×
10.07.2013
216.012.555f

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ

Вид РИД

Изобретение

№ охранного документа
0002487458
Дата охранного документа
10.07.2013
Аннотация: Изобретение относится к области электротехники и может быть использовано для управления многофазным выпрямителем переменного тока с, по меньшей мере, двумя модулями (100) фаз, имеющими, соответственно, две ветви (T1,…, T6) вентилей - одну верхнюю и одну нижнюю, имеющие, соответственно, две соединенные последовательно двухполюсные подсистемы (10, 11). Техническим результатом является обеспечение управления многофазным выпрямителем при работе его на низких выходных частотах (f), вплоть до работы на постоянном токе. В способе управления многофазным выпрямителем на номинальное значение (u(t),…,u(t)) напряжения ветви накладывается синфазное напряжение (u(t)) таким образом, что сумма двух напряжений (u(t), u(t), или из u(t), u(t), или u(t), u(t)) ветвей вентилей каждого модуля (100) фазы равна напряжению (U) промежуточного контура этого многофазного выпрямителя переменного тока. Тем самым указанный полупроводниковый преобразователь переменного тока, который на стороне сети и на стороне нагрузки или только на стороне нагрузки имеет трехфазный выпрямитель переменного тока с распределенными накопителями энергии, можно применять в качестве полупроводникового преобразователя переменного тока приводов, которые могут запускаться из состояния покоя. 8 з.п. ф-лы, 12 ил.

Изобретение относится к способу управления выпрямителем переменного тока с по меньшей мере двумя модулями фаз, имеющими, соответственно, две ветви вентилей - одну верхнюю и одну нижнюю, имеющие, соответственно, две соединенные последовательно двухполюсные подсистемы, при низких выходных частотах.

Подобный выпрямитель переменного тока с распределенными накопителями энергии известен из публикации «Modular Stromrichterkonzept für Netzkupplungsanwendung bei hohen Spannungen», Rainer Marquardt, Anton Lesnicar, Jürgen Hildinger, ETG-Tagung, 2002. В этой публикации подобный выпрямитель переменного тока применяется для выпрямителя переменного тока сетевой и нагрузочной стороны, причем эти оба выпрямителя переменного тока с распределенными накопителями энергии связаны друг с другом на стороне постоянного напряжения.

На фиг.1 подробный выпрямитель переменного тока с распределенными накопителями энергии показан более подробно. Согласно этому схемному устройству, данная известная схема выпрямителя переменного тока имеет три модуля фаз, которые обозначены соответственно как 100. Эти модули 100 фаз на стороне постоянного напряжения электропроводно связаны соответственно с выводом P или N с положительной или отрицательной сборной шиной P0 или N0 постоянного напряжения. Между этими обеими сборными шинами P0 или N0 постоянного напряжения существует постоянное напряжение U0. Каждый модуль 100 фазы имеет одну верхнюю и одну нижнюю ветвь вентилей, Т1, или Т3, или Т5 и Т2, или Т4, или Т6. Каждая из этих ветвей вентилей с Т1 по Т6 имеет некоторое число электрически последовательно соединенных двухполюсных подсистем 10. В этой эквивалентной схеме на каждую ветвь вентилей с Т1 по Т6 показаны четыре подсистемы 10. Каждая точка соединения двух ветвей вентилей Т1 и Т2, или Т3 и Т4, или Т5 и Т6 модуля 100 фазы образует вывод стороны переменного напряжения L1, или L2, или L3 этого модуля 100 фазы.

На фиг.2 более подробно представлена форма выполнения известной двухполюсной подсистемы 10. Схемное устройство по фиг.3 представляет функционально равноценный вариант. Эти обе подсистемы 10 и 11 более подробно описаны в DE 10103031 А1, причем также их способ функционирования раскрыт в этой выложенной заявке.

Другая форма выполнения двухполюсной подсистемы 20 более подробно представлена на фиг.3. Эта форма выполнения двухполюсной подсистемы 20 также известна из DE 10103031 А1. Структура и способ функционирования этой двухполюсной подсистемы 20 подробно описаны в этой выложенной заявке, так что повторного их описания здесь не требуется.

