×
20.07.2013
216.012.57c7

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ СЛОЯ СЫПУЧЕГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002488079
Дата охранного документа
20.07.2013
Аннотация: Предлагаемое техническое решение относится к измерительной технике и может быть использовано в системах управления технологическими процессами. Способ определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу, заключается в том, что воздействуют на контрольный материал магнитным полем, зондируют материал электромагнитной волной и принимают прошедшую через слой материала электромагнитную волну. При этом измеряют интенсивность прошедшей через слой материала электромагнитной волны и по измеренной величине интенсивности этой волны определяют высоту слоя материала в аэрожелобе. Техническим результатом является упрощение процедуры измерения высоты слоя сыпучего материала в аэрожелобе. 1 ил.
Основные результаты: Способ определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу, при котором воздействуют на контролируемый материал магнитным полем, зондируют материал электромагнитной волной и принимают прошедшую через слой материала электромагнитную волну, отличающийся тем, что измеряют интенсивность прошедшей через слой материала электромагнитной волны и по измеренной величине интенсивности этой волны определяют высоту слоя сыпучего материала в аэрожелобе.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ, реализуемый микроволновым датчиком высоты слоя материала в аэрожелобе (см. А.В.Степанов. «Инновационные микроволновые приборы измерения расхода сыпучих веществ в аэрожелобах», Автоматизация в промышленности, №11, 2008, с.29-30), выполненным в виде измерительной пластины. Суть этого способа заключается в зондировании контролируемого материала микроволновым сигналом и измерении амплитуды отраженного от слоя материала сигнала, связанного с высотой слоя материала в аэрожелобе.

Недостатком этого известного способа является сложность процедуры получения информации о высоте слоя материала из-за необходимого выбора размеров измерительной пластины и ее сменности в зависимости от геометрических размеров аэрожелоба.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения высоты слоя сыпучего материала (RU 2395789 С1, 27.07.2010). Данный способ предусматривает воздействие контролируемого сыпучего материала магнитным полем, зондирование материала электромагнитной волной и измерение угла поворота плоскости поляризации прошедшей через слой материала волны. Здесь по значению угла поворота определяют высоту слоя материала в аэрожелобе.

Недостатком данного способа можно считать сложность процедуры измерения угла поворота плоскости поляризации, связанного с высотой слоя материала.

Техническим результатом заявляемого решения является упрощение процедуры измерения высоты слоя материала в аэрожелобе.

Технический результат достигается тем, что в способе определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу, при котором воздействуют на контролируемый материал магнитным полем, зондируют материал электромагнитной волной и принимают прошедшую через слой материала электромагнитную волну, измеряют интенсивность прошедшей через слой материала электромагнитной волны и по измеренной величине интенсивности этой волны определяют высоту слоя материала в аэрожелобе.

Сущность заявляемого технического решения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при зондировании контролируемого слоя сыпучего материала электромагнитной волной, помещенного в продольное относительно распространения электромагнитной волны магнитное поле, по измеренной величине интенсивности прошедшей через слой контролируемого сыпучего материала волны определяют высоту слоя материала.

Наличие в заявляемом способе перечисленных существенных признаков позволяет решить поставленную задачу определения высоты слоя материала в аэрожелобе измерением интенсивности прошедшей через слой сыпучего материала волны при помещении контролируемого материала в магнитное поле и его зондировании электромагнитной волной с желаемым техническим результатом, т.е. упрощением процедуры измерения высоты слоя материала.

На чертеже приведена функциональная схема устройства, реализующего предлагаемый способ.

Устройство, реализующее данное техническое решение, содержит источник излучения электромагнитных волн 1, соединенный выходом с элементом ввода излучения в аэрожелоб 2, элемент вывода излучения из аэрожелоба 3, подключенный ко входу амплитудного детектора 4, соединенный с измерителем интенсивности прошедшей через слой материала волны 5 и обмотку 6. На чертеже цифрой 7 обозначен аэрожелоб.

Суть предлагаемого способа заключается в следующем. Из практики известны вещества, способные поворачивать направление поляризации проходящей через них линейно-поляризованной волны и вещества, не обладающие этой способностью.

Предлагаемый способ направлен на решение задачи определения высоты слоя сыпучего материала, не обладающего способностью поворачивать направление поляризации прошедшей через него электромагнитной волны.

Согласно данному техническому решению, для того чтобы контролируемое вещество обладало способностью поворота плоскости поляризации электромагнитной волны, его необходимо поместить в магнитное поле (эффект Фарадея).

Как известно, эффект Фарадея сводится к вращению плоскости поляризации электромагнитной волны, проходящей через диэлектрик в присутствии постоянного (или переменного) магнитного поля, ориентированного в направлении распространения волны. Следовательно, любое диэлектрическое вещество, не обладающее способностью поворачивать плоскость поляризации, под воздействием магнитного поля может приобрести способность поворота плоскости поляризации волны.

Пусть по аэрожелобу перемещается какое-нибудь диэлектрическое вещество, не обладающее способностью поворачивать направление поляризации электромагнитной волны, например, цемент.

