×
27.07.2013
216.012.5a7a

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА

Вид РИД

Изобретение

№ охранного документа
0002488783
Дата охранного документа
27.07.2013
Аннотация: Изобретение относится к электроизмерительной технике, в частности к системам измерения уровня заправки ракетно-космической техники. Сущность: формируют синусоидальное напряжение на емкостном датчике уровня, измеряют комплексный ток через сухой емкостной датчик уровня и измеряют комплексный ток через заполняемый емкостной датчик уровня. Задают первую схему замещения емкостного датчика уровня, состоящую из параллельно включенных электрической емкости и активного сопротивления, формирование синусоидального напряжения на емкостном датчике уровня производят на двух частотах, после чего производят последовательно измерение комплексного тока через сухой датчик уровня и эталон на каждой из двух частот, причем результаты измерения фиксируют, определяют и фиксируют электрическую емкость сухого датчика уровня, вычисляют и фиксируют приращение электрической емкости емкостного датчика уровня при полном его погружении в диэлектрическое вещество. Определяют относительное заполнение диэлектрическим веществом емкостного датчика уровня как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого емкостного датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня. Задают вторую схему замещения емкостного датчика уровня, состоящую из последовательно включенной электрической емкости и активного сопротивления и по измеренным и зафиксированным ранее комплексным токам через емкостной датчик уровня и эталон на каждой из двух заданных частот определяют и фиксируют последовательно включенное электрическое сопротивление цепей датчика уровня, по которому судят о достоверности определения уровня диэлектрического вещества. Технический результат - исключение результатов измерения уровня, возникающих вследствие отказа в длинной линии связи между датчиком и измерительной аппаратурой. 4 ил.
Основные результаты: Способ определения уровня диэлектрического вещества, заключающийся в формировании синусоидальных напряжений на емкостном датчике уровня, измерении комплексного тока через сухой емкостный датчик уровня и измерении комплексного тока через заполняемый емкостный датчик уровня, причем задают первую схему замещения емкостного датчика уровня, состоящую из параллельно включенной электрической емкости и активного сопротивления, формируют синусоидальное напряжение на емкостном датчике уровня на двух частотах, после чего производят последовательное измерение комплексного тока через сухой датчик уровня и эталон на каждой из двух частот и результаты измерения фиксируют, определяют и фиксируют электрическую емкость сухого датчика уровня, вычисляют и фиксируют приращение электрической емкости датчика уровня при его полном погружении в диэлектрическое вещество, периодически производят последовательное измерение и фиксацию комплексного тока через заполняемый диэлектрическим веществом емкостный датчик уровня и эталон на каждой из двух заданных частот, для каждого периодического измерения определяют и фиксируют электрическую емкость датчика уровня, затем определяют относительное заполнение диэлектрическим веществом емкостного датчика уровня как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня, отличающийся тем, что задают вторую схему замещения емкостного датчика уровня, состоящую из последовательно включенной электрической емкости и активного сопротивления, и по измеренным и зафиксированным ранее комплексным токам через емкостный датчик уровня и эталон на каждой из двух заданных частот для каждого периодического измерения определяют и фиксируют последовательно включенное электрическое сопротивление цепей датчика уровня, по которому судят о достоверности определения уровня диэлектрического вещества.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в системах измерения уровня заправки ракетно-космической техники.

Близким по технической сущности и достигаемому положительному эффекту к заявляемому способу является способ измерения уровня диэлектрического вещества, описанный в книге "Емкостные самокомпенсированные уровнемеры" авторов К.Б.Карандеева, Ф.Б.Гриневича, Л.И.Новика, Москва: издательство "Энергия", 1966, с.28. (1, 2)

Способ определения уровня диэлектрического вещества заключается в формировании синусоидального напряжения на емкостном датчике уровня, измерении комплексного тока через сухой емкостной датчик уровня и измерении комплексного тока через заполняемый емкостной датчик уровня.