Число последовательно включенных независимых накопителей 9 или 29, 30 энергии между положительным выводом Р и выводом L1, или L2, или L3 со стороны переменного напряжения модуля 100 фазы обозначено как число n последовательного включения. При этом предпочтительно, но необязательно необходимо, между выводом L1, или L2, или L3 со стороны переменного напряжения и отрицательным выводом N модуля 100 фазы реализовать то же самое число n последовательного включения. Согласно фиг.1, каждая ветвь вентилей с Т1 по Т6 многофазного выпрямителя переменного тока имеет четыре двухполюсные подсистемы 10, которые включены электрически последовательно. Так как эти подсистемы 10 содержат соответственно только один независимый накопитель 9 энергии, получается число последовательного включения, равное n = 4. Если вместо этой подсистемы 10 применяются четыре подсистемы 20 по фиг.2, то получается число последовательного включения, равное n = 8, так как каждая подсистема 10 имеет два независимых накопителя 29 и 30 энергии.

Для следующего объяснения принимается, что все накопители 9 энергии подсистемы 10 каждой ветви вентилей с Т1 по Т6 этого многофазного выпрямителя переменного тока заряжаются до одинакового напряжения UC. Способ заряда этих накопителей 9 энергии описан, например, в документах ETG-Tagung 2002.

Напряжения u1(t),…,u6(t) на ветвях вентилей с Т1 по Т6, также обозначаемые как напряжение u1(t),…,u6(t) ветви вентилей, составляется из постоянной величины 1/2Ud и величины переменного напряжения u10(t), u20(t), u30(t). Эта величина переменного напряжения u10(t), или u20(t), или u30(t) имеет, с одной стороны, частоту и амплитуду желательного выходного напряжения выпрямителя переменного тока. Эти величины переменного напряжения u10(t), u20(t) и u30(t), согласно фиг.1, отнесены к фиктивной средней точке 0 между обеими сборными шинами P0 и N0. Это приводит к синусоидальным выходным напряжениям u10(t), u20(t) и u30(t), причем для амплитуд, отнесенных к средней точке 0 напряжений u10(t), u20(t) и u30(t), должно выполняться условие, что каждая амплитуда величины переменного напряжения u10(t), u20(t) и u30(t) всегда меньше, чем половинное постоянное напряжение Ud. Напряжение u1(t), или u2(t), или u3(t), или u4(t), или u5(t), или u6(t) ветви вентилей Т1, или Т2, или Т3, или Т4, или Т5, или Т6 должно также всегда быть положительным, так как все включенные последовательно двухполюсные ветви вентилей с Т1 по Т6 независимо от направления тока ветви вентилей во всех состояниях включения могут создать только одно короткое замыкание или одно положительное напряжение на выходных клеммах Х1 и Х2 каждой двухполюсной подсистемы 10. Отрицательные напряжения, ввиду структуры этих двухполюсных подсистем 10, 11 или 20, невозможны. Таким образом, напряжение u1(t), или u2(t), или u3(t), или u4(t), или u5(t), или u6(t) ветви вентилей Т1, или Т2, или Т3, или Т4, или Т5, или Т6 варьируется между нулем и n-кратным значением конденсаторного напряжения UC n независимых накопителей 9 или 29, 30 энергии.

На фиг.5 представлена характеристика напряжения u1(t) ветви вентилей и тока i1(t) ветви вентилей для ветви Т1 вентилей модуля 100 фазы многофазного выпрямителя переменного тока согласно фиг.1 на диаграмме по времени t. Если перемножить обе характеристики, то получим характеристику мгновенной мощности PT1(t) этой ветви Т1 вентилей, которая представлена на диаграмме по времени t на фиг.6. Если проинтегрировать эту мгновенную мощность PT1(t) ветви Т1 вентилей за период напряжения u1(t) ветви вентилей (соответствует площади под участком кривой мгновенной мощности PT1(t)), то получим в стационарном состоянии постоянно значение нуль. Это означает, что накопитель 9 энергии двухполюсной подсистемы 10 в этой ветви Т1 вентилей в сумме не потребляет и не отдает энергии. Соответствующий вывод справедлив для всех других ветвей вентилей с Т1 по Т6 многофазного выпрямителя переменного тока по фиг.1.

Отсюда следует, что содержание энергии каждого накопителя 9 энергии каждой ветви вентилей с Т1 по Т6 многофазного выпрямителя переменного тока по фиг.1 и тем самым этого многофазного выпрямителя переменного тока является стационарно постоянным. По этой причине эти двухполюсные подсистемы 10, или 11, или 20 не требуют ввода действительной мощности на соответствующие выводы накопителей 9 или 29, 30 энергии.

