil coupant" [Modeling and simulating the dynamic behavior of a workpiece-and-machinetool assembly during machining by a cutter tool], Ecole Nationale Superieure d'Arts et Metiers - CER, Paris.

Erwan Beahchesne, 1999, "Modelisation et simulation dynamique de l'usinage: prise en compte d'une piece deformable" [Dynamic simulation and modeling of machining: taking account of a workpiece that is deformable], Ecole Nationale Superieure d'Arts et Metiers - CER, Paris.

Audry Marty, 2003, "Simulation numerique de l'usinage par outil coupant а l'echelle macroscopique: contribution а la definition geometrique de la surface usinee", [Numerical simulation of machining by a cutting tool at a macroscopic scale: contribution to a geometrical definition of the machined surface], Ecole Nationale Superieure d'Arts et Metiers - CER, Paris.

Stephanie Cohen-Assouline, 2005, "Simulation numerique de l'usinage а l'echelle macroscopique: prise en compte d'une piece deformable" [Numerical simulation of machining at macroscopic scale: taking account of a workpiece that is deformable], Ecole Nationale Superieure d'Arts et Metiers - CER, Paris.

Статьи, опубликованные в журналах

S. Assouline, E. Beauchesne, G. Coffignal, P. Lorong and A. Marty, 2002, "Simulation numerique de l'usinage а l'echelle macroscopique: modeles dynamiques de la piece" [Numerical simulation of machining at macroscopic scale: dynamic models of the workpiece], Mecanique et Industrie, Vol. 3, pp. 389-402.

P. Lorong, J. Yvonnet, G. Coffignal and S. Cohen, 2006, "Contribution of Computational Mechanics in Numerical Simulation of Machining and Blanking", Archives of Computational Method in Engineering, Vol. 13, pp. 45-90.

В настоящий момент предпочтительный алгоритм используется в программном средстве, известном под названием Nessy. Nessy было описано более подробнее в следующих статьях:

P. Lorong, F. Ali and G. Coffignal, 2000, "Research oriented software development platform for structural mechanics: a solution for distributed computing", Second International Conference on Engineering Computational Technology, Developments in engineering computational technology, ed. B.H.V. Topping Louvain, Belgium, pp. 93-100.

G. Coffignal and P. Lorong, 2003, "Un Logiciel elements finis pour developper et capitaliser des travaux de recherche" [Finite element software for developing and capitalizing research work], 6eme Colloque National en Calcul des Structures, Giens.

Способ согласно изобретению в особенности пригоден для обточки деталей большого диаметра, таких как диски ротора турбин или компрессоров для турбореактивного самолета. Такие детали могут начать вибрировать во время механической обработки под действием силы резания. Предварительное определение оптимальной регулирующей функции для относительной скорости вращения между деталью и станком в течение стадии механической обработки служит для предупреждения возникновения таких вибрационных состояний и таким образом, для достижения требуемого состояния поверхности.


СПОСОБ ОПРЕДЕЛЕНИЯ УСЛОВИЙ ФАЗЫ ДЛЯ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ С РЕГУЛИРУЕМОЙ СКОРОСТЬЮ РЕЗКИ
Источник поступления информации: Роспатент

Показаны записи 861-870 из 928.
18.05.2019
№219.017.5736

Охлаждаемая лопатка газовой турбины

Лопатка газовой турбины турбомашины имеет контур охлаждения, содержащий, по меньшей мере, одну полость охлаждения вытянутой формы, расположенную в радиальном направлении между хвостовиком лопатки и ее торцом, и, по меньшей мере, одно впускное отверстие. Впускное отверстие расположено в нижнем...
Тип: Изобретение
Номер охранного документа: 0002388915
Дата охранного документа: 10.05.2010
18.05.2019
№219.017.5789

