×
10.07.2013
216.012.5495

Результат интеллектуальной деятельности: СПОСОБ ДЕТОНАЦИОННОГО СЖИГАНИЯ ВОДОРОДА В СТАЦИОНАРНОМ СВЕРХЗВУКОВОМ ПОТОКЕ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в машиностроении, в частности в авиационном двигателестроении. Способ детонационного сжигания топливной смеси, непрерывно поступающей в прямоточную камеру сгорания со сверхзвуковой скоростью, заключается в том, что в качестве топлива используется водородовоздушная смесь постоянного во времени состава, направляемая в осесимметричный конвергентно-дивергентный сопловой канал параллельно оси и сжигаемая в стационарной самоподдерживающейся волне детонации. Волна детонации формируется в расширяющейся части канала с монотонно меняющейся по длине формой сужающегося и расширяющегося участков при выполнении следующего условия: скорость газа на входе в канал превосходит скорость детонации Чепмена-Жуге в стехиометрической водородовоздушной смеси. Изобретение направлено на создание сверхзвуковой прямоточной камеры непрерывного сгорания водородовоздушных смесей в самоподдерживающейся стационарной волне детонации и представляет собой один из способов получения высокоэнтальпийного сверхзвукового потока, используемого при движении тел в воздухе. 4 ил.
Основные результаты: Способ детонационного сжигания топливной смеси, непрерывно поступающей в прямоточную камеру сгорания со сверхзвуковой скоростью, отличающийся тем, что в качестве топлива используется водородовоздушная смесь постоянного во времени состава, направляемая в осесимметричный конвергентно-дивергентный сопловой канал параллельно оси и сжигаемая в стационарной самоподдерживающейся волне детонации, формирующейся в расширяющейся части канала с монотонно меняющейся по длине формой сужающегося и расширяющегося участков, при выполнении следующего условия: скорость газа на входе в канал превосходит скорость детонации Чепмена-Жуге в стехиометрической водородовоздушной смеси.

Заявляемое изобретение может быть использовано в машиностроении, в частности в авиационном двигателестроении.

Наиболее близким к заявляемому способу является способ сжигания топлива в пульсирующей волне детонационного горения, которая со сверхзвуковой скоростью поступает в рабочую часть соплового конвергентно-дивергентного канала плоской конфигурации [1]. Основным недостатком прототипа является отказ от реализации стационарных режимов детонационного сжигания топливных смесей, наиболее выгодных с энергетической точки зрения при создании прямоточного сверхзвукового детонационного двигателя.

Заявляемое изобретение направлено на создание сверхзвуковой прямоточной камеры непрерывного сгорания топливно-воздушных смесей (ТВС) в стационарной самоподдерживающейся волне детонации и представляет собой один из способов получения высокоэнтальпийного сверхзвукового потока, используемого при движении тел в воздухе.

Указанный результат достигается тем, что сверхзвуковой поток ТВС направляется в конвергентно-дивергентный сопловой канал, где в детонационной волне, стационарно расположенной и самоподдерживающейся в расширяющейся части осесимметричного соплового канала с монотонно меняющейся по длине формой сужающегося и расширяющегося участков, сгорает смесь водорода с воздухом постоянного во времени состава, поступающая параллельно оси канала со скоростью, большей скорости детонации Чепмена-Жуге в стехиометрической водородовоздушной смеси.

Отличительными признаками заявляемого изобретения являются

- использование в качестве топлива водородовоздушной смеси постоянного во времени состава,

- наличие осесимметричного конвергентно-дивергентного соплового канала,

- монотонно меняющаяся по длине форма сужающегося и расширяющегося участков канала,

- сверхзвуковой поток водорода с воздухом, направленный параллельно оси симметрии соплового канала,

- наличие самоподдерживающегося стационарного фронта детонационного горения в расширяющейся части соплового канала при выполнении следующего условия:

- значение скорости газа на входе в канал превосходит значение скорости детонации Чепмена-Жуге в стехиометрической водородовоздушной смеси.

Водород выбран в качестве топлива из-за его сравнительно высокой детонационной способности. Минимальная энергия инициирования детонационного горения водорода в воздухе при нормальных условиях равна 4.2 МДж в открытом пространстве [2]. Метан, являющийся основным компонентом природного газа, как и широко используемый в авиации керосин, вообще не детонируют в воздухе при нормальных условиях. Теплота сгорания водорода в расчете на один моль кислорода Q=480 кДж, в то время как для метана Q=400 кДж/моль, для ацетилена Q=500 кДж/моль [3]. Таким образом, водородовоздушная смесь по теплотворной и детонационной способности не уступает газообразным углеводородам, но предпочтительнее в экологическом плане, поскольку его сжигание происходит без образования сажи и различных окислов углерода. Постоянный во времени состав является необходимым условием генерации стационарного детонационного горения смеси.

Воспламенение газообразного топлива может быть принудительным, то есть в результате подвода внешней энергии к газу, либо самопроизвольным, или спонтанным, например, при адиабатическом сжатии газа поршнем в теплоизолированном сосуде или за ударной волной. В предлагаемом способе детонационного сжигания сверхзвуковой поток водородовоздушной смеси адиабатически сжимается в конвергентной (сужающейся) части соплового канала и цилиндре минимального радиуса при его наличии. Достаточно высокая степень сжатия ведет к самовоспламенению, то есть спонтанному воспламенению газа. Если этого сжатия недостаточно, повышение температуры и давления уменьшает энергию, необходимую для вынужденного воспламенения смеси.

Наличие дивергентного (расширяющегося) участка соплового канала обусловлено двумя причинами. Во-первых, на этом участке происходит рост скорости заторможенного в конвергентной части канала сверхзвукового потока до значений, отвечающих условиям формирования самоподдерживающегося стационарного фронта детонации, в каждой точке которого должны выполняться условия Чепмена-Жуге для скорости газа, направленной по нормали к криволинейному, в общем случае, детонационному фронту. Во-вторых, этот участок необходим для создания тяги, которая представляет собой продольную составляющую сил давления, направленных вдоль оси соплового канала навстречу потоку. Она растет с ростом давления за детонационным фронтом и площади поперечного сечения дивергентного сопла, поскольку в этой части давление действует на стенки соплового канала в сторону, противоположную направлению набегающего потока. Осевая симметрия позволяет осуществить заданное сжатие сверхзвукового потока на более коротком расстоянии, чем в случае плоского соплового канала.

Монотонность профиля сужающегося и расширяющегося участков канала уменьшает вероятность формирования косых скачков уплотнения, которые приводят к дополнительным потерям полного давления и, как следствие, к снижению тяги, а в конвергентной секции способны инициировать преждевременное воспламенению газа.

Поступление смеси параллельно оси симметрии канала, во-первых, также снижает вероятность формирования косых скачков уплотнения на входе в канал или их интенсивность в случае неудачно выполненной обечайки сопла, а во-вторых, имитирует движение соплового канала со сверхзвуковой скоростью в покоящемся газе.

Стационарное детонационное горение может существовать только в режиме самоподдерживающейся детонационной волны Чепмена-Жуге (см., например, [4]). Сжатие сверхзвукового потока ведет к падению его скорости. При скорости потока на входе, близкой к скорости детонации Чепмена-Жуге на участке сужения канала и в некоторой начальной части его расширения инициирование детонации происходит в потоке со скоростью, меньшей скорости Чепмена-Жуге, что приводит к распространению волны навстречу потоку, выходу детонации в сужающуюся часть и срыву тяги. Поэтому скорость поступающей в сопловой канал водородовоздушной смеси ограничена снизу.

Заявляемое изобретение поясняется фиг.1-4 и нижеследующим описанием. На фиг.1-3 представлен результат сжатия газа (формирование области EF с повышенной температурой газа, фиг.1) в конвергентной части соплового канала одной из возможных конфигураций, фронт самоподдерживающегося детонационного горения CD в дивергентной части канала (фиг.2) и силовое воздействие продуктов горения на внутреннюю поверхность канала (фиг.3) в установившемся потоке после принудительного инициирования детонации водородовоздушной смеси, поступающей в сопло со скоростью, большей скорости детонации Чепмена-Жуге в стехиометрической водородовоздушной смеси. На фиг.4 показано поле температур установившегося течения в сопловом канале с укороченной конвергентной частью, которая обеспечивает спонтанное инициирование самоподдерживающегося детонационного горения водородовоздушной смеси.

Сущность заявляемого изобретения поясняется нижеследующим описанием. В современных камерах сгорания сжигание ТВС происходит после торможения потока до дозвуковых скоростей с тем, чтобы снизить потери полного давления. При высоких скоростях полета такое торможение приводит к прогреву газа до температуры термического разложения топлива, что снижает эффективность тепловыделения. Детонационное горение происходит без торможения сверхзвукового потока до дозвуковых скоростей и поэтому может обеспечить более высокую эффективность тепловыделения несмотря на некоторые потери полного давления в ударном фронте детонационной волны.

В [1] предложено осуществлять сжигание топлива в детонационной волне, пульсирующей в плоской рабочей части соплового канала. Теоретические исследования, проведенные в одномерном приближении на основе модели бесконечно тонкой детонации, позволили рассчитать оптимальные параметры детонационной камеры сгорания, в которой пульсации обеспечены периодическим изменением состава смеси. В работе отмечено, что максимум удельного импульса и тяги достигается при использовании детонационных режимов, близких к стационарным.

Заявляемое изобретение позволяет в непрерывном самоподдерживающемся стационарном режиме преобразовать тепловую энергию химических реакций в дополнительную кинетическую энергию сверхзвукового газового потока. Водородовоздушная смесь, поступающая в осесимметричное конвергентно-дивергентное сопло со скоростью, большей скорости детонации Чепмена-Жуге в стехиометрической водородовоздушной смеси, направляется в сужающейся части к оси симметрии канала. В ограниченной области EF (фиг.1), локализованной у оси симметрии в окрестности минимального сечения, повышаются давление и температура газа. Складываются условия, которые приводят к самовоспламенению или способствуют вынужденному воспламенению смеси и, как следствие, формированию, вообще говоря, криволинейного фронта самоподдерживающегося детонационного горения CD в дивергентной части канала (фиг.2). Положение и форма детонационного фронта обеспечивают выполнение условий Чепмена-Жуге в каждой точке его поверхности, то есть стационарность детонационного горения, постоянство и непрерывность тепловыделения. Положение и форма этого самоподдерживающегося детонационного фронта, в свою очередь, определяются параметрами набегающего потока, компонентным составом газа и геометрией соплового канала.

Принципиальная возможность реализации заявляемого изобретения может быть проиллюстрирована на примере использования конвергентно-дивергентного осесимметричного соплового канала с центральной цилиндрической частью (фиг.1). На рисунке длины отнесены к радиусу центрального цилиндра r0=0.1 м. Радиус входного сечения R1=1.6r0, радиус сопла на выходе R2=5r0, входной и центральный цилиндры имеют одинаковую длину Le=L0, равную r0, длины сужающейся и расширяющейся частей канала равны Lc=5r0 и Ld=13r0 соответственно. Профиль конвергентной части задается участком синусоиды, монотонно убывающим при изменении x от -Lc до 0: y=r0-(R1-r0)sin(0.5πx/Lc), контур дивергентной части задается синусоидой, монотонно возрастающей на отрезке от L0 до L0+Ld: y=r0+(R2-r0)sin(0.5π(x-L0)/Ld). Геометрия канала и параметры набегающего потока удовлетворяют изложенным выше условиям. В [5] численно показано, что вынужденное воспламенение позволяет реализовать стационарное самоподдерживающееся детонационное горение водородовоздушных смесей и получить высокоэнтальпийный сверхзвуковой поток на выходе из соплового канала.

В [6] доказана устойчивость полученных стационарных самоподдерживающихся режимов детонационного горения к периодическим возмущениям концентрации водорода в поступающей смеси в широком диапазоне изменения параметров течения. Срыв стационарного детонационного горения происходит из-за длительного отсутствия достаточного количества водорода в зоне воспламенения в случае низкочастотных длинноволновых возмущений с высокой амплитудой. К потере устойчивости приводит также выход детонации в конвергентную часть сопла, обусловленный неоптимальным выбором состава смеси. Все это говорит не столько о неустойчивости рассматриваемых стационарных режимов детонационного горения, сколько о трудностях реализации пульсирующих режимов в рассматриваемом сопловом канале.

Инициирование детонационного горения предварительно нагретой водородовоздушной смеси в сверхзвуковом потоке экспериментально реализовано в [7] путем импульсной фокусировки лазерного излучения.

Стационарное самоподдерживающееся детонационное горение водородовоздушных смесей при спонтанном воспламенении численно получено в сопловом канале с укороченным конвергентным участком Lc=-3r0 (фиг.4).

Численное моделирование и эксперименты подтверждает возможность реализации заявляемого изобретения. Заявляемый способ позволяет в непрерывном самоподдерживающемся режиме преобразовывать тепловую энергию химических реакций в дополнительную кинетическую энергию газового потока, избегая контрпродуктивного термического разложения топлива путем детонационного сжигания водородовоздушной смеси, направляемой с высокой сверхзвуковой скоростью в осесимметричное конвергентно-дивергентное сопло. Предлагаемый способ допускает оптимизацию формы соплового канала для уменьшения энергии инициирования детонации и получения высокоэнтальпийного сверхзвукового потока с заданными параметрами.

Источник информации

1. Крайко А.Н. Теоретическое и экспериментальное обоснование концепции пульсирующего двигателя с детонационной волной, движущейся против сверхзвукового потока // Импульсные детонационные двигатели / Под ред. С.М.Фролова. М.: Торус Пресс, 2006. С.569-590.

2. Нетлетон М. Детонация в газах. М.: Мир. 1989. - 280 с.

3. Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Справочное издание. Т.1. Кн.2. М.: Наука, 1978. 327 с.

4. Черный Г.Г. Газовая динамика. М.: Наука. Гл. ред. Физ.-мат. лит., 1988. - 424 с.

5. Туник Ю.В. Численное моделирование детонационного горения водородовоздушных смесей в сопле Лаваля // Изв. РАН. МЖГ. 2010. №2. С.107-114.

6. Туник Ю.В. Устойчивость детонационного горения к изменению концентрации водорода на входе в сверхзвуковое сопло // Изв. РАН. МЖГ. 2011. №1. С.128-135 (в печати).

7. V.A.Pavlov, O.P.Shatalov, Yu.V.Tunik. Laser-based ignition of supersonic hydrogenous flows in a shock tube. Technical Program and Abstracts. 7th International Colloquim on Pulsed and Continuous Detonations. St. Petersburg, 2010, p 10.

Способ детонационного сжигания топливной смеси, непрерывно поступающей в прямоточную камеру сгорания со сверхзвуковой скоростью, отличающийся тем, что в качестве топлива используется водородовоздушная смесь постоянного во времени состава, направляемая в осесимметричный конвергентно-дивергентный сопловой канал параллельно оси и сжигаемая в стационарной самоподдерживающейся волне детонации, формирующейся в расширяющейся части канала с монотонно меняющейся по длине формой сужающегося и расширяющегося участков, при выполнении следующего условия: скорость газа на входе в канал превосходит скорость детонации Чепмена-Жуге в стехиометрической водородовоздушной смеси.
СПОСОБ ДЕТОНАЦИОННОГО СЖИГАНИЯ ВОДОРОДА В СТАЦИОНАРНОМ СВЕРХЗВУКОВОМ ПОТОКЕ
СПОСОБ ДЕТОНАЦИОННОГО СЖИГАНИЯ ВОДОРОДА В СТАЦИОНАРНОМ СВЕРХЗВУКОВОМ ПОТОКЕ
СПОСОБ ДЕТОНАЦИОННОГО СЖИГАНИЯ ВОДОРОДА В СТАЦИОНАРНОМ СВЕРХЗВУКОВОМ ПОТОКЕ
СПОСОБ ДЕТОНАЦИОННОГО СЖИГАНИЯ ВОДОРОДА В СТАЦИОНАРНОМ СВЕРХЗВУКОВОМ ПОТОКЕ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 90.
10.01.2015
№216.013.1796

Способ изготовления материала газового сенсора селективного детектирования нs и его производных

Изобретение относится к области нанотехнологии сенсорных материалов и может быть использовано для создания полупроводниковых газовых сенсоров, селективных к содержанию в воздухе сероводорода и его производных. Сущность изобретения состоит в создании наногетерогенного материала на основе...
Тип: Изобретение
Номер охранного документа: 0002537466
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.182b

Способ получения пористого пирофосфата кальция

Изобретение относится к способу получения пористого пирофосфата кальция для использования в медицине. Способ включает подготовку исходной порошковой смеси, содержащей карбонат кальция и гидрофосфат аммония, формование заготовок и их обжиг. Причем карбонат кальция и гидрофосфат аммония...
Тип: Изобретение
Номер охранного документа: 0002537615
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c19

Способ стимулирования восстановления иннервации тканей после травм и ишемии с помощью векторной конструкции