Если сначала воздействовать на этот сыпучий материал магнитным полем (нахождение материала в магнитном поле) и затем осуществить его зондирование электромагнитной волной (волна должна распространяться вдоль направления намагниченности цемента), то прошедшая через слой контролируемого вещества (цемента) волна окажется повернутой этим веществом, и для интенсивности прошедшей через слой контролируемого цемента волны можно записать (закон Малюса)

где I и I0 - интенсивности прошедшей и зондирующей волн соответственно, v - постоянная Верде (или магнитная вращательная способность вещества), Н - напряженность магнитного поля, ориентированного в направлении распространения волны, l - длина пути волны в веществе. Здесь постоянная Верде зависит от рода вещества, его физического состояния и длины зондирующей волны.

В данном случае можно принимать, что длина пути волны в веществе l соответствует высоте слоя цемента перемещаемого по аэрожелобу. В соответствии с этим из формулы (1) получаем, что при постоянных значениях v, Н и I0 по косинусоидальному изменению интенсивности прошедшей через слой цемента электромагнитной волны можно судить об изменении высоты слоя сыпучего материала (цемента) в аэрожелобе.

Устройство, реализующее предлагаемый способ, работает следующим образом. Создают магнитное (переменное) поле на некотором горизонтальном измерительном участке аэрожелоба 7 посредством продольной обмотки 6, расположенной в пазах наружной поверхности аэрожелоба, т.е. образуют катушку, внутри которой перемещается сыпучий материал (цемент). Через катушку пропускают переменный электрический ток. В результате перемещаемый по аэрожелобу диэлектрический сыпучий материал приобретает способность поворачивать направление поляризации падающей на материал электромагнитной волны. После этого выходной электромагнитный сигнал источника излучения 1 направляют в элемейт ввода излучения в аэрожелоб 2. Излучаемой этим элементом волной зондируют слой сыпучего материала, перемещаемого по аэрожелобу (волна падает на слой материала перпендикулярно). При этом вектор поля зондирующей электромагнитной воны коллиндерен вектору напряженности приложенного переменного магнитного поля. Прошедший через слой сыпучего материала сигнал принимают элементом вывода излучения из аэрожелоба 3. Выходной сигнал этого элемента далее поступает на вход амплитудного детектора 4. Выходной продетектированный согнал последнего подают на вход измерителя интенсивности 5. В этом приборе фиксируют значения интенсивности I, которые далее используются для определения высоты слоя сыпучего материала согласно формуле (1). В этой формуле значения постоянной Верде v выбираются, как уже было сказано выше, в зависимости от свойства и состояния конкретного сыпучего материала и длины используемой зондирующей электромагнитной волны. Кроме того, напряженность Н переменного магнитного поля, зависящая от силы тока, протекающего через обмотку 6, и числа продольных относительно горизонтальной оси аэрожелоба витков, приходящегося на единицу длины измерительного участка аэрожелоба, может быть вычислена через магнитную индукцию магнитного поля и магнитную проницаемость материала, из которого изготовлен аэрожелоб.

При реализации данного способа намагниченность сыпучего материала в аэрожелобе также может быть осуществлена на базе постоянного магнитного поля, образованного, например, двумя плоскими ферритами. При этом измерительный участок аэрожелоба располагают между этими ферритами так, чтобы вектор напряженности постоянного магнитного поля был параллелен вектору поля зондирующей сыпучий материал волны.

Заявленное техническое решение успешно может быть применено для решения задачи измерения массового расхода различных пылевидных материалов, транспортируемых по аэрожелобам и трубопроводам.

Таким образом, согласно предлагаемому способу на основе измерения интенсивности прошедшей через слой сыпучего материал электромагнитной волны, можно обеспечить упрощение процедуры измерения высоты слоя сыпучего материала, перемещаемого по аэрожелобу.

Способ определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу, при котором воздействуют на контролируемый материал магнитным полем, зондируют материал электромагнитной волной и принимают прошедшую через слой материала электромагнитную волну, отличающийся тем, что измеряют интенсивность прошедшей через слой материала электромагнитной волны и по измеренной величине интенсивности этой волны определяют высоту слоя сыпучего материала в аэрожелобе.
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ СЛОЯ СЫПУЧЕГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 31-40 из 40.
13.01.2017
№217.015.7e51

Устройство для измерения концентрации сыпучего материала

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Техническим результатом заявляемого технического решения является упрощение процедуры измерения концентрации и повышение точности измерения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002601275
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.b266

Устройство для определения концентрации кислорода

Изобретение относится к области информационно-измерительной техники. Устройство для определения концентрации кислорода, содержащее чувствительный элемент, расположенный в измерительной камере, и блок питания. Устройство согласно изобретению дополнительно содержит частотомер, при этом...
Тип: Изобретение
Номер охранного документа: 0002613596
Дата охранного документа: 17.03.2017
25.08.2017
№217.015.b326

