×
20.07.2013
216.012.57dd

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ НАПОЛНИТЕЛЯ В ПОЛИМЕРНОМ КОМПОЗИТЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам определения массового содержания наполнителя в полимерных композиционных материалах и может быть использовано для контроля технологии получения полимерных композитов, а также для контроля качества и однородности полученного материала. Сущность: нагревают образец до температуры разложения полимерного связующего. Рассчитывают содержание наполнителя по изменению массы образца, учитывая зольный остаток при разложении чистого полимерного связующего, определенного в условиях, идентичных разложению композита. При этом изменение массы образца определяют по термогравиметрической кривой. Технический результат: повышение точности определения содержания наполнителя в полимерном композите, сокращение времени анализа, снижение трудо- и энергозатрат. 3 ил., 2 табл.
Основные результаты: Способ определения содержания наполнителя в полимерном композите, состоящем из полимерного связующего и наполнителя, включающий нагревание образца до температуры разложения полимерного связующего и расчет содержания наполнителя по изменению массы образца, определяемому по термогравиметрической кривой, при этом диапазон температур, в котором наблюдается изменение массы вследствие разложения связующего, определяется по дифференциальной термогравиметрической кривой, отличающийся тем, что предварительно определяют массу зольного остатка при разложении чистого полимерного связующего в условиях, идентичных разложению композита, а расчет содержания наполнителя проводят с учетом массы зольного остатка по формуле: где β - отношение массы остатка к начальной массе образца композита;α - содержание зольного остатка при разложении полимерного связующего без наполнителя.

Изобретение относится к контрольно-измерительной технике, в частности, оно предназначено для определения массового содержания наполнителя в полимерных композиционных материалах. Изобретение может применяться для контроля технологии получения полимерных композитов, а также для контроля качества и однородности полученного материала.

Композитами называются материалы, состоящие из нескольких компонентов и имеющие гетерофазную структуру с поверхностью раздела фаз. Композиты, или композиционные материалы, могут создаваться на полимерной, металлической или керамической основах. Композиционные материалы, имеющие полимерную непрерывную фазу, являющуюся матрицей, и одну или несколько дисперсных фаз, называются полимерными композитами.

Изобретение применимо к полимерным композитам с твердыми наполнителями, термически стабильными при температуре разложения полимерного связующего. В качестве таких наполнителей могут выступать частицы металлов или их оксидов, керамики, аллотропных модификаций углерода и др.

В настоящее время содержание наполнителя определяют методами рентгенографии, химического вытравливания, термическим удалением связующего, сканирующей зондовой микроскопии.

Каждый из существующих способов имеет свои достоинства и недостатки, поэтому выбор того или иного метода зависит от целей и конкретных условий измерения. Например, определение содержания наполнителя с помощью рентгенографического метода [www.physics-help.info, Полимерные композиты], основанного на измерении степени ослабления рентгеновского излучения пластиком, несмотря на надежность и высокую точность (погрешность измерения 1-2%), имеет недостатки, связанные со спецификой работы с рентгеновским излучением и высокой стоимостью проводимого анализа. Данный метод находит применение при контроле содержания наполнителя в готовых деталях, для которых необходим неразрушающий контроль, и в композитах с органическими наполнителями, которые разрушаются при нагреве или взаимодействии с растворителем.

Метод химического вытравливания, основанный на удалении связующего при помощи растворителя, имеет низкую стоимость, но очень трудоемок, требует затраты массы времени и менее точен, чем удаление связующего нагреванием.

Способ определения концентрации и качества распределения высокодисперсных наполнителей в полимерных композициях [Быков В.А., Заикин А.Е., Бикмуллин Р.С. Патент RU №2206882, G01N 1/32, опубл. 20.06.2003] включает формирование гладкой поверхности полимерной композиции, последующий анализ этой поверхности методом сканирующей зондовой микроскопии, и затем травление этой поверхности в низкотемпературной плазме до глубины не менее половины. Данный способ трудоемок и имеет достаточно узкую область применения.

Наиболее близким к заявляемому способу является способ определения содержания наполнителя в полимерных композиционных материалах удалением связующего при нагреве [В.И.Постнов. Известия Самарского научного центра Российской академии наук, т.11, №3(2), 2009, с.509-515]. Основным параметром для расчета содержания наполнителя является изменение массы образца, определяемое по термогравиметрической (ТГ) кривой в диапазоне температур деструкции (разложения) связующего, который определяют по кривым дифференциальной термогравиметрии (ДТГ).