Изобретение относится к области генной инженерии и генной терапии и может быть использовано в регенеративной медицине, травматологии, трансплантологии и нейробиологии для стимуляции роста и регенерации нервов и восстановления иннервации ишемизированных тканей. Способ по настоящему изобретению...
Тип: Изобретение
Номер охранного документа: 0002538621
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c90

Способ синтеза монокристаллических тетрагональных теллуридов железа и теллуридов железа, легированных серой и/или селеном

Изобретение относится к неорганической химии. Способ синтеза тетрагональных теллуридов железа и теллуридов железа, легированных селеном и/или серой, включает размещение в одном конце герметичной ампулы шихты из теллура, селена, серы и железа, заполнение ее смесью эвтектического состава из...
Тип: Изобретение
Номер охранного документа: 0002538740
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d0a

Меченные тритием наноалмазы и способ их получения

Изобретение может использоваться для получения биологических радиоактивных меток. Способ получения меченных тритием наноалмазов методом термической активации трития включает приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от...
Тип: Изобретение
Номер охранного документа: 0002538862
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1df2

Способ получения органических растворителей из непищевого возобновляемого растительного сырья

Изобретение относится к биотехнологии. Способ получения комплекса органических растворителей, включающего ацетон, бутанол и этанол, из возобновляемого растительного целлюлозосодержащего сырья включает измельчение до размера частиц 20-80 мкм. Осуществляют предварительное осахаривание...
Тип: Изобретение
Номер охранного документа: 0002539094
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e0c

Способ изготовления кремниевого чувствительного элемента для люминесцентного наносенсора кислорода

Изобретение относится к технологии получения кремниевых наноструктур. В способе изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным...
Тип: Изобретение
Номер охранного документа: 0002539120
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.202c

Зонд на основе полевого транзистора с наноразмерным каналом

Изобретение относится к измерительной технике, представляет собой зонд на основе полевого транзистора с наноразмерным каналом и может быть использовано при определении физико-химических и электрических параметров наноразмерных объектов физической, химической и биологической природы. Зонд...
Тип: Изобретение
Номер охранного документа: 0002539677
Дата охранного документа: 20.01.2015
27.01.2015
№216.013.206e

Способ оценки иммуносупрессивных свойств мезенхимальных стромальных клеток человека

Изобретение относится к области медицины, молекулярной биологии и биофармакологии. Предложен способ определения иммуносупрессивных свойств мезенхимальных стромальных клеток человека путем измерения уровня экспрессии молекулы HLA-DR на поверхности мембран клеток и измерение в клетках уровня...
Тип: Изобретение
Номер охранного документа: 0002539750
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.2070

Гуманизированное антитело и антигенсвязывающий фрагмент (fab), связывающиеся с интерфероном- γ человека, фрагменты днк, кодирующие указанное антитело и антигенсвязывающий фрагмент, клетка, трансформированная фрагментом днк, и способ получения указанного антитела и антигенсвязывающего фрагмента

Изобретение относится к области иммунологии и биотехнологии. Описаны гуманизированное антитело и его антигенсвязывающий фрагмент (Fab), которые селективно связывают человеческий ИФН-γ и содержат вариабельный участок тяжелой цепи (VH) и вариабельный участок легкой цепи (VL), где VH и VL имеют...
Тип: Изобретение
Номер охранного документа: 0002539752
Дата охранного документа: 27.01.2015
Показаны записи 51-60 из 90.
10.01.2015
№216.013.1796

Способ изготовления материала газового сенсора селективного детектирования нs и его производных

Изобретение относится к области нанотехнологии сенсорных материалов и может быть использовано для создания полупроводниковых газовых сенсоров, селективных к содержанию в воздухе сероводорода и его производных. Сущность изобретения состоит в создании наногетерогенного материала на основе...
Тип: Изобретение
Номер охранного документа: 0002537466
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.182b

Способ получения пористого пирофосфата кальция

Изобретение относится к способу получения пористого пирофосфата кальция для использования в медицине. Способ включает подготовку исходной порошковой смеси, содержащей карбонат кальция и гидрофосфат аммония, формование заготовок и их обжиг. Причем карбонат кальция и гидрофосфат аммония...
Тип: Изобретение
Номер охранного документа: 0002537615
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c19

Способ стимулирования восстановления иннервации тканей после травм и ишемии с помощью векторной конструкции

Изобретение относится к области генной инженерии и генной