В представленном аналоге способ измерения уровня диэлектрической жидкости базируется на сложении токов датчиков, которое осуществляется при помощи тесно связанных индуктивных плеч моста на суммирующем измерительном трансформаторе. Причем коэффициент, с которым ток входит в общую сумму, определяется числом витков плеча, а знак коэффициента - направлением включения обмотки этого плеча. Условием равновесия измерительной схемы является равенство нулю суммы всех токов, протекающих через датчики. Отношение числа витков тесно связанных индуктивных плеч определяет относительное заполнение (уровень) емкостного датчика уровня диэлектрическим веществом.

При использовании аналога для определения уровня диэлектрического вещества с помощью емкостного датчика уровня, удаленного на достаточно большое расстояние (до 400 метров) от средства измерения, получается результат с высокой степенью погрешности. Низкая технологичность и точность измерения прототипа обусловлена следующим:

- способ-аналог не обладает полной инвариантностью по отношению к длинной линии связи между средством измерения и емкостным датчиком уровня, т.е. не исключает влияния длинной линии связи на результат определения уровня;

- аналог измеряет комплексные токи через емкостные датчики уровня, которые не учитывают значения параметров диэлектрических веществ (диэлектрические проницаемости вещества и газовой среды над веществом, включая их температуру, изменение геометрических размеров емкостных датчиков уровня из-за воздействия на них криогенных температур). Исходя из этого перед технологическим процессом заправки требуется предварительная ручная настройка средства измерения на заданные параметры жидкости и датчика при определении уровня заправки, для каждого датчика индивидуально;

- относительно низкое быстродействие способа измерения (до 10 сек) на измерение. Это связано с конструктивным исполнением мостового средства измерения, представляющего собой следящую систему, которая уравновешивается как по активной, так и но реактивной составляющим комплексного сопротивления емкостного датчика. А так как процесс заправки ракеты непрерывный, то низкое быстродействие процесса измерения уровня вносит дополнительную погрешность.

Таким образом, недостатками аналога являются:

- низкая точность определения уровня на достаточно удаленном от средства измерения емкостном датчике уровня;

- низкое быстродействие способа измерения, связанное с процессом уравновешивания моста;

- низкая технологичность определения уровня, связанная предварительной ручной настройкой средства измерения на заданные параметры заправки. Наличие человеческого фактора в технологии определения уровня вносит также дополнительную погрешность в точность его определения.

Однако специфика эксплуатации изделий ракетно-космической техники для проведения измерения параметров двухполюсников выставляет свои требования, способствующие поиску новых технических решений в области измерений. Обозначим наиболее характерные из них:

- удаленность до 400 метров объекта измерения от средства измерения. Примером тому может служить процесс определения параметров комплексного сопротивления емкостного датчика контроля уровня заправки, вмонтированного в бак ракеты, которая находится в испытательном корпусе или на стартовом комплексе во время ее заправки компонентами топлива;

- высокая точность измерения параметров удаленного двухполюсника, коим является емкостной датчик уровня. Очевидно, что точность измерения напрямую связана с объемом гарантийных запасов топлива на борту ракеты. Чем выше точность, тем меньше гарантийные запасы топлива, тем выше эффективность ракеты, позволяющей вывести большую полезную нагрузку;

- требование высокой технологичности подготовки ракеты, исключающее процедуру предварительной настройки аппаратуры измерения человеком-оператором, а также позволяющее проводить работу одного средства измерения с несколькими емкостными датчиками уровня ракеты поочередно;

- высокое быстродействие определения параметров двухполюсника, позволяющее расширить функциональные возможности способа измерения и использовать его аналогичным образом в уровнемере бортовой терминальной системы автоматического управления, которой является система управления расходом топлива ракеты.