Устройство для подачи воздуха и топлива к кольцу форсунок в форсажной камере

Устройство для подачи воздуха и топлива к кольцу форсунок в форсажной камере в двухконтурном турбореактивном двигателе содержит множество лопастей стабилизатора пламени, расположенных в форсажной камере и проходящих радиально вокруг оси камеры в основной поток из внешнего корпуса. Кольцо...
Тип: Изобретение
Номер охранного документа: 0002358139
Дата охранного документа: 10.06.2009
18.05.2019
№219.017.57d3

Авиационный двигатель, содержащий средства подвески к конструкции самолета

Изобретение относится к области авиации, более конкретно к авиационному двигателю, содержащему средства подвески к конструкции самолета. Средства подвески двигателя выполнены с возможностью передачи усилий между картером двигателя и конструкцией самолета и содержат предохранительное аварийное...
Тип: Изобретение
Номер охранного документа: 0002372256
Дата охранного документа: 10.11.2009
18.05.2019
№219.017.588b

Устройство для закрепления канала для текучей среды в корпусе турбореактивного двигателя

Устройство для закрепления канала для текучей среды в отверстии корпуса турбореактивного двигателя, в частности канала для подачи топлива к кольцу форсунок в форсажной камере, содержит средство типа винта и гайки между концевым элементом канала и отверстием корпуса и включает кольцо и гайку....
Тип: Изобретение
Номер охранного документа: 0002362896
Дата охранного документа: 27.07.2009
18.05.2019
№219.017.5a8a

Способ изготовления керамических сердечников для лопаток газотурбинного двигателя

Изобретение относится к литейному производству, в частности к изготовлению сердечника для лопаток, содержащего по меньшей мере одну тонкую зону, имеющую толщину "е", располагающуюся, в частности, на задней кромке лопатки газотурбинного двигателя. Способ включает формование в литейной форме...
Тип: Изобретение
Номер охранного документа: 0002432224
Дата охранного документа: 27.10.2011
18.05.2019
№219.017.5ae3

Система для компрессора двигателя летательного аппарата, содержащая лопатки с молоткообразным узлом крепления и наклонной корневой частью

Группа изобретений относится к системе диск/лопатки для компрессора двигателя летательного аппарата, может быть использована для компрессора высокого давления или для компрессора низкого давления и обеспечивает при ее использовании равномерность интенсивности механических напряжений,...
Тип: Изобретение
Номер охранного документа: 0002430275
Дата охранного документа: 27.09.2011
09.06.2019
№219.017.791b

Авиационный газотурбинный двигатель

Авиационный газотурбинный двигатель содержит на выходе турбины форсажную камеру, продолженную соплом и ограниченную в радиальном направлении теплозащитным кожухом, установленным внутри картера. Картер совместно с теплозащитным кожухом формирует кольцевой канал, в котором во время работы...
Тип: Изобретение
Номер охранного документа: 0002342551
Дата охранного документа: 27.12.2008
09.06.2019
№219.017.7b0e

Способ сборки цельных облопаченных дисков и устройство для демпфирования колебаний лопаток таких дисков

Способ сборки вместе цельных облопаченных дисков, в частности дисков компрессора турбореактивного двигателя, включает в себя установку средств для демпфирования колебаний, как на лопатки дисков, так и между ними и сварку дисков вместе посредством сварки трением. Для осуществления способа сборки...
Тип: Изобретение
Номер охранного документа: 0002371587
Дата охранного документа: 27.10.2009
09.06.2019
№219.017.7b43

Способ дуговой сварки вольфрамовым электродом в среде инертного газа

Изобретение относится к способу дуговой сварки вольфрамовым электродом в среде инертного газа первой детали с первой стенкой и торцевой кромкой со второй деталью со второй стенкой и кромкой, причем обе детали сваривают друг с другом вдоль поверхности соединения между упомянутыми кромками, вдоль...
Тип: Изобретение
Номер охранного документа: 0002374047
Дата охранного документа: 27.11.2009
09.06.2019
№219.017.7bf3