Расчет содержания энергии каждого накопителя 9 или 29, 30 энергии двухполюсных подсистем 10, или 11, или 20 в каждой ветви вентилей с Т1 по Т6 осуществляется предпочтительным образом согласно максимальному требуемому размаху энергии. При этом следует учитывать, что пульсация напряжения ΔU, накладываемая на стационарное среднее значение напряжения в накопителях 9 или 29, 30 энергии, не должна превышать максимального заданного граничного значения. Это максимальное напряжение определяется электрической прочностью применяемых в двухполюсных подсистемах 10, 11 или 20 отключаемых полупроводниковых переключателей и накопителей 9 или 29, 30 энергии, а также с точки зрения техники регулирования. Решающим фактором при расчете накопителей 9 или 29, 30 энергии является выходная частота многофазного выпрямителя переменного тока согласно фиг.1. Чем меньше эта выходная частота, тем больше размах энергии за период в накопителях 9 или 29, 30 энергии. Это означает, что для заданной пульсации напряжения ΔU требуемая величина накопителей 9 или 29, 30 энергии двухполюсных подсистем 10, 11 или 20 при уменьшении частоты вплоть до режима постоянного напряжения (частота равна нулю) изменялась бы гиперболически до бесконечности.

Эта взаимосвязь пульсации напряжения ΔU и выходной частоты f многофазного выпрямителя переменного тока по фиг.1 представлена на диаграмме на фиг.7. На этой диаграмме показаны гиперболическая кривая А для пульсации напряжения накопителя энергии (сплошная линия) и гиперболическая кривая В для пульсации напряжения при применении трех параллельных частичных накопителей энергии на каждый накопитель 9 или 29, 30 энергии, то есть трехкратной емкости промежуточного контура (прерывистая линия). Из гиперболической кривой А видно, что исходя из выходной частоты f=50 Гц при снижении частоты пульсация напряжения ΔU существенно возрастает. Если при половинной выходной частоте пульсация напряжения ΔU должна быть равна пульсации напряжения ΔU при выходной частоте f=50 Гц, то значение накопителя 9 или 29, 30 энергии двухполюсной подсистемы 10, 11 или 20 должно быть многократно выше.

На диаграмме согласно фиг.8 представлена характеристика по времени напряжения u1(t) ветви вентилей при выходной частоте f=50 Гц и характеристика этого напряжения u1(t) ветви вентилей при выходной частоте f=5 Гц. Амплитуда напряжения u1(t) ветви вентилей при выходной частоте f=5 Гц снижена соответственно u-f-характеристике. Если рассчитывать вновь с учетом соответствующего тока ветви вентилей в ветви Т1 вентилей многофазного выпрямителя переменного тока по фиг.1, то получим соответствующую мгновенную мощность PT1(t) при выходной частоте f=50 Гц и f=5 Гц. Эти обе характеристики по времени t мгновенной мощности PT1(t) ветви Т1 вентилей показаны на диаграмме на фиг.9. Размах мощности при выходной частоте f=5 Гц по сравнению с размахом мощности при выходной частоте f=50 Гц существенно повышен. В этом представленном примере размах энергии при f=5 Гц в 25 раз выше, чем при f=50 Гц.

Чтобы и в этой рабочей точке (f=5 Гц) получить ту же самую пульсацию напряжения ΔU, как и при выходной частоте f=50 Гц, нужно было бы проектировать накопитель 9 или 29, 30 энергии двухполюсных подсистем 10, 11 или 20 увеличенным с коэффициентом 25.

Чтобы получить решение, приемлемое с точки зрения величины и стоимости, является предпочтительным, если определение параметров накопителей 9 или 29, 30 энергии двухполюсных подсистем 10, 11 или 20 ветвей вентилей с Т1 по Т6 многофазного выпрямителя переменного тока по фиг.1 выполняется для номинальной точки размаха мощности. Это означает, что в этой номинальной точке размах мощности уже приводит к заданной максимально допустимой пульсации напряжения ΔU. Для работы при более низких частотах, то есть ниже номинальной частоты fN, вплоть до режима работы на постоянном токе (f=0 Гц), как это имеет место при пуске приводов, способ управления согласно уровню техники для реалистического и конкурентоспособного проектирования двухполюсных подсистем 10, 11 или 20, применяющих накопители 9 или 29, 30 энергии, не применим.

В основе изобретения лежит задача создать способ для управления многофазным выпрямителем переменного тока с распределенными накопителями энергии, посредством которого возможен режим работы при низких выходных частотах, вплоть до работы на постоянном токе.

Эта задача в соответствии с изобретением решается признакам пункта 1 формулы изобретения.