Наиболее близким по технической сущности и достигаемому положительному эффекту к заявляемому способу - прототипом является способ измерения уровня диэлектрического вещества, описанный в патенте №2262669, МПК: G01F 23/26, G01R 17/00 авторов Балакина С.В, Долгова Б.К. (3). В указанном способе формируют синусоидальное напряжение на емкостном датчике уровня, измеряют комплексный ток через сухой емкостной датчик уровня и измеряют комплексный ток через заполняемый емкостной датчик уровня. Задают схему замещения емкостного датчика уровня, состоящую из электрической емкости и активного сопротивления включенных параллельно. Формирование синусоидального напряжения на емкостном датчике уровня производят на двух частотах, после чего производят последовательно измерение комплексного тока через. сухой датчик уровня и эталон на каждой из двух частот, причем результаты измерения фиксируют, определяют и фиксируют электрическую емкость сухого датчика уровня, вычисляют и фиксируют приращение электрической емкости емкостного датчика уровня при полном его погружении в диэлектрическое вещество. Периодически производят последовательное измерение и фиксацию комплексного тока через заполняемый диэлектрическим веществом емкостной датчик уровня и эталон на каждой из двух заданных частот, для каждого периодического измерения определяют и фиксируют электрическую емкость емкостного датчика уровня, затем определяют относительное заполнение диэлектрическим веществом емкостного датчика уровня как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого емкостного датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня.

При определении уровня диэлектрического вещества с помощью емкостного датчика уровня, удаленного на достаточно большое расстояние (до 400 метров) от средства измерения, получаемый результат имеет малую погрешность. Вычисление параметров сухого и заполняемого диэлектрическим веществом емкостного датчика уровня, а также вычисление приращения емкости датчика уровня при его полном погружении в диэлектрическое вещество, обеспечивается в одинаковых условиях наличия длинной линии. Это дает возможность учитывать влияние длинной линии в результате обоих вычислений при автоматической настройке средств измерений. А совокупность признаков, обеспечивающих определение относительного заполнения диэлектрическим веществом емкостного датчика уровня, как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого емкостного датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня, позволяет почти полностью исключить влияние длинной линии на результат определения относительного заполнения датчика уровня. Тем не менее, влияние длинной линии электрических соединительных цепей связи между датчиком и измерительной аппаратурой остается. Особенно это относится к случаям, когда параметры длинной линии значительно меняются прямо в процессе штатной работы (Практика показывает, что такой вариант случается нередко, так как линия связи проходит по ферме на открытом воздухе). В этом случае может возникнуть существенная погрешность при измерении основного параметра-уровня диэлектрического вещества. А это может иметь серьезные последствия, например недозаправку топлива для вывода РН на целевую орбиту.

Из ранее сказанного видно, что недостатком прототипа является существенное влияние длинной линии связи на результат определения уровня в случае, когда параметры длинной линии значительно меняются непосредственно в процессе штатной работы.

Задачей предлагаемого способа определения уровня диэлектрического вещества является повышение надежности его определения, заключающееся в исключении неправильных результатов определения уровня диэлектрического вещества, которые могут возникнуть из-за изменения электрического сопротивления длинной линии связи, возникающего при плохом контакте в соединителях, при обрывах токопроводящих жил, на «холодных» пайках, при попадании влаги и по ряду других причин.

Решение поставленной задачи достигается тем, что в способе определения уровня диэлектрического вещества, заключающемся в формировании синусоидального напряжения на емкостном датчике уровня, измерении комплексного тока через сухой емкостной датчик уровня и измерении комплексного тока через заполняемый емкостной датчик уровня, задании первой схемы замещения емкостного датчика уровня, состоящей из параллельно включенных электрической емкости и активного сопротивления, формирование синусоидального напряжения на емкостном датчике уровня производят на двух частотах, после чего производят последовательно измерение комплексного тока через сухой датчик уровня и эталон на каждой из двух частот, причем результаты измерения фиксируют, определяют и фиксируют электрическую емкость сухого датчика уровня, вычисляют и фиксируют приращение электрической емкости емкостного датчика уровня при полном его погружении в диэлектрическое вещество, периодически производят последовательное измерение и фиксацию комплексного тока через заполняемый диэлектрическим веществом емкостной датчик уровня и эталон на каждой из двух заданных частот, для каждого периодического измерения определяют и фиксируют электрическую емкость емкостного датчика уровня, затем определяют относительное заполнение диэлектрическим веществом емкостного датчика уровня как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого емкостного датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня в отличие от прототипа задают вторую схему замещения емкостного датчика уровня, состоящую из последовательно включенной электрической емкости и активного сопротивления и, по измеренным ранее комплексным токам через емкостной датчик уровня и эталон на каждой из двух заданных частот, для каждого периодического измерения определяют и фиксируют последовательно включенное электрическое сопротивление цепей датчика уровня, по которому судят о достоверности определения основного измеряемого параметра-уровня диэлектрического вещества.