Содержание наполнителя (по массе) определяется как отношение остаточной массы образца после удаления при нагреве полимерного связующего, к начальной массе образца (фиг.1)

где m0 - начальная масса навески, mк - масса навески после удаления полимерного связующего.

К недостаткам прототипа можно отнести то, что при определении содержания наполнителя не учитывается зольность полимера, т.е. тот остаток по массе, который образуется после разложения чистого полимерного связующего. Его игнорирование может привести к значительной ошибке при определении содержания наполнителя по данному способу, особенно, в тех случаях, когда используется наполнитель, окисляющийся на воздухе (например, ультрадисперсные металлы), и нагрев, во избежание больших погрешностей, необходимо проводить в инертной атмосфере. Однако, в этом случае неизбежно возрастает зольность полимера, так что учет зольности становится еще более необходимым.

Задачей настоящего изобретения является повышение точности определения содержания наполнителя в композиционном полимерном материале.

Технический результат, достигаемый при использовании настоящего изобретения, заключается в следующем:

- увеличение точности определения содержания наполнителя в полимерном композите, особенно, если наполнитель окисляется на воздухе и по этой причине нагревание необходимо проводить в атмосфере инертного газа;

- абсолютная погрешность измерения массового процентного содержания наполнителя не более ±2%

- возможность контроля однородности материала полимерного композита с использованием заявляемого способа;

- возможность сокращения времени анализа по сравнению с обычным удалением связующего;

- возможность снижения температуры нагрева композита, и как следствие, снижение трудо- и энергозатрат;

Для решения поставленной задачи и достижения указанного технического результата предлагается способ определения содержания наполнителя в полимерном композите, состоящем из полимерного связующего и наполнителя, включающий нагревание образца до температуры разложения полимерного связующего и расчет содержания наполнителя по изменению массы образца, определяемому по термогравиметрической кривой, в котором согласно изобретению, предварительно определяют массу зольного остатка при разложении чистого полимерного связующего, при этом условия разложения композита и чистого полимерного связующего должны быть идентичны. Расчет содержания наполнителя проводят с учетом массы зольного остатка по формуле:

где β - отношение массы остатка к начальной массе образца композита;

α - содержание зольного остатка при разложении чистого полимерного связующего без наполнителя.

В заявляемом способе учитывается масса зольного остатка используемого полимерного связующего, при этом потеря массы как чистого связующего, так и композита, определяется при помощи метода термогравиметрического анализа (ТГА), а диапазон температур разложения - с использованием дифференциальной термогравиметрии (ДТГ). Данные методы изложены, например, в монографиях [Joseph P. Menczel, R. Bruce Prime. Thermal Analysis of Polymers. - John Wiley & Sons, Inc., 2009; У. Уэндландт. Термические методы анализа. - М.: Мир, 1978]. Идентичные условия разложения композита и чистого полимерного связующего совместно с другими существенными признаками важны для повышения точности способа.

Авторами изобретения были определены следующие величины:

α - относительное массовое содержание зольного остатка после терморазложения чистого полимерного связующего;

β - отношение массы остатка к начальной массе образца композита;

хс - массовая доля полимерного связующего;

хн=1-хс - массовая доля наполнителя.

Отсюда масса остатка после разложения композита будет равна сумме масс наполнителя и зольного остатка полимерного связующего, т.е.:

mк=m0·(1-хс)+α·m0·хс.

Объединяя последнее соотношение с уравнением (1), получаем:

или

Использование при расчете содержания наполнителя уравнения (2) вместо уравнения (1), означает учет зольности полимерного связующего, и, таким образом, приводит к повышению точности измерений по данному способу. Как следствие, повышается точность контроля технологии и качество изготавливаемого композита, а также точность определения однородности готового материала.

В ряде композиционных материалов используются наполнители, которые при повышении температуры взаимодействуют с кислородом воздуха, и, как следствие, их нагревание необходимо проводить в атмосфере инертного газа. В этом случае масса зольного остатка существенно возрастает, и использование заявляемого способа становится еще более обоснованным и необходимым.

Отметим, что при многостадийном процессе разложения связующего, используя уравнение (2), определение содержания наполнителя можно проводить, не удаляя полимерное связующее полностью, тем самым значительно сокращая трудо- и энергозатраты.

Например, при определении содержания зольных микросфер в композите на основе пенополиуретана ППУ-240, проводится нагрев до 680°C, что занимает достаточно длительное время (до 3 ч). Процесс терморазложения ППУ-240 протекает в 3 стадии (фиг.2, 3), начало и окончание каждой из которых можно определить по кривым ДТГ. Экспериментально установлено, что используя заявляемый способ, можно рассчитать содержание зольных микросфер по двум первым стадиям, нагревая образец до 400°C, что сокращает процесс в 1.5-2 раза.

На фиг.1 представлена типичная зависимость изменения массы полимерного материала при его нагревании. Здесь цифрой 1 обозначена кривая потери массы (термогравиметрическая, ТГ-кривая), 2 - дифференциальная кривая потери массы (ДТГ-кривая), m0 - начальная масса навески, mк - масса навески после удаления полимерного связующего. До определенного момента масса полимера остается постоянной, при достижении температуры начала терморазложения масса начинает снижаться за счет улетучивания продуктов терморазложения. В результате на кривой ТГ наблюдается резкий скачок, а на кривой ДТГ-пик, минимум которого соответствует максимальной скорости разложения полимера.

На фиг.2 и фиг.3 представлены термограммы разложения чистого пенополиуретана ППУ-240 и ППУ-240, модифицированного зольными микросферами. ТГ-кривые, по которым определяется изменение массы на каждой стадии, обозначены цифрой 1, ДТГ-кривые, по которым определяются начало и окончание каждой из трех стадий - цифрой 2. На данных фигурах показано, что процессы разложения и в том и в другом случае протекают в три стадии при одних и тех же температурах, поэтому можно с уверенностью считать, что потеря массы в данном температурном интервале, соответствует массовому содержанию чистого пенополиуретана ППУ-240, а остаток - содержанию зольных микросфер (в данном температурном интервале зольные микросферы инертны). В данном случае есть возможность сократить время анализа, определив содержание микросфер по двум первым стадиям разложения.

Была проведена опытная отработка заявляемого способа определения содержания полимерного наполнителя в композите. Рассмотрим заявляемый способ на примере двух композитов: полимерного прессматериала на основе полипропилена и графита ППГ-70 и полимерного пеноматериала на полиуретановой основе ППУ-240, модифицированного зольными микросферами. Определение содержания наполнителя в указанных композитах проводили по следующей схеме:

1. На термоанализаторе Setaram провели анализ терморазложения чистых, не содержащих наполнителей, полимеров: по 3 образца для каждого полимера. Скорость нагрева составляла 10°/мин. Тигли из нержавеющей стали имели цилиндрическую форму (диаметр - 11 мм, высота - 9 мм). Эксперименты с образцами проводились в непрерывно возобновляемой атмосфере воздуха, которая реализовывалась путем его продувки (объемный расход 5 л/ч), при давлении, близком к атмосферному.

2. В нашем случае программное обеспечение термоанализатора автоматически рассчитывает относительную потерю массы, как отношение Δm=(m0-mк)/m0. Измеренные таким образом по термогравиметрической кривой потери массы образцов чистого полипропилена:

Δm=97.1% или 0.971;

Δm=96.4% или 0.964;

Δm=97.5% или 0.975.

Среднее значение <Δm>=97.0% или 0.97. Таким образом, мы определяем величину α=1-Δm=0.03 для расчета содержания наполнителя по формуле (2).

Измеренные потери массы образцов чистого пенополиуретана ППУ-240 после первых двух стадий терморазложения:

Δm=46.2% или 0.462;

Δm=44.6% или 0.446;

Δm=45.9% или 0.459.

Среднее значение <Δm>=45.5% или 0.455. Тогда α=1-Δm=0.545.

Измеренные потери массы образцов чистого пенополиуретана ППУ-240 при полном терморазложении в воздушной атмосфере практически равны 100%. Температуры начала и окончания отдельно взятых стадий процесса разложения, по которым рассчитывалась потеря массы, определялись согласно международному стандарту ISO [1] по данным ТГА и ДТГ.

3. Провели термоанализ композитов в условиях, полностью идентичных условиям термоанализа чистых полимеров.

4. Провели расчет содержания наполнителей (зольных микросфер и графита) по формуле (2) и, для сравнения, по формуле (1). Результаты представлены в таблицах 1 и 2.