Согласно изобретению, на номинальное значение всех напряжений ветвей вентилей многофазного выпрямителя переменного тока с распределенными накопителями энергии накладывается синфазное напряжение. Так как это наложенное переменное напряжение одновременно изменяет потенциалы всех трех выводов со стороны переменного напряжения многофазного выпрямителя переменного тока с распределенными накопителями энергии по сравнению с потенциалами его сборных шин постоянного напряжения, это наложенное модулирующее переменное напряжение обозначается как синфазное напряжение. За счет наложенного синфазного напряжения обеспечивается то, что выходные напряжения между проводниками многофазного выпрямителя переменного тока с распределенными накопителями энергии остаются неизменными.

В предпочтительной форме выполнения соответствующего изобретению способа синфазное напряжение задается таким образом, что пульсация напряжения всех накопителей 9 или 29, 30 энергии не превышает заданное максимальное значение. За счет этого максимальное напряжение на накопителях энергии остается также ниже заданного максимального значения, которое выбирается согласно электрической прочности полупроводников и накопителей энергии.

В другой предпочтительной форме выполнения соответствующего изобретению способа синфазное напряжение задается таким образом, что соответственно не превышается заданное максимальное значение для токов ветви вентилей. Благодаря этому возникающие потери пропускания и переключения в отключаемых полупроводниковых переключателях применяемых двухполюсных подсистем ограничиваются определенным значением.

В другой предпочтительной форме выполнения соответствующего изобретению способа амплитуда синфазного напряжения обратно пропорциональна возрастанию выходной частоты. За счет этого достигается то, что это синфазное напряжение действует только в частотном диапазоне ниже номинальной частоты.

Другие предпочтительные выполнения соответствующего изобретению способа следуют из зависимых пунктов 5-9.

Для дополнительного разъяснения изобретения даются ссылки на чертежи, с помощью которых способ, соответствующий изобретению, будет пояснен более подробно.

Фиг.1 - блок-схема известного трехфазного выпрямителя переменного тока с распределенными накопителями энергии,

фиг.2-4 - соответствующие эквивалентные схемы двухполюсной подсистемы выпрямителя переменного тока согласно фиг.1,

фиг.5 - диаграмма по времени t напряжения ветви вентилей и соответствующий ток ветви вентилей,

фиг.6 - диаграмма по времени t мгновенной мощности, соответствующей напряжению ветви вентилей и току ветви вентилей по фиг.5 по времени t,

фиг.7 - диаграмма пульсации напряжения в зависимости от выходной частоты выпрямителя переменного тока по фиг.1,

фиг.8 - диаграмма по времени t напряжения ветви вентилей выпрямителя переменного тока по фиг.1 при выходной частоте 50 Гц и 5 Гц,

фиг.9 - диаграмма по времени t соответствующих мгновенных мощностей,

фиг.10 - диаграмма по времени t напряжения ветви вентилей при выходной частоте 5 Гц с синфазным напряжением, не равным или равным нулю,

фиг.11 - диаграмма по времени t трех напряжений ветвей вентилей выпрямителя переменного тока по фиг.1 с синфазным напряжением, не равным нулю,

фиг.12 - предпочтительная форма выполнения трехфазного выпрямителя переменного тока по фиг.1.

Как уже описывалось выше, для временных характеристик напряжений u1(t), …, u6(t) ветви вентилей справедливы следующие уравнения:

u1(t)~1/2·Ud-u10(t),

u2(t)~1/2·Ud+u10(t),

u3(t)~1/2·Ud-u20(t),

u4(t)~1/2·Ud+u20(t),

u5(t)~1/2·Ud-u30(t),

u6(t)~1/2·Ud+u30(t).

Это означает, что каждая ветвь вентилей с T1 по T6 в каждый момент времени всегда вырабатывает половинное постоянное напряжение Ud между общими для всех модулей 100 фаз сборными шинами P0 или N0 постоянного напряжения. Эта величина постоянного тока накладывается на, как правило, синусоидальную составляющую с заданной частотой и желательной амплитудой выходного напряжения u10(t), u20(t) или u30(t) выпрямителя переменного тока, которая относится к фиктивной средней точке между сборными шинами P0 или N0 постоянного напряжения.

В соответствии с изобретением на эти напряжения u1(t), …, u6(t) ветви вентилей соответственно накладывается синфазное напряжение uсм(t) таким образом, что связанные выходные напряжения остаются не затронутыми этим. Для временных характеристик этих напряжений u1(t), …, u6(t) ветви вентилей справедливы следующие уравнения:

u1(t)~1/2·Ud-u10(t)+uсм(t),

u2(t)~1/2·Ud+u10(t)-uсм(t),

u3(t)~1/2·Ud-u20(t)+uсм(t),

u4(t)~1/2·Ud+u20(t)-uсм(t),

u5(t)~1/2·Ud-u30(t)+uсм(t),

u6(t)~1/2·Ud+u30(t)-uсм(t).

На диаграмме согласно фиг.10 представлено напряжение u1(t) ветви вентилей при выходной частоте f=5 Гц с синфазным напряжением uсм(t), не равным нулю и равным нулю, по времени t. Из сигнальной характеристики напряжения u1(t) ветви вентилей с наложенным синфазным напряжением uсм(t), не равным нулю, можно видеть, что это напряжение u1(t) ветви вентилей является синусоидальным и его амплитуда выбрана таким образом, что пиковое значение û1(t) напряжения u1(t) ветви вентилей соблюдает верхнее граничное условие, так что справедливо следующее:

0<u1(t)<ud(t).

Так как выходные токи iL1(t), iL2(t) и iL3(t) выпрямителя переменного тока, также называемые токами iL1(t), iL2(t) и iL3(t) нагрузки, и тем самым также мощности PT1(t), …, PT6(t) каждой ветви T1, …, T6 вентилей при работе с низкой выходной частотой f, вплоть до выходной частоты f=0 (режим постоянного тока), на временной характеристике имеют лишь очень мало или вообще не имеют нулевых значений (фиг.9), больше недостаточно, в противоположность работе при номинальной частоте fN при одинаковой величине накопителей энергии, симметрирования накопителей энергии 9 внутри ветви T1, …, T6 вентилей и, следовательно, внутри электрического периода выходного напряжения u10(t), u20(t) и u30(t) выпрямителя постоянного тока. Периоды, в которые ветви T1, …, T6 вентилей с соответственно постоянным направлением тока вентилей нагружены, при работе без наложенного модулирующего синфазного напряжения uсм(t) слишком длинны. Из-за этого накопители 9 или 29, 30 энергии применяемых двухполюсных подсистем 10, 11 или 20 слишком сильно разряжаются и соответственно слишком сильно заряжаются, что привело бы к недопустимо высокой пульсации напряжения ΔU в двухполюсных подсистемах 10, 11 или 20.

За счет модулирования синфазного напряжения uсм(t) вынужденным образом происходит обмен энергией между находящимися во включенном состоянии II (UX=UC) подсистемами 10, 11 или 20, подключенных к сборным шинам P0 или N0 постоянного напряжения модулей 100 фаз многофазного выпрямителя переменного тока, согласно фиг.1. Если потенциалы выходных напряжений u10(t), u20(t) и u30(t) находятся вблизи сборной шины Р0 постоянного напряжения (фиг.11), то накопители 9 или 29, 30 энергии подсистем 10, 11 или 20 нижних ветвей T2, T4, T6 выравнивают между собой свое содержание энергии. Если потенциал выходных напряжений u10(t), u20(t) и u30(t) находится вблизи сборной шины N0 постоянного напряжения многофазного выпрямителя переменного тока по фиг.1, то накопители 9 или 29, 30 энергии подсистем 10, 11 или 20 верхних ветвей T1, T3, T5 выравнивают между собой свое содержание энергии.

Это выравнивание содержания энергии имеет следствием дополнительный ток ветви вентилей, который является составной частью имеющегося выходного выпрямленного тока. В этом случае выравнивание энергии осуществляется пассивным образом, то есть без влияния со стороны наложенного управления/регулирования. Кроме того, также возможно целенаправленно воздействовать на выравнивание энергии путем активного влияния на токи ветвей вентилей. При этом применяется способ, известный из патентной публикации 102005045090.

Синфазное напряжение uсм(t) может, однако, применяться независимо от типа обмена энергией (пассивного или активного). Только за счет одновременного, вследствие синфазного напряжения uсм(t), сдвига потенциалов выходных напряжений u10(t), u20(t) и u30(t) выпрямителя переменного тока можно ограничить размах энергии накопителей энергии за счет токов выравнивания таким образом, что высота этих токов выравнивания не приведет к нежелательному проектированию с завышенными допусками в отношении полупроводников.