Измеренное электрическое сопротивление цепей датчика уровня сравнивается с допуском и в случае его отклонения за поле допуска все результаты измерения основного параметра-уровня признаются неправильными и бракуются. Таким образом, заявленный способ приобретает новое качество: он не позволяет допустить ошибки при заправке РН из-за неисправностей в длинной линии связи между датчиком и измерительной аппаратурой, что заметно повышает надежность подготовки изделия к штатной работе.

Таким образом, совокупность признаков, позволяющая после измерения комплексных токов через сухой емкостной датчик уровня и эталон на каждой из двух частот определить его текущие параметры (С и R), определить приращение электрической емкости датчика при его полном погружении в диэлектрическое вещество (с учетом температурных и физических параметров диэлектрического вещества), а также последовательное сопротивление линий связи - r, что обеспечивает автоматизацию процесса настройки средств измерения, достижение повышенной технологичности, точности и надежности определения уровня диэлектрического вещества, исключив неисправности в длинной линии связи, а так же погрешность человеческого фактора из процедуры настройки средств измерения.

Для практической реализации способа авторами использована технология автоматизированного проектирования электронных схем, построенная на применении программируемых логических интегральных схем (ПЛИС) разработки фирмы Xilinx. При этом используется программное обеспечение Foundation Series. Данный пакет проектирования включает в себя комплекс средств, позволяющих осуществить разработку ПЛИС фирмы Xilinx, начиная от описания внутреннего содержимого устройства до загрузки конфигурации ПЛИС и отладки непосредственно на печатной плате. Программное обеспечение Foundation Series позволяет реализовать все необходимые функции, включая реализацию численных методов вычисления значений физических величин.

На фиг.1 представлена первая схема замещения емкостного датчика уровня.

На фиг.2 представлена векторная диаграмма первой схемы замещения емкостного датчика уровня.

На фиг.3 представлена вторая схема замещения емкостного датчика уровня.

На фиг.4 представлена векторная диаграмма второй схемы замещения емкостного датчика уровня

В качестве примера осуществления способа рассмотрим процедуру определения уровня заправки диэлектрического вещества в баке изделия ракетно-космической техники и последовательного сопротивления линии связи между датчиком и измерительной аппаратурой. В качестве диэлектрического вещества можно рассмотреть, например, керосин.

Емкостному датчику уровня соответствует схема замещения, приведенная на фиг.1, где: Cp есть рабочая электрическая емкость датчика, которая несет полезную информацию об уровне заправки бака; R - сопротивление тока утечки через диэлектрик, которое зависит от сортности керосина и вносит погрешность в процесс измерения уровня заправки, если ее не учитывать. На фиг.2 представлена векторная диаграмма емкостного датчика уровня, для которой справедливы следующие соотношения:

В силу специфики эксплуатации изделий ракетно-космической техники емкостной датчик уровня расположен па расстоянии до 400 метров от средства измерения.

Согласно первой схеме замещения емкостного датчика уровня имеем следующие выражения для определения его параметров:

Измеренная величина емкости датчика описывается выражением:

Измеренная величина сопротивления изоляции датчика описывается выражением:

Согласно второй схеме замещения емкостного датчика уровня измеренная величина последовательного сопротивления цепей датчика описывается выражением:

Для определения параметров C, R, r по выражениям 3, 4, 4-1 необходимо произвести измерение токов через емкостной датчик уровня и эталон. Так как емкостной датчик уровня является двухзвенным двухполюсником, то в соответствии с признаком формулы изобретения измерение комплексного тока необходимо проводить на двух частотах ω1 и ω2.

Для этого согласно признаку формулы изобретения производят формирование синусоидального напряжения на сухом емкостном датчике уровня на двух частотах ω1 и ω2. Затем последовательно производят измерение значений комплексных токов через сухой емкостной датчик уровня и эталон на каждой из заданных частот. Значения токов через эталон соответствуют выражениям

Согласно векторной диаграмме фиг.2 модули измеряемых комплексных токов через емкостной датчик уровня можно записать следующими выражениями:

Следует сразу оговорить, что вышеописанные действия производят для настройки средств измерения перед заправкой бака изделия РКТ, заключающейся в измерении комплексных токов через сухой емкостной датчик уровня, подключенный к средствам измерения через линию связи. Измеренные результаты комплексных токов фиксируются. С точки зрения практической реализации процедура фиксации может быть выполнена в виде операции сохранения результатов измерения в запоминающем устройстве, построенного по технологии Xillinx.

После этого определяется состояние емкостного датчика уровня в соответствии с зависимостями (3) и (4) и качества соединительных линий до датчика по формуле (4-1). Результаты определения параметров сухого емкостного датчика С, R и линий связи до датчика - r фиксируются и представляют собой исходные данные, необходимые для выполнения дальнейшей последовательности действий способа. Если измеренная величина r выходят за пределы допуска на нее, то выдается сообщение оператору и в систему управления заправкой о неисправности в данном канале измерения системы измерения уровня. Если допусковый контроль по r пройден, то процедуру настройки средств измерения завершает действие согласно формуле изобретения по определению приращения электрической емкости емкостного датчика уровня, полностью погруженного в данном случае в керосин. Зависимость, по которой вычисляется приращение электрической емкости, имеет вид

CСУХ - электрическая емкость емкостного датчика уровня, определяемая с учетом влияния линии связи по зависимости (3);

εЖ - диэлектрическая проницаемость керосина;

εГ - диэлектрическая проницаемость газовой подушки, расположенной в баке изделия РКТ над керосином.

Результат определения приращения емкости, выполненный по зависимости (9), фиксируется.

Совокупность признаков, обеспечивающая определение параметров сухого емкостного датчика уровня и приращение электрической емкости при его полном погружении в керосин с учетом влияния на результаты определения линии связи, позволяет процесс настройки средств измерения автоматизировать. Тем самым совокупность вышеописанных признаков позволяет повысить технологичность и точность измерения за счет исключения инструментальной погрешности человеческого фактора.

При осуществлении заправки бака изделия РКТ периодически производят последовательное измерение комплексного тока через заполняемый емкостной датчик уровня и эталон па каждой из двух заданных частот. Причем на результат измерения комплексных токов через заполняемый емкостной датчик линия связи оказывает такое же влияние, как и при измерении комплексного тока через сухой емкостной датчик. Результаты измерений фиксируются. Затем после каждого измерения комплексного тока через заполняемый емкостной датчик и эталон осуществляется определение его параметров в соответствии с выражениями (3), (4) и (4-1). Результаты определения параметров датчика и линий связи до него фиксируются. На протяжении всей штатной работы при заправке Ракеты-Носителя, в отличии от прототипа, производится контроль новой величины r - сопротивления линии связи до датчика. В случае выхода величины r за допуск производится сообщение оператору и в систему управления заправкой об отказе данного канала измерения уровня. Таким образом, появляется повое качество: непрерывный контроль сопротивления линий связи до датчика непосредственно в процессе боевой работы без расстыковки кабельных линий. Такой подход значительно увеличивает надежность системы измерения уровня.

Далее производится работа методике работы прототипа:

Электрическая емкость заполняемого емкостного датчика уровня является величиной переменной, поэтому ее можно назвать текущей CТЕК. Затем осуществляют определения (уровня) относительного заполнения емкостного датчика уровня керосином. Согласно признакам формулы изобретения это осуществляется следующим образом. Сначала определяется разность значений электрической емкости заполняемого емкостного датчика (назовем ее текущей электрической емкостью стек) и электрической емкости сухого емкостного датчика, вычисленная при настройке средств измерения. Эту разность можно определить по выражению

где CТЕК - значение электрической емкости заполняемого датчика уровня, вычисленное в соответствии с выражением (3). Аналитическое выражение электрической емкости заполняемого керосином емкостного датчика уровня можно записать в следующем виде:

где h - текущая высота погружения емкостного датчика уровня в керосин;

H - полная высота погружения датчика в керосин.

Далее определяется отношение разности электрических емкостей согласно выражению (10) и приращения электрической емкости полностью погруженного емкостного датчика уровня в керосин, которое можно записать в следующем виде

Совокупность признаков, характеризующих определение относительного заполнения емкостного датчика уровня керосином как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого емкостного датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в керосин емкостного датчика уровня, обеспечивает исключение влияния линии связи на результат определения уровня. Из аналитической зависимости (12) это следует очевидным образом, CСУХ и стек определялись с учетом влияния линии связи, CПР также определялось с учетом влияния линии связи. Поэтому в отношении согласно выражению (12) влияние линии связи аналитически исключается.

Таким образом, вышеописанная совокупность признаков характеризует способ как инвариантный по отношению к линии связи и защищенный от внезапных изменений электрических характеристик линии связи между датчиком и измерительной аппаратурой благодаря контролю нового параметра - последовательного сопротивления линий связи до датчика (r).

Процесс определения уровня периодически продолжается до тех пор, пока бак изделия РКТ не будет заполнен до требуемого уровня.

Заявленный способ определения уровня диэлектрического вещества может быть реализован с помощью устройства, функциональные блоки которого выполнены на микросхеме 2S200PQ208 фирмы Xilinx. Численные решения представленных выше выражений могут быть реализованы с помощью программного пакета Foundation Series.

Заявленный способ авторами апробирован на макетном изделии. В настоящий момент авторами создается система измерения уровня заправки ракетного блока, которая предназначена для наземной аппаратуры одной из стартовых пусковых установок полигона "Куру».

Используемая литература

1. К.Б.Карандеев, Ф.Б.Гриневич, Л.И.Новик. Емкостные самокомпенсированные уровнемеры. М.: Энергия, 1966, С. - 135.

2. А.И.Цовик. Системы автоматического уравновешивания цифровых экстремальных мостов переменного тока. Киев: Наукова Думка, 1983, с.9-10.

3. Патент РФ №2262 669, МПК: G01F 23/26, G01R 17/00 «Способ определения уровня диэлектрического вещества» (прототип).

Способ определения уровня диэлектрического вещества, заключающийся в формировании синусоидальных напряжений на емкостном датчике уровня, измерении комплексного тока через сухой емкостный датчик уровня и измерении комплексного тока через заполняемый емкостный датчик уровня, причем задают первую схему замещения емкостного датчика уровня, состоящую из параллельно включенной электрической емкости и активного сопротивления, формируют синусоидальное напряжение на емкостном датчике уровня на двух частотах, после чего производят последовательное измерение комплексного тока через сухой датчик уровня и эталон на каждой из двух частот и результаты измерения фиксируют, определяют и фиксируют электрическую емкость сухого датчика уровня, вычисляют и фиксируют приращение электрической емкости датчика уровня при его полном погружении в диэлектрическое вещество, периодически производят последовательное измерение и фиксацию комплексного тока через заполняемый диэлектрическим веществом емкостный датчик уровня и эталон на каждой из двух заданных частот, для каждого периодического измерения определяют и фиксируют электрическую емкость датчика уровня, затем определяют относительное заполнение диэлектрическим веществом емкостного датчика уровня как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня, отличающийся тем, что задают вторую схему замещения емкостного датчика уровня, состоящую из последовательно включенной электрической емкости и активного сопротивления, и по измеренным и зафиксированным ранее комплексным токам через емкостный датчик уровня и эталон на каждой из двух заданных частот для каждого периодического измерения определяют и фиксируют последовательно включенное электрическое сопротивление цепей датчика уровня, по которому судят о достоверности определения уровня диэлектрического вещества.
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА
Источник поступления информации: Роспатент