Устройство для измерения скорости газового потока

Изобретение относится к области измерительной и информационной техники. Устройство для измерения скорости газового потока содержит первый блок питания, соединенный выходом с первым плечом преобразователя скорости газового потока в напряжение, включающего в себя проволоку с током, при этом в...
Тип: Изобретение
Номер охранного документа: 0002613621
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.cbd2

Способ контроля процесса плавки в вакуумной дуговой печи

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения межэлектродного промежутка. Способ включает измерение собственной резонансной частоты колебательного контура, возбужденного...
Тип: Изобретение
Номер охранного документа: 0002620537
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.ce10

Устройство для измерения угла вращения

Изобретение относится к области измерительной и информационной техники. Техническим результатом заявляемого изобретения является упрощение процедуры измерения угла вращения. Технический результат достигается тем, что в устройство для измерения угла вращения, содержащее исследуемый объект,...
Тип: Изобретение
Номер охранного документа: 0002620777
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e380

Устройство для измерения электрического тока

Предлагаемое устройство относится к области информационно-измерительной техники. Техническим результатом является повышение точности и чувствительности измерения электрического тока. Устройство для измерения электрического тока содержит измерительную цепь, подключенную к входу нагревателя, и...
Тип: Изобретение
Номер охранного документа: 0002626387
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e3d6

Способ контроля сварных швов труб

Использование: для контроля сварных швов труб. Сущность изобретения заключается в том, что зондируют поверхность сварного шва трубы лучом и по принимаемому сигналу определяют предельные значения характеристик дефекта сварного шва по сравнению с нормативными параметрами, при этом трубу закрытыми...
Тип: Изобретение
Номер охранного документа: 0002626307
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.eb2b

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки с объектов, подключенных к источникам электрического напряжения. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной...
Тип: Изобретение
Номер охранного документа: 0002628306
Дата охранного документа: 15.08.2017
29.12.2017
№217.015.f863

Способ определения концентрации компонента в двухкомпонентной газовой смеси

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в...
Тип: Изобретение
Номер охранного документа: 0002639740
Дата охранного документа: 22.12.2017
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
Показаны записи 51-58 из 58.
20.03.2019
№219.016.e8a4

Способ определения средней скорости потока

В процессе измерения с помощью микроволнового генератора (1) вводят в поток сверхвысокочастотные электромагнитные колебания фиксированной частоты и выводят из потока сигнал с доплеровской частотой. Создают базу данных доплеровских частот, связанных со скоростью потока и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002403578
Дата охранного документа: 10.11.2010
04.04.2019
№219.016.fc27

Способ определения высоты слоя сыпучего материала

Предлагаемое изобретение относится к области измерительной техники. Заявлен способ определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу. При этом зондируют материал электромагнитной волной и принимают отраженную от поверхности слоя материала волну. Воздействуют на...
Тип: Изобретение
Номер охранного документа: 0002395789
Дата охранного документа: 27.07.2010
04.04.2019
№219.016.fce2

Устройство для измерения массового расхода вещества

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Устройство для измерения массового расхода вещества, протекающего по трубопроводу, содержит первый и второй генераторы электромагнитных колебаний, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002433376
Дата охранного документа: 10.11.2011
04.04.2019
№219.016.fd0f

Устройство для измерения размеров частицы

Предлагаемое техническое решение относится к измерительной технике. Устройство для измерения размеров частицы, перемещаемой по трубопроводу, содержит источник излучения, детектор, соединенный выходом со входом усилителя. Также устройство содержит циркулятор, измеритель мощности и...
Тип: Изобретение
Номер охранного документа: 0002461810
Дата охранного документа: 20.09.2012
10.04.2019
№219.017.072b

Способ определения толщины металлического покрытия

Изобретение относится к области измерительной техники, а именно к способу определения толщины металлического покрытия, нанесенного на диэлектрическую основу, при котором зондируют металлическое покрытие электромагнитным сигналом излучателя. Повышение точности измерения толщины металлического...
Тип: Изобретение
Номер охранного документа: 0002452938
Дата охранного документа: 10.06.2012
17.04.2019
№219.017.1621

Способ определения толщины диэлектрического покрытия

Способ определения толщины диэлектрического покрытия, нанесенного на металлическую подложку, включает возбуждение в диэлектрическом покрытии поверхностных электромагнитных волн и прием этих волн при их распространении по диэлектрическому покрытию. Согласно изобретению в диэлектрическом покрытии...
Тип: Изобретение
Номер охранного документа: 0002369862
Дата охранного документа: 10.10.2009
09.05.2019
№219.017.4e76

Устройство для измерения толщины диэлектрического покрытия

Изобретение относится к измерительной технике. Технический результат: повышение точности измерения толщины диэлектрического покрытия, нанесенного на диэлектрическую основу. Устройство содержит генератор электромагнитных колебаний 1, соединенный выходом с излучателем 2, первый приемник 3, первый...
Тип: Изобретение
Номер охранного документа: 0002413180
Дата охранного документа: 27.02.2011
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД