×
27.07.2013
216.012.59e8

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СТАЛЕЙ АУСТЕНИТНОГО КЛАССА С НАНОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, преимущественно к обработке металлов давлением, а именно к технологии получения заготовок сталей аустенитного класса с нанокристаллической структурой, и может быть применено при изготовлении сосудов высокого давления для теплоэнергетики и химической промышленности. Способ изготовления заготовок включает закалку заготовки, многократную ковку с последовательным изменением оси ориентации на 90° в интервале температур 773-923 К с суммарной истинной степенью деформации не менее 3 и последующий отжиг при температуре выше температуры изотермической ковки на 50К в течение 1-5 часов. Технический результат заключается в получении заготовки аустенитной стали с нанокристаллической структурой и повышенными прочностными свойствами. 1табл., 2 ил., 1пр.
Основные результаты: Способ изготовления заготовок сталей аустенитного класса с нанокристаллической структурой, включающий многократную изотермическую ковку заготовки с последовательным изменением оси ориентации на 90° при постоянной температуре и с минимальной истинной степенью деформации за одну осадку не менее 04, отличающийся тем, что предварительно закаленную с температуры 1373К заготовку подвергают многократной изотермической ковке при постоянной температуре в интервале 773-973К со скоростью деформации от 10 до 10 с, после достижения суммарной истинной степени деформации не менее 3 проводят отжиг заготовки при температуре выше температуры изотермической ковки на 50 К в течение 1-5 ч.

Изобретение относится к области металлургии, преимущественно к обработке металлов давлением, а именно к технологии получения заготовок сталей аустенитного класса с нанокристаллической структурой, и может быть применено при изготовлении сосудов высокого давления для теплоэнергетики и химической промышленности.

Известные способы измельчения зерен можно условно разделить на три группы. К первой группе относят чисто металлургические процессы, основанные на варьировании температурно-скоростных условий кристаллизации, легировании расплава модифицирующими элементами как Nb, Ti, Zr, Al, V, ультразвуком или электромагнитном воздействии на расплав [1], сверхбыстрой закалке из лент [2], испарении и конденсации материала в инертной среде [3, 4], плазменном распылении [5, 6], электровзрыве проводников [7], неравновесной конденсации в высокоскоростных потоках газа [8, 9] и т.д. Вторая группа методов измельчения зерен в сплавах связана с методами химического синтеза, например, получение многокомпонентных ультрадисперсных порошков гетерофазным взаимодействием в щелочных растворах, электролитическое послойное осаждение и аморфная кристаллизация [10, 11]. Третья группа методов включает различные способы обработки материалов, такие как традиционная термомеханическая обработка (ТМО), различные виды интенсивной пластической деформации (ИПД) с динамической [12, 13] или последующей статической [14] рекристаллизацией, а также обработка порошковых материалов в шаровых мельницах (так называемое механическое легирование) [15].

Методами первой и второй групп, как правило, получают нанокристаллические структуры с размером зерен порядка 10 нм. Большинство из них основано на компактировании порошков. Некоторые из этих методов были успешно использованы для формирования и изучения структуры и свойств нанокристаллических материалов. Однако развитие этих способов проблематично в связи с наличием пористости (до 10%) в компактированных, спеченных образцах, их высокой хрупкостью и сложностью контролирования химической чистоты сплава в процессе его получения. Кроме того, перечисленные методы не позволяют получать массивные заготовки с нанокристаллической структурой, достаточные для проведения полноценных исследований физико-механических свойств и изготовления полуфабрикатов для их промышленного применения.

Использование методов третьей группы позволяет получать нанокристаллические структуры в материалах со средним размером зерен около 100 нм со специальными высокоугловыми границами [16] и обладают двумя важными достоинствами: не приводят к образованию пористости, могут применяться как к чистым металлам, так и к сплавам и интерметаллидным соединениям. Методы ИПД основаны на создании в материале высокой плотности дефектов кристаллического строения (дислокации, границ зерен) в исходных совершенных (или почти совершенных) поли- и монокристаллах. Под ИПД подразумеваются истинные степени деформации e≥5 [17].

Применительно к аустенитным сталям известен способ обработки холодной деформацией с промежуточными отжигами. Так, в патенте US 4421572 (опубл. 20.12.1983) предложен метод холодной деформационной обработки с промежуточными отжигами при температуре 1010-1038°С в течение 60-90 секунд для уменьшения радиационного распухания стали AISI 316.