С учетом того, что Δm=(m0-mк)/m0, уравнение (2) принимает следующий вид:

Таблица 1
Содержание наполнителя ППГ-70
№ пробы Δm, % хгр.1, % хгр2, %
1 15.9 84.1 83.6
2 16.1 83.9 83.4
3 15.6 84.4 83.9
4 16.0 84.0 83.5
5 16.0 84.0 83.5
6 16.0 84.0 83.5
7 15.4 84.6 84.1
8 15.8 84.2 83.7
9 16.0 84.0 83.5
10 16.7 83.3 82.8
Δm, % - потеря массы ППГ-70 (максимальная температура 460°C);
хгр.1, % - содержание графита без учета зольного остатка;
хгр.2, % - содержание графита с учетом зольного остатка.

Таблица 1 показывает, что при содержании наполнителя ~85% разность между измеряемыми значениями невелика и составляет 0.5-1.5% (в пределах ошибки), но при уменьшении массовой доли наполнителя, и, с другой стороны, при увеличении массовой доли зольного остатка, эта разность будет возрастать.

В качестве иллюстрации этого факта можно привести композиты, включающие в себя наполнитель - порошок дисульфида молибдена MoS2, который вводится в количестве 5-15% [2]. Дисульфид молибдена MoS2 на воздухе окисляется при температуре выше 360°C, а в инертной атмосфере он устойчив вплоть до 1100°C [3], поэтому нагревание с целью определения содержания наполнителя (MoS2) в составе какого-либо полимерного композита нужно проводить в инертной атмосфере. В качестве связующего такого полимерного композита можно использовать, например, пенополиуретан ППУ-307 (ρ=0.2 г/см3), после терморазложения которого в инертной атмосфере аргона, согласно нашим измерениям, зольный остаток составляет 27%, что значительно превышает указанную выше величину (5-15%). Таким образом, в данном случае адекватное определение содержания наполнителя термогравиметрическим методом можно провести только с использованием формулы (2).

Таблица 2
Потеря массы при нагревании материала ППУ-240, модифицированного зольными микросферами
№ пробы Δm1, % хзм1, % Δm2, % хзм2, %
1 41.15 9.6 90.6 9.4
2 40.92 10.1 89.8 10.2
3 40.63 10.7 90.0 10
4 40.63 10.7 89.5 10.5
5 40.37 11.3 89.2 10.8
6 41.05 9.8 90.5 9.5
7 40.76 10.4 89.8 10.2
8 40.63 10.7 89.9 10.2
9 40.69 10.6 89.9 10.2
10 40.58 10.8 90.1 9.9
Δm1, % - потеря массы после завершения второй стадии термического разложения (максимальная температура 400°C);
Δm2, % - потеря массы после завершения третьей (окончательной) стадии термического разложения (максимальная температура 680°C);
хзм1, % - содержание микросфер, определенное после завершения второй стадии термического разложения;
хзм2, % - содержание микросфер, определенное после полного завершения термического разложения.

Как видно из таблицы 2, содержание наполнителя, определенное по потере массы после первых двух стадий разложения, практически совпадает с содержанием, определенным по окончательному терморазложению полимерного связующего. При этом, при скорости нагрева 10°C/мин, время, затрачиваемое на эксперимент, сократилось на 40%. Уменьшение температуры анализа также дает возможность определять данным способом содержание наполнителей, которые разрушаются при высокой температуре.

Результаты, представленные в Таблицах 1-2, подтверждают достижение технического результата с применением заявляемого способа:

- увеличивается точность определения содержания наполнителя в композиционном материале (чем меньше содержание наполнителя и чем больше зольный остаток чистого полимерного связующего, тем больший выигрыш в точности дает применение заявляемого способа с использованием формулы (2) вместо формулы (1));

- если процесс разложения связующего протекает в две и более стадий, возможно сокращение времени анализа;

- возможность снижения температуры нагрева композита, и как следствие, снижение трудо- и энергозатрат, а также возможность определять содержание наполнителей, неустойчивых к воздействию высоких температур;

- возможность более точного контроля однородности полимерного композита;

- погрешность измерения массового процентного содержания наполнителя не более±2% от содержания самого наполнителя.

Литература

1. INTERNATIONAL STAND ART ISO 11358-97. Plastics - Thermogravimetry (TG) of polymers - General principles.

2. Функциональные наполнители для пластмасс / Под ред. М.Ксантоса. Пер. с англ. под ред. Кулезнева В.Н. - СПб.: «Научные основы и технологии», 2010.

3. Химическая энциклопедия / Под ред. Ю.А.Золотова, В.А.Кабанова и др. - М.: «Большая российская энциклопедия», 1992.