Дополнительный ток ветвей вентилей приводит к слишком высоким потерям пропускания и переключения в отключаемых полупроводниковых переключателях применяемых двухполюсных подсистем 10, 11 или 20. Но тем самым обеспечивается более благоприятное проектирование накопителей энергии применяемых подсистем 10, 11 или 20. То есть этот недостаток по сравнению с обеспечиваемым преимуществом (более благоприятное проектирование) следует расценивать как незначительный.

При выборе амплитуды, формы кривой (синусоидальная, трапецеидальная, треугольная, …) и частоты синфазного напряжения uсм(t) при выборе параметров, в принципе, имеется много степеней свободы. Следующие факторы играют важную роль при выборе параметров синфазного напряжения uсм(t):

- предпочтительным образом максимальная скорость изменения

накладываемого синфазного напряжения uсм(t) выбирается таким образом, что немногие накопители 9 или 29, 30 энергии применяемых подсистем 10, 11 или 20 ветви T1, …, T6 вентилей должны были включаться одновременно, чтобы следовать заданной характеристике изменения номинального значения. Из-за этого следовало бы вновь частично отказаться от преимущества меньшей мощности изоляции двигателя за счет меньших амплитуд скачков напряжения по сравнению с вентильными преобразователями частоты переменного тока с меньшим числом ступеней. Кроме того, меньшие амплитуды скачков напряжения положительным образом действуют на величину токов в валах и подшипниках и повышают тем самым срок службы привода;

- чем дольше остаются с потенциалами вблизи выводов сборных шин P0 или N0 постоянного напряжения многофазного выпрямителя согласно фиг.1, тем лучше можно выровнять друг с другом содержания энергии накопителей 9 или 29, 30 энергии подсистем 10, 11 или 20, находящихся во включенном состоянии II. По этой причине трапецеидальная характеристика кривой синфазного напряжения uсм(t) с выраженной плоской фазой представляется особенно предпочтительной, хотя необязательно требуемой.

Синфазное напряжение uсм(t) должно выбираться таким образом, чтобы результирующие токи ветвей вентилей не превышали заданных максимальных значений.

Синфазное напряжение uсм(t) должно выбираться таким образом, чтобы результирующая пульсация напряжения ΔU в накопителях 9 или 29, 30 энергии применяемых подсистем 10, 11 или 20 не превышала заданных максимальных значений.

При применении соответствующего изобретению модулирования синфазным напряжением uсм(t) при использовании стандартных сетевых двигателей следует обращать внимание на то, чтобы не превышалось максимальное напряжение ULE между проводником и землей на двигателе, чтобы не повредить изоляцию двигателя. При незаземленном выпрямителе переменного тока с гальванической развязкой от питающей сети посредством трансформатора на стороне питания, как правило, имеет место то, что потенциал нулевой точки (нейтрали) машинной обмотки, ввиду емкостных связей, остается вблизи потенциала земли. За счет тактирования выпрямителя переменного тока соотношения потенциалов в выпрямителе переменного тока сдвигаются самостоятельно. За счет этого то положительная сборная шина P0 постоянного напряжения находится вблизи потенциала земли, то отрицательная сборная шина N0 постоянного напряжения находится вблизи потенциала земли. При этом при высоких синфазных напряжениях uсм(t) может произойти, что все напряжение Ud промежуточного контура будет приложено как напряжение ULE между проводником и землей к машинным клеммам. Для максимального значения ûLE напряжения ULE между проводником и землей в нормальном случае справедливо максимально следующее:

где uм - эффективное значение напряжения двигателя между проводниками.

Правда, возможны еще более высокие напряжение Ud промежуточного контура и тем самым более высокие значения ûLE, но они приводят к неблагоприятному выбору параметров выпрямителя переменного тока.

В случае стандартных сетевых двигателей, которые спроектированы для работы непосредственно в синусоидальной сети энергоснабжения, максимально допустимое значение ûLE напряжения ULE между проводником и землей в два раза меньше:

Чтобы решить эту проблему, является предпочтительным привязать среднюю точку промежуточного контура к потенциалу земли. Это может осуществляться с помощью сопротивления 40 посредством конденсатора 50 или посредством параллельного включения сопротивления 40 и конденсатора 50 согласно фиг.12. За счет этого максимальная нагрузка напряжением уменьшается наполовину, и максимальное напряжение между проводником и землей на машинных клеммах может, таким образом, приводиться на максимальное значение ûLENetz при синусоидальном сетевом питании.

Посредством этого соответствующего изобретению способа можно известный из публикации ETG-Tagung 2002 полупроводниковый преобразователь переменного тока, который на стороне сети и на стороне нагрузки имеет трехфазный выпрямитель переменного тока с распределенными накопителями энергии согласно фиг.1, использовать в качестве полупроводникового преобразователя переменного тока приводов, которые могут запускаться из состояния покоя. При этом применении достигается то, что даже при низких частотах вплоть до режима работы на постоянном токе этого полупроводникового преобразователя переменного тока накопители 9 или 29, 30 энергии применяемых подсистем 10, 11 или 20 могут проектироваться оптимальным образом.


СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЕМ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ ПРИ НИЗКИХ ВЫХОДНЫХ ЧАСТОТАХ
Источник поступления информации: Роспатент

Показаны записи 401-410 из 1 428.
20.07.2015
№216.013.64cb

Устройство осевого подшипника с повышенным коэффициентом заполнения активной сталью

Изобретение относится к устройству магнитного осевого подшипника с повышенным усилием на единицу поверхности и простой конструкцией. Устройство магнитного осевого подшипника включает в себя кольцевую систему листов электротехнической стали, у которой отдельные листы (80, 90, 170) стали выдаются...
Тип: Изобретение
Номер охранного документа: 0002557350
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.67e6

Токопрерывательное устройство

Токопрерывательное устройство содержит наружный корпус и рукоятку. Внутри корпуса предусмотрены первое и второе приемные пространства. Рукоятка предусмотрена в первом приемном пространстве и по меньшей мере частично выступает наружу корпуса. Устройство дополнительно содержит блокировочное...
Тип: Изобретение
Номер охранного документа: 0002558151
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.67e9

Низковольтная распределительная сеть и способ ее функционирования

Ипользование: в области электроэнергетики. Технический результат - повышение надежности функционирования сети. Согласно способу определения информации о топологии электрической низковольтной распределительной сети (10) выбирают группу из по меньшей мере двух устройств (17а-17е, 16а-16h)...
Тип: Изобретение
Номер охранного документа: 0002558154
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.67fa

Кольцевой диффузор газовой турбины

Газовая турбина содержит диффузор выхлопа, расположенный по направлению потока ниже последней ступени турбины и включающий секцию прохождения струи и стойку. Секция прохождения струи содержит части первой и второй стенок, а стойка имеет переднюю кромку, проходящую между частью первой стенки и...
Тип: Изобретение
Номер охранного документа: 0002558171
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6b51

Вч резонатор и ускоритель с таким вч резонатором

Изобретение относится к области ускорительной техники. ВЧ резонатор содержит камеру, окружающую камеру проводящую стенку (15), которая имеет внутреннюю сторону (19) и внешнюю сторону (17), и устройство переключения с множеством твердотельных переключателей (29), которые размещены по периметру...
Тип: Изобретение
Номер охранного документа: 0002559031
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b54

Несущий корпус динамоэлектрической машины

Изобретение относится к несущему корпусу листового пакета статора динамоэлектрической машины. Технический результат - упрощение изготовления. Динамоэлектрическая машина содержит листовой пакет статора, несущий корпус, участок листового пакета, который окружает листовой пакет статора. Листовой...
Тип: Изобретение
Номер охранного документа: 0002559034
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b63

Модульная система шкафов преобразователя тока

Изобретение касается модульной системы шкафов преобразователя тока, снабженного по меньшей мере одним модулем (1, 3, 5) фазы, имеющим один верхний и один нижний вентиль (T1, … T6) преобразователя тока, при этом каждый вентиль (T1, … T6) преобразователя тока имеет по меньшей мере две ячейки (2)...
Тип: Изобретение
Номер охранного документа: 0002559049
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b9d

Устройство для регулирования регулируемых направляющих лопаток

Устройство (3) для регулирования регулируемых направляющих лопаток (10, 11) компрессора газотурбинного двигателя с осевым потоком содержит управляющий стержень (50) для регулирования углового положения лопаток (10, 11) и вращающийся вал (61), с которым шарнирно соединен управляющий стержень...
Тип: Изобретение
Номер охранного документа: 0002559107
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c02

Вспомогательный парогенератор в качестве дополнительного средства регулирования частоты или средства первичного и/или вторичного регулирования в пароэлектростанции

Изобретение относится к энергетике. Способ электрического повышения мощности пароэлектростанции с водопаровым контуром и расположенной в нем, состоящей из нескольких частей турбиной в электросеть. Пароэлектростанция содержит вспомогательный парогенератор, посредством которого потребители...
Тип: Изобретение
Номер охранного документа: 0002559208
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d1f