Способ обработки, совмещающий ИПД и ТМО, представлен в патенте UA 79726 С2 (2007 г.). Получение в стали Х18Н10Т структуры с размером фрагментов менее 1 мкм достигается за счет сочетания следующих операций: пластическая деформации методом всестороннего сжатия при низких температурах -40…-100°С (что обеспечивает получение мартенсита с размерами фрагментов 0,06-0,09 мкм), нагрев до температуры выше температуры старения и выдержка при этой температуре до конца преобразования мартенсита в аустенит и закалки на аустенит. Сталь с полученной структурой характеризуется повышенной прочностью.

Наиболее близким к предлагаемому изобретению является способ получения ультрамелкозернистой структуры в стали аустенитного класса, раскрытый в статье [18]. В [18] образцы аустенитной стали были деформированы в вакууме при 873 К методом многократной ковки с последовательным изменением оси ориентации на 90°. Истинная степень деформации за одну осадку составляла 0,4 при скорости деформации 8×10-4 с-1, суммарная степень деформации достигла 6,4. После каждой осадки образцы охлаждались в воде и затем нагревались до 873 К в течение 0,6-0,8 ксек. В результате данной обработки была получена ультрамелкозернистая структура со средним размером зерен 300 нм. Недостатком описанного способа является то, что он не позволяет получить нанокристаллическую структуру в стали, высокая трудоемкость процесса ковки из-за наличия охлаждений и нагревов заготовки после каждой осадки.

Задачей изобретения является разработка способа изготовления заготовок аустенитных сталей с нанокристаллической структурой, а также снижение трудоемкости ковки.

Технический результат заключается в

- получении однородной нанокристаллической структуры заготовки, благодаря которой происходит значительное повышение прочностных свойств стали как при комнатной, так и при повышенных температурах, что обусловлено получением однородной нанокристаллической структуры заготовок при осуществлении предлагаемого способа;

- снижении трудоемкости ковки.

Поставленная задача решается предложенным способом изготовления заготовок стали аустенитного класса с нанокристаллической структурой, включающим многократную изотермическую ковку заготовки при постоянной температуре с минимальной истинной степенью деформации за одну осадку не менее 0,4 и последовательным изменением оси ориентации на 90°, в который внесены следующие новые признаки:

- предварительная закалка заготовки с 1373 К;

- многократную изотермическую ковку проводят со скоростью деформации от 10-2 до 10-1 с-1 и с суммарной истинной степенью деформации не менее 3, при температуре, лежащей в интервале 773-973К, после чего проводят отжиг заготовки при температуре выше температуры изотермической ковки на 50 К в течение 1-5 часов.

Основными отличиями предложенного способа от прототипа являются: более высокие скорости деформации при осадке, отсутствие охлаждений и нагревов заготовки между осадками, наличие отжига для стабилизации микроструктуры после ковки.

Предлагаемое изобретение характеризуют следующие графические материалы:

Фигура 1. Схема термомеханической обработки стали 08Х18Н10.

Фигура 2. Фотография зеренной структуры стали, полученная на просвечивающем электронном микроскопе JEOL JEM-2100.

Пример осуществления.

В примере осуществления использовалась сталь 08Х18Н10, предварительно закаленная с 1373 К в воду, имеющая исходный размер зерна 25 µm. Заготовка размером 85×50×50 мм3 была подвергнута термомеханической обработке (ТМО), состоящей из многократной изотермической ковки с последовательным изменением оси ориентации на 90° при 873 К с истинной степенью деформации за одну осадку 0,4 при скорости деформации от 10-2 до 10-1 с-1, общего количества осадок 10, суммарной истинной степенью деформации 4 и последующего отжига при 923 К в течение 3 часов (фиг.1). Ковка проводилась без охлаждения и подогревов заготовки между осадками. Средний размер зерна после ТМО составил 100 нм (фиг.2).

Механические испытания на растяжения проводились по ГОСТ 1497-84 при комнатной температуре и по ГОСТ 9651-84 при повышенных температурах (табл.1).

Таблица 1
Механические свойства аустенитной стали 08Х18Н10 в исходном крупнозернистом и наноструктурном состояниях
293 К 673 К 773 К 873 К 923 К
Предел текучести, МПа Образец после ТМО 860 710 640 385 485
Образец до ТМО 300 200 190 170 170
Предел прочности, МПа Образец после ТМО 960 770 680 550 570
Образец до ТМО 640 520 500 450 400
Удлинение, % Образец после ТМО 13 7 6 17 22
Образец до ТМО 35 - 43 - 34

Источники информации

[1] О.Л.Кайбышев Сверхпластичность промышленных сплавов. - М.: Металлургия, 1984. - 264 с.

[2] Wurschum R., Greiner W., Valtev R.Z., Rapp М., Sigle W., Schneeweiss O. and Schaefev H.E. Interfacial Free Volumes in Ultra-Fine Grained Metals of Amorphous Alloys // Scr.Met.et Mater. - 1991. - P.456-564.

[3] Birrenger R. and Gleiter H. Nanocrystalline materials // Encyclopedia of Materials Science and Engineering ed. R.W.Cahn, Pergamon Press. - 1988. - Vol.1 (Suppl.). - P.339-349.

[4] Froes F.H. and Suryanarayna. Nanocrystalline Metals for Structural Applications // JOM. - 1989. - №6. - P.12-17.

[5] Морохов И.Д., Трусов Л.И., Лаповок В.И. Физические явления в ультрадисперсных средах. - М.: Наука, 1984. - С.320; Морохов И.Д., Трусов Л.И., Чижик С.П. Ультрадисперсные металлические среды. - М.: Атомиздат, 1977. - 264 с.

[6] Морохов И.Д., Трусов Л.И., Чижик С.П. Ультрадисперсные металлические среды. - М.: Атомиздат, 1977. - 264 с.

[7] Коюв Ю.А., Яворский Н.А. Исследование частиц, образующихся при электрическом взрыве проводников // Физика и химия обработки материалов. - 1978. - №4. - С.24.

[8] Морохов И.Д., Трусов Л.И., Лаповок В.И. Физические явления в ультрадисперсных средах. - М.: Наука, 1984. - С.320; Морохов И.Д., Трусов Л.И., Чижик С.П. Ультрадисперспые металлические среды. - М.: Атомиздат, 1977. - 264 с.

[9] Морохов И.Д., Трусов Л.И., Чижик С.П. Ультрадисперсные металлические среды. - М.: Атомиздат, 1977. - 264 с.

[10] Сверхмелкое зерно в металлах. Пер. с англ. - М.: Металлургия, 1973. - 384 с.

[11] Gleiter H., Nanostructured Materials: state of art and perspectives // Nanostructured Materials. - 1995. - vol.6. - P.3-14.

[12] Kaibyshev O., Kaibyshev R., Salishchev G. Formation of submicrocrystalline structure in materials during dynamic recrystallization // Mater. Sci. Forum - 1993. - Vol.113-115. - P.423-428.

[13] Жеребцов С.В., Галеев, P.M., Валиахметов О.Р., Малышева С.П., Салищев Г.А., Мышляев М.М. Формирование субмикрокристаллической структуры в титановых сплавах интенсивной пластической деформацией и их механические свойства // КШП. - 1999. - №7. - С.17-22.

[14] Valiev R.Z., Krasilnikov N.A. and Tsenev N.K. Plastic deformation of alloys with submicron-grained structure // Mater. Sci. and Eng. - 1991. - A137. - P.35-40.

[15] Shhultz L., Hellstern E. Glass formation by mechanical alloying / in Science and Technology of Rapidly Quenched Alloys, ed. by M.Tenhover, L.E.Tanner, W.L.Jonson // Materials Science Society. - 1987. - Vol.24. - P.145-150.

[16] Валиев Р.З. Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. - М.: Логос, 2000. - 272 с.

[17] Saito Y., Tsuji N., Utsunomiya H. et. al. Ultra-fine grained bulk aluminum produced by Accumulative Roll-Bonding (ARB) process // Scripta Mater. - 1998. - № 39. - P.1221-1227.

[18] Belyakov A., Sakai T. and Miura H. Fine-Grained Structure Formation in Austenitic Stainless Steel under Multiple Deformation at 0.5Tm // Material Transactions, - 2000. - Vol.41. - № 4 - P.476-484.

Способ изготовления заготовок сталей аустенитного класса с нанокристаллической структурой, включающий многократную изотермическую ковку заготовки с последовательным изменением оси ориентации на 90° при постоянной температуре и с минимальной истинной степенью деформации за одну осадку не менее 04, отличающийся тем, что предварительно закаленную с температуры 1373К заготовку подвергают многократной изотермической ковке при постоянной температуре в интервале 773-973К со скоростью деформации от 10 до 10 с, после достижения суммарной истинной степени деформации не менее 3 проводят отжиг заготовки при температуре выше температуры изотермической ковки на 50 К в течение 1-5 ч.
СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СТАЛЕЙ АУСТЕНИТНОГО КЛАССА С НАНОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ
СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СТАЛЕЙ АУСТЕНИТНОГО КЛАССА С НАНОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 70.
20.05.2015
№216.013.4bdb

Способ прогнозирования риска формирования миомы матки

Изобретение относится к области медицины. Изобретение представляет способ прогнозирования риска развития изолированной миомы матки, включающий забор и исследование периферической венозной крови, отличающийся тем, что из периферической венозной крови выделяют ДНК, проводят типирование...
Тип: Изобретение
Номер охранного документа: 0002550933
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a31

Жаропрочная сталь мартенситного класса

Изобретение относится к области металлургии, а именно к жаропрочным хромистым сталям мартенситного класса, применяемым в энергетической промышленности в качестве конструкционных материалов для производства котлов, роторов и другого оборудования тепловых электростанций нового поколения,...
Тип: Изобретение
Номер охранного документа: 0002558738
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa3

Способ прогнозирования риска развития эндометриоза

Изобретение относится к медицине, а именно к гинекологии, и позволяет сформировать группу женщин русской национальности, являющихся уроженками Центрального Черноземья России, с повышенным риском развития изолированного эндометриоза. Для этого проводят выделение ДНК из периферической венозной...
Тип: Изобретение
Номер охранного документа: 0002558854
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa4

Способ получения микрокапсул лозартана калия в альгинате натрия

Способ получения микрокапсул лозартана калия в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Растворяют лозартан калия в хлороформе и диспергируют полученную смесь в присутствии препарата E472c при перемешивании 1000 об/с в суспензию альгината...
Тип: Изобретение
Номер охранного документа: 0002558855
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa5

Способ получения микрокапсул аминокислот в конжаковой камеди

Способ получения микрокапсул аминокислот в конжаковой камеди может быть использован в фармакологии, фармацевтике, медицине. Суспензию аминокислоты в диметилсульфоксиде диспергируют в суспензию конжаковой камеди в бутиловом спирте в присутствии препарата E472с при перемешивании 1300 об/сек....
Тип: Изобретение
Номер охранного документа: 0002558856
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa7

Способ получения микрокапсул аминокислот в ксантановой камеди

Изобретение относится к способу получения микрокапсул аминокислот в ксантановой камеди. Указанный способ характеризуется тем, что аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с при...
Тип: Изобретение
Номер охранного документа: 0002558859
Дата охранного документа: 10.08.2015
20.10.2015
№216.013.82d6

Способ определения жевательной эффективности пародонта зубов

Способ относится к медицине, а именно к стоматологии, и предназначен для использования при протезировании для предотвращения осложнений, связанных с перегрузкой опорных тканей пародонта. Проводят рентгенологическое исследование пациента с дефектом целостности зубной дуги. Определяют значение...
Тип: Изобретение
Номер охранного документа: 0002565097
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.840d

Способ получения микрокапсул аминокислот в альгинате натрия

Способ получения микрокапсул аминокислот в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Согласно способу по изобретению аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в...
Тип: Изобретение
Номер охранного документа: 0002565408
Дата охранного документа: 20.10.2015
27.12.2015
№216.013.9dab

Способ деформационно-термической обработки объемных полуфабрикатов из al-cu-mg сплавов

Изобретение относится к области металлургии, в частности к термически упрочняемым сплавам на основе алюминия, а именно к способу деформационно-термической обработки высокопрочных сплавов системы Al-Cu-Mg, используемых в качестве конструкционных материалов для деталей авиакосмической техники и...
Тип: Изобретение
Номер охранного документа: 0002571993
Дата охранного документа: 27.12.2015
20.01.2016
№216.013.a232

Высокопрочный деформируемый сплав на основе алюминия

Изобретение относится к области металлургии сплавов, в частности деформируемых термически упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Ag, предназначенных для использования в качестве высокопрочных конструкционных материалов в авиационно-космической промышленности. Сплав содержит, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002573164
Дата охранного документа: 20.01.2016
Показаны записи 31-40 из 85.
20.11.2014
№216.013.0807

Способ прогнозирования уровня гликированного гемоглобина у больных сахарным диабетом 2 типа

Изобретение относится к области медицины и предназначено для прогнозирования уровня гликированного гемоглобина y индивидуумов русской национальности, больных сахарным диабетом 2 типа. После выделения ДНК из периферической венозной крови проводят анализ полиморфного варианта гена рецептора...
Тип: Изобретение
Номер охранного документа: 0002533456
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0b78

Способ получения пенообразователя для пенобетонных конструкций

Изобретение относится к способу получения амфолитных поверхностно-активных веществ на основе белоксодержащего сырья и может быть использовано в процессе производства пенобетона и пенобетонных конструкций. В способе получения пенообразователя для производства пенобетона и пенобетонных...
Тип: Изобретение
Номер охранного документа: 0002534344
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0da4

Способ термомеханической обработки для повышения технологической пластичности объемных полуфабрикатов из al-cu-mg-ag сплавов

Изобретение относится к области металлургии, а именно к способу термомеханической обработки полуфабрикатов из Al-Cu-Mg-Ag сплавов для дальнейшей формовки из них объемных деталей сложной формы, применяемых в авиакосмической технике и транспортном машиностроении. Термомеханическая обработка...
Тип: Изобретение
Номер охранного документа: 0002534909
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.114d

Способ получения гетерогенного грунтового композита из отходов обогащения железных руд

Изобретение относится к экологии и может быть использовано при производстве строительных материалов. В способе получения гетерогенного грунтового композита из отходов обогащения железных руд - ООЖР, содержащих оксиды железа, включающем обработку ООЖР соляной кислотой, на первой стадии указанную...
Тип: Изобретение
Номер охранного документа: 0002535852
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11af

Способ определения свободнорадикальной активности твердых материалов

Способ определения величины свободнорадикальной активности твердых материалов относится к области экологического тестирования, контроля качества строительных и др. материалов и может быть использован для определения негативного воздействия твердых материалов на живые организмы. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002535950
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.22f5

Слоистый гидроксид со структурой гидроталькита, содержащий никель в степени окисления +3, и способ его получения

Группа изобретений относится к слоистому двойному гидроксиду со структурой гидроталькита и способу его получения. Слоистый двойной гидрокисд описывается общей формулой MgAl Ni (OH)(An)·mHO, где в качестве трехзарядных катионов металла выступают одновременно катионы алюминия и никеля, y...
Тип: Изобретение
Номер охранного документа: 0002540402
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2503

Способ прогнозирования риска развития хронической плацентарной недостаточности с синдромом задержки роста плода 2-3-ей степени у беременных

Изобретение относится к области медицины и предназначено для прогнозирования риска развития плацентарной недостаточности с синдромом задержки роста плода 2-3-ей степени у беременных. Осуществляют забор периферической венозной крови и выделение ДНК. Проводят анализ генов факторов коагуляции ,и....
Тип: Изобретение
Номер охранного документа: 0002540928
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.29fc

Способ обработки среднеуглеродистых сталей

Изобретение относится к области деформационно-термической обработки среднеуглеродистых низколегированных сталей. Для повышения ударной вязкости сталей, работающих при низких температурах, осуществляют закалку и пластическую деформацию путем ротационной ковки со степенью относительной деформации...
Тип: Изобретение
Номер охранного документа: 0002542205
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a59

Защитно-декоративное силикатное покрытие

Изобретение относится к химическому составу защитно-декоративного силикатного покрытия и может быть использовано для окрашивания металлических наружных и внутренних поверхностей с целью их защиты от коррозии и придания им декоративного вида. Защитно-декоративное силикатное покрытие содержит...
Тип: Изобретение
Номер охранного документа: 0002542298
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.4074

Литой композиционный материал на основе алюминиевого сплава и способ его получения

Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминиевого сплава для изготовления циклически и термически нагруженных до 230°С деталей авиационного назначения - лопаток вентилятора и ступеней компрессора низкого давления...
Тип: Изобретение
Номер охранного документа: 0002547988
Дата охранного документа: 10.04.2015
+ добавить свой РИД