Способ определения содержания наполнителя в полимерном композите, состоящем из полимерного связующего и наполнителя, включающий нагревание образца до температуры разложения полимерного связующего и расчет содержания наполнителя по изменению массы образца, определяемому по термогравиметрической кривой, при этом диапазон температур, в котором наблюдается изменение массы вследствие разложения связующего, определяется по дифференциальной термогравиметрической кривой, отличающийся тем, что предварительно определяют массу зольного остатка при разложении чистого полимерного связующего в условиях, идентичных разложению композита, а расчет содержания наполнителя проводят с учетом массы зольного остатка по формуле: где β - отношение массы остатка к начальной массе образца композита;α - содержание зольного остатка при разложении полимерного связующего без наполнителя.
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ НАПОЛНИТЕЛЯ В ПОЛИМЕРНОМ КОМПОЗИТЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ НАПОЛНИТЕЛЯ В ПОЛИМЕРНОМ КОМПОЗИТЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ НАПОЛНИТЕЛЯ В ПОЛИМЕРНОМ КОМПОЗИТЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ НАПОЛНИТЕЛЯ В ПОЛИМЕРНОМ КОМПОЗИТЕ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 116.
10.05.2013
№216.012.3e7c

Стенд для испытаний объектов на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний на комплексное воздействие механического удара и различных физических факторов, в частности к стендам для испытаний изделий на воздействие ударных нагрузок. Устройство содержит ствол, навеску пороха, мишень, снаряд...
Тип: Изобретение
Номер охранного документа: 0002481563
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3ef2

Лазер со сканированием пучка

Изобретение относится к лазерной технике. Лазер со сканированием пучка содержит источник лазерного излучения, резонатор, через один из оптических элементов которого осуществляется вывод сканируемого пучка, расположенные внутри резонатора усилитель лазерного излучения, модуляторы света, фазовые...
Тип: Изобретение
Номер охранного документа: 0002481681
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3f00

Устройство термокомпенсации кварцевого генератора

Изобретение относится к устройствам термокомпенсации опорных кварцевых генераторов. Техническим результатом является повышение точности за счет учитывания индивидуальных особенностей температурно-частотной характеристики каждого конкретного кварцевого генератора, а также возможность применения...
Тип: Изобретение
Номер охранного документа: 0002481695
Дата охранного документа: 10.05.2013
27.06.2013
№216.012.5038

Устройство позиционирования большегрузного автотранспорта на грунте

Изобретение относится к области эксплуатации автомобильного транспорта и может быть использовано в сфере длительного использования и эксплуатации большегрузной автомобильной техники. Устройство позиционирования большегрузного автотранспорта на грунте содержит цапфы, закрепленные на...
Тип: Изобретение
Номер охранного документа: 0002486129
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.56a4

Конструкция проволочного припоя и способ ее изготовления, герметичный соединитель и способ его изготовления

Группа изобретений относится к области изготовления прецизионных приборов и изделий электронной техники. В конструкции проволочного припоя, сформированной в виде однорядной винтовой спирали с количеством витков, суммарный объем припоя в которых превышает объем кольцевого зазора,...
Тип: Изобретение
Номер охранного документа: 0002487788
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57d2

Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб

Изобретение относится к испытаниям на прочность при сложнонапряженном деформированном состоянии тонкостенных трубчатых образцов, в том числе отрезков труб постоянного сечения. Устройство состоит из распорного приспособления, устанавливаемого внутри образца по его краю, в состав которого входит...
Тип: Изобретение
Номер охранного документа: 0002488090
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.582e

Способ моделирования комплексного радиационного воздействия на объект исследования

Способ моделирования комплексного радиационного воздействия на объект исследования относится к области физики радиационного воздействия на материалы, изделия электронной техники, радиоэлектронной аппаратуры и предназначено для испытаний с целью разработки аппаратуры с повышенной устойчивостью к...
Тип: Изобретение
Номер охранного документа: 0002488182
Дата охранного документа: 20.07.2013
20.08.2013
№216.012.61e4

Вторичный источник питания

Изобретение относится к области преобразования электрической энергии. Техническим результатом является расширение верхнего диапазона входного рабочего напряжения вторичного источника питания. Для этого предложен вторичный источник питания, который содержит коммутирующий элемент, первую...
Тип: Изобретение
Номер охранного документа: 0002490692
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.61f7

Блок кодовый сменный

Изобретение относится к технике защиты различных объектов от доступа посторонних лиц, в частности к носителям информации. Техническим результатом является повышение надежности и срока службы блока кодового сменного за счет уменьшения количества дискретных элементов и введения фильтра,...
Тип: Изобретение
Номер охранного документа: 0002490711
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.623b

Генератор

Изобретение относится к области электронной техники и может быть использовано для генерации электрических сигналов, в частности в пьезорезонансных датчиках. Достигаемый технический результат - стабилизация амплитуды и формы выходных сигналов в изменяющихся условиях эксплуатации и повышение...
Тип: Изобретение
Номер охранного документа: 0002490779
Дата охранного документа: 20.08.2013
Показаны записи 11-20 из 114.
10.05.2013
№216.012.3e7c

Стенд для испытаний объектов на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний на комплексное воздействие механического удара и различных физических факторов, в частности к стендам для испытаний изделий на воздействие ударных нагрузок. Устройство содержит ствол, навеску пороха, мишень, снаряд...
Тип: Изобретение
Номер охранного документа: 0002481563
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3ef2

Лазер со сканированием пучка

Изобретение относится к лазерной технике. Лазер со сканированием пучка содержит источник лазерного излучения, резонатор, через один из оптических элементов которого осуществляется вывод сканируемого пучка, расположенные внутри резонатора усилитель лазерного излучения, модуляторы света, фазовые...
Тип: Изобретение
Номер охранного документа: 0002481681
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3f00

Устройство термокомпенсации кварцевого генератора

Изобретение относится к устройствам термокомпенсации опорных кварцевых генераторов. Техническим результатом является повышение точности за счет учитывания индивидуальных особенностей температурно-частотной характеристики каждого конкретного кварцевого генератора, а также возможность применения...
Тип: Изобретение
Номер охранного документа: 0002481695
Дата охранного документа: 10.05.2013
27.06.2013
№216.012.5038

Устройство позиционирования большегрузного автотранспорта на грунте

Изобретение относится к области эксплуатации автомобильного транспорта и может быть использовано в сфере длительного использования и эксплуатации большегрузной автомобильной техники. Устройство позиционирования большегрузного автотранспорта на грунте содержит цапфы, закрепленные на...
Тип: Изобретение
Номер охранного документа: 0002486129
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.56a4

Конструкция проволочного припоя и способ ее изготовления, герметичный соединитель и способ его изготовления

Группа изобретений относится к области изготовления прецизионных приборов и изделий электронной техники. В конструкции проволочного припоя, сформированной в виде однорядной винтовой спирали с количеством витков, суммарный объем припоя в которых превышает объем кольцевого зазора,...
Тип: Изобретение
Номер охранного документа: 0002487788
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57d2

Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб

Изобретение относится к испытаниям на прочность при сложнонапряженном деформированном состоянии тонкостенных трубчатых образцов, в том числе отрезков труб постоянного сечения. Устройство состоит из распорного приспособления, устанавливаемого внутри образца по его краю, в состав которого входит...
Тип: Изобретение
Номер охранного документа: 0002488090
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.582e

Способ моделирования комплексного радиационного воздействия на объект исследования

Способ моделирования комплексного радиационного воздействия на объект исследования относится к области физики радиационного воздействия на материалы, изделия электронной техники, радиоэлектронной аппаратуры и предназначено для испытаний с целью разработки аппаратуры с повышенной устойчивостью к...
Тип: Изобретение
Номер охранного документа: 0002488182
Дата охранного документа: 20.07.2013
20.08.2013
№216.012.61e4

Вторичный источник питания

Изобретение относится к области преобразования электрической энергии. Техническим результатом является расширение верхнего диапазона входного рабочего напряжения вторичного источника питания. Для этого предложен вторичный источник питания, который содержит коммутирующий элемент, первую...
Тип: Изобретение
Номер охранного документа: 0002490692
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.61f7

Блок кодовый сменный

Изобретение относится к технике защиты различных объектов от доступа посторонних лиц, в частности к носителям информации. Техническим результатом является повышение надежности и срока службы блока кодового сменного за счет уменьшения количества дискретных элементов и введения фильтра,...
Тип: Изобретение
Номер охранного документа: 0002490711
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.623b

Генератор

Изобретение относится к области электронной техники и может быть использовано для генерации электрических сигналов, в частности в пьезорезонансных датчиках. Достигаемый технический результат - стабилизация амплитуды и формы выходных сигналов в изменяющихся условиях эксплуатации и повышение...
Тип: Изобретение
Номер охранного документа: 0002490779
Дата охранного документа: 20.08.2013
+ добавить свой РИД