Показаны записи 91-100 из 371.
10.10.2014
№216.012.fc58

Устройство и способ измерения плотности падающих тепловых потоков при тепловакуумных испытаниях космических аппаратов

Заявленное изобретение относится к космической технике и может быть использовано для контроля теплообмена космического аппарата. Указанное устройство выполнено из сборок, в каждой из которых чувствительный элемент размещен на электроизолирующей подложке. Указанные сборки выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002530446
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fce3

Устройство для доставки объекта

Изобретение относится к области космической техники и может быть использовано для доставки сферических объектов экипажем пилотируемого космического аппарата (КА) из рабочего отсека КА на внешнюю поверхность КА и далее на целевую орбиту объекта. Устройство содержит держатель, на котором...
Тип: Изобретение
Номер охранного документа: 0002530585
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.017f

Способ ориентирования перемещаемого в пилотируемом аппарате прибора и система для его осуществления

Группа изобретений относится к методам и средствам прицеливания (наведения) бортовых приборов, преимущественно аэрокосмического пилотируемого аппарата (ПА). Предлагаемый способ включает определение положения и ориентации свободно перемещаемого прибора внутри ПА. Для этого подают команды на...
Тип: Изобретение
Номер охранного документа: 0002531781
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.06ca

Способ получения цветного декоративного покрытия на технической ткани для эксплуатации в условиях космического пространства

Изобретение относится к области материаловедения, а именно к получению цветных декоративных покрытий на технических тканях с помощью кремнийорганических эмалей, и может быть использовано для изображения надписей и рисунков, эксплуатируемых в условиях космического пространства. В способе...
Тип: Изобретение
Номер охранного документа: 0002533139
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0896

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к термокомпрессорам. В термокомпрессионном устройстве, содержащем источник газа высокого давления с подключенными к нему баллонами-компрессорами, источник холода и объединенную магистраль заправки баллонов-компрессоров, снабженную первым...
Тип: Изобретение
Номер охранного документа: 0002533599
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.089c

Центробежное рабочее колесо

Изобретение может быть использовано в составе электронасосных агрегатов систем терморегулирования изделий ракетно-космической техники, а также в химической промышленности. Центробежное рабочее колесо содержит единый со ступицей ведущий диск, покрывной диск с центральным входным отверстием и...
Тип: Изобретение
Номер охранного документа: 0002533605
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.089e

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий космической техники. Электронасосный агрегат содержит металлический корпус, установленный на корпусе бесконтактный электродвигатель постоянного тока с выполненным заодно с ним электронным...
Тип: Изобретение
Номер охранного документа: 0002533607
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.09a8

Способ формирования управляющих воздействий на космический аппарат

Изобретение относится к управлению движением космических аппаратов (КА) с использованием сил давления солнечного излучения, распределенных по рабочим зонам КА. Последние формируют в виде плоских параллельных оптически прозрачных капельных потоков. Расстояние между каплями радиусом R в каждом...
Тип: Изобретение
Номер охранного документа: 0002533873
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0f63

Устройство для отведения ядерной энергетической установки от приборно-агрегатного отсека космического аппарата

Изобретение относится к космическим аппаратам (КА), может быть использовано для обеспечения отведения на заданное расстояние ядерной энергетической установки (ЯЭУ) от приборно-агрегатного отсека КА. Устройство для отведения ЯЭУ представляет собой трансформируемую пространственную ферменную...
Тип: Изобретение
Номер охранного документа: 0002535356
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.100b