Очистка загрязнённого внесением оксидов серы растворителя на основе амина

Изобретение относится к способу и устройству для очистки загрязненного внесением диоксидов серы растворителя на основе амина. В загрязненный растворитель вводят соединение калия и окислитель, в результате чего сульфит окисляется в сульфат, при этом окислитель и соединение калия смешивают между...
Тип: Изобретение
Номер охранного документа: 0002559493
Дата охранного документа: 10.08.2015
Показаны записи 401-410 из 944.
27.05.2015
№216.013.4de8

Горелка предварительного смешения

Изобретение относится к области энергетики. Горелка предварительного смешения (1) с каналом подвода воздуха (21) по меньшей мере одним каналом подачи пилотного газа (23), который содержит по меньшей мере одну направленную к каналу подвода воздуха (21) стенку канала (39) и один входящий в канал...
Тип: Изобретение
Номер охранного документа: 0002551462
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4e18

Способ удаления вредных веществ из диоксида углерода и устройство для его осуществления

Группа изобретений относится к способу отделения вредных веществ из газового потока и касается способа удаления вредных веществ из диоксида углерода и устройства для его осуществления. Способ отделения вредного вещества из газовой смеси, которая, в основном, содержит диоксид углерода СО, а...
Тип: Изобретение
Номер охранного документа: 0002551510
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4f43

Способы и устройства для обработки расширенного элемента прокси информации

Изобретение относится к способам и устройствам для обработки расширенного элемента прокси информации. Технический результат заключается в повышении скорости передачи данных в сети. Способ содержит: обнаружение изменения в соединении внешней станции (E1) с прокси сетевым шлюзом (G1);...
Тип: Изобретение
Номер охранного документа: 0002551809
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.5098

Вч генератор

Изобретение относится к ВЧ генератору. Технический результат состоит в отсутствии требования двукратного преобразования импеданса. Для этого такой генератор содержит первый твердотельный переключатель и второй твердотельный переключатель, причем каждый из твердотельных переключателей имеет...
Тип: Изобретение
Номер охранного документа: 0002552153
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.517f

Короткозамкнутый ротор с пусковым стержнем

Изобретение относится к короткозамкнутому ротору для асинхронной машины, который содержит пусковые стержни для улучшения пускового режима, а также к способу изготовления подобного короткозамкнутого ротора. Технический результат заключается в улучшении режима пуска и повышении КПД....
Тип: Изобретение
Номер охранного документа: 0002552384
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.522c

Устройство для выделения ферромагнитных частиц из суспензии

Изобретение относится к устройству для выделения ферромагнитных частиц из суспензии с размолотой рудой. Устройство для выделения ферромагнитных частиц из суспензии с размолотой рудой содержит пропускающий поток трубчатый реактор с входом и выходом и средствами для создания магнитного поля...
Тип: Изобретение
Номер охранного документа: 0002552557
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.54f9

Схема управления для электромагнитного реле

Схема (10) управления для электромагнитного реле имеет катушку (11) реле и переключающие контакты с первым устройством (13а) переключения, размещенным между первым выводом катушки (11) реле и первым источником (12а) напряжения, вторым устройством (13b) переключения, размещенным между вторым...
Тип: Изобретение
Номер охранного документа: 0002553274
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.56c1

Способ и устройство для определения локальной пространственной протяженности фазы минерала ценного материала в породе

Изобретение относится к способу и устройству для определения локальной величины зерна минерала для минерала ценного материала в породе месторождения или залежи, причем порода включает в себя по меньшей мере один другой минерал, и при этом минерал ценного материала имеет более высокую плотность,...
Тип: Изобретение
Номер охранного документа: 0002553739
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56c3

Способ и устройство для увеличения добычи на месторождении

Изобретение относится к способу и устройству для повышения добычи на месторождении, содержащем породу, которая включает в себя по меньшей мере один раскрываемый путем размельчения породы минерал ценного материала и по меньшей мере один другой минерал, причем минерал ценного материала имеет...
Тип: Изобретение
Номер охранного документа: 0002553741
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56d8

Компонент из жаропрочного сплава и суспензионная композиция для компонента из жаропрочного сплава

Изобретение относится к суспензиям для алюминизации компонентов из жаропрочного сплава и может быть использовано для изготовления деталей, работающих в условиях воздействия горячих коррозионно-активных газов, например газотурбинных компонентов. Суспензия содержит органическое связующее и...
Тип: Изобретение
Номер охранного документа: 0002553762
Дата охранного документа: 20.06.2015
+ добавить свой РИД