Способ очистки полой детали вращения и устройство для его осуществления

Группа изобретений относится к области очистки, в частности к очистке внутренней и наружное поверхности полой детали вращения, такой как турбинное колесо из титанового сплава. Способ заключается в том, что деталь вращают вокруг ее оси вращения, направленной горизонтально, деталь частично...
Тип: Изобретение
Номер охранного документа: 0002367527
Дата охранного документа: 20.09.2009
Показаны записи 661-668 из 668.
04.04.2018
№218.016.33db

Система впрыска топлива для камеры сгорания турбомашины, содержащей кольцевую стенку с сужающимся внутренним профилем

Изобретение относится главным образом к системе впрыска топливовоздушной смеси в днище кольцевой камеры сгорания турбомашины, которая включает по меньшей мере два топливных форсуночных устройства, одно из которых - центральная форсунка (26) и второе - кольцевая периферическая форсунка (43),...
Тип: Изобретение
Номер охранного документа: 0002645801
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3446

Держатель трубы для отвода воздуха в турбогенераторе

Изобретение относится к держателю трубы для отвода насыщенного маслом воздуха турбогенератора. Держатель (5), выполненный с возможностью удержания трубы (4) для отвода насыщенного маслом воздуха турбогенератора, содержащий внутреннюю кольцевую в радиальном направлении часть (9, 10), выполненную...
Тип: Изобретение
Номер охранного документа: 0002646167
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.345d

Лопатка турбомашины, содержащая накладку, защищающую торец лопатки

Лопатка ротора турбомашины содержит простирающуюся радиально рабочую часть и накладку, закрывающую торец рабочей части. Накладка образована первой частью, радиально закрывающей торец лопатки, и второй частью, частично закрывающей корыто лопатки. Первая часть накладки имеет боковину,...
Тип: Изобретение
Номер охранного документа: 0002646168
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.350a

Инструмент для отвинчивания соединительной гайки модульного ротора газотурбинного двигателя

Инструмент для отвинчивания соединительной гайки ротора модуля газотурбинного двигателя содержит трубчатый элемент, поперечный диск, механизм привода пальцев относительно поперечного диска и осевые стержни. Трубчатый элемент снабжен несколькими пальцами, радиально подвижными между первым...
Тип: Изобретение
Номер охранного документа: 0002645874
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.352e

Способ сборки приводного силового гидроцилиндра и приводной силовой гидроцилиндр

Узел турбомашины содержит компрессор низкого давления, компрессор высокого давления, промежуточный корпус, размещенный между ними, клапан перепуска воздуха и приводной силовой гидроцилиндр клапана перепуска воздуха. Клапан перепуска воздуха расположен между компрессором низкого давления и...
Тип: Изобретение
Номер охранного документа: 0002645945
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3581

Отвинчивающая инструментальная оснастка и способ отвинчивания соединительной гайки

Отвинчивающая инструментальная оснастка для отвинчивания соединительной гайки ротора модуля турбореактивного двигателя содержит передний отвинчивающий инструмент и предотвращающий вращение инструмент, предназначенный для блокирования любого вращательного движения ротора вокруг его оси....
Тип: Изобретение
Номер охранного документа: 0002645853
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.373a

Способ изготовления компонента с истираемым покрытием

Изобретение относится к способу изготовления детали с покрытием из истираемого материала, при этом изготовленная деталь может представлять собой корпус турбомашины, внутренняя поверхность которого в радиальном направлении по меньшей мере частично покрыта истираемым покрытием. При осуществлении...
Тип: Изобретение
Номер охранного документа: 0002646656
Дата охранного документа: 06.03.2018
29.03.2019
№219.016.f5a6

Устройство и способ выравнивания водяной струи в системе резания при помощи водяной струи

Изобретение относится к устройству и способу выравнивания по одной линии водяной струи в системе резания при помощи водяной струи. Устройство содержит средство подачи воды под давлением, сопло формирования водяной струи и фокусирующую пушку. Фокусирующая пушка содержит внутренний цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002458786
Дата охранного документа: 20.08.2012
+ добавить свой РИД