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано в составе автоматизированной измерительной системы совместно с измерительными приборами при контроле цепей питания электротехнической системы изделия в процессе. Коммутатор содержит три входные цепи, четыре...
Тип: Изобретение
Номер охранного документа: 0002535524
Дата охранного документа: 10.12.2014
Показаны записи 91-100 из 293.
20.09.2014
№216.012.f4db

Устройство фиксации предметов в невесомости

Изобретение относится к космической технике, а именно к средствам обеспечения деятельности космонавтов в условиях невесомости. Устройство фиксации предметов в невесомости содержит фиксатор в виде проволоки (из материала, обладающего свойством остаточной пластической деформации) в...
Тип: Изобретение
Номер охранного документа: 0002528516
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f5e6

Разъемное соединение

Изобретение предназначено для использования в области ракетно-космической техники, в частности в устройствах разделения криогенных заправочных магистралей. Техническим результатом изобретения является обеспечение герметичности при возникновении внешних изгибающих воздействий со стороны сменного...
Тип: Изобретение
Номер охранного документа: 0002528783
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f5e8

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров). Технический результат достигается тем, что в термокомпрессионном устройстве, содержащем источник газа высокого давления с подключенным к нему...
Тип: Изобретение
Номер охранного документа: 0002528785
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f7b5

Шариковый замок

Изобретение относится к области машиностроения. Шариковый замок содержит рабочую поверхность, выполненную в виде конической поверхности. На штоке выполнены посадочный буртик и посадочный фланец. На втулке выполнен стыковочный фланец с посадочным отверстием и заходной фаской, стыковочный фланец...
Тип: Изобретение
Номер охранного документа: 0002529250
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f84f

Способ прогнозирования работоспособности космонавта на поверхности планеты марс

Изобретение относится к медицине, а именно к физиологии. После 4-6 месяцев геоорбитального полета и посадки на Землю с перегрузкой 4 g, космонавта в первые послеполетные сутки облачают в планетарный скафандр под штатным избыточным давлением при суммативном весе космонавта и скафандра, равным...
Тип: Изобретение
Номер охранного документа: 0002529404
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fa8e

Пневмопривод с тормозным устройством

Пневмопривод предназначен для раскрытия посадочного устройства пилотируемого космического корабля. Пневмопривод содержит силовой цилиндр, первый и второй клапанные распределители, при этом первый клапанный распределитель связан с задатчиком команды начала движения, пневмовход через...
Тип: Изобретение
Номер охранного документа: 0002529988
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc58

Устройство и способ измерения плотности падающих тепловых потоков при тепловакуумных испытаниях космических аппаратов

Заявленное изобретение относится к космической технике и может быть использовано для контроля теплообмена космического аппарата. Указанное устройство выполнено из сборок, в каждой из которых чувствительный элемент размещен на электроизолирующей подложке. Указанные сборки выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002530446
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fce3

Устройство для доставки объекта

Изобретение относится к области космической техники и может быть использовано для доставки сферических объектов экипажем пилотируемого космического аппарата (КА) из рабочего отсека КА на внешнюю поверхность КА и далее на целевую орбиту объекта. Устройство содержит держатель, на котором...
Тип: Изобретение
Номер охранного документа: 0002530585
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.017f

Способ ориентирования перемещаемого в пилотируемом аппарате прибора и система для его осуществления

Группа изобретений относится к методам и средствам прицеливания (наведения) бортовых приборов, преимущественно аэрокосмического пилотируемого аппарата (ПА). Предлагаемый способ включает определение положения и ориентации свободно перемещаемого прибора внутри ПА. Для этого подают команды на...
Тип: Изобретение
Номер охранного документа: 0002531781
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.06ca

Способ получения цветного декоративного покрытия на технической ткани для эксплуатации в условиях космического пространства

Изобретение относится к области материаловедения, а именно к получению цветных декоративных покрытий на технических тканях с помощью кремнийорганических эмалей, и может быть использовано для изображения надписей и рисунков, эксплуатируемых в условиях космического пространства. В способе...
Тип: Изобретение
Номер охранного документа: 0002533139
Дата охранного документа: 20.11.2014
+ добавить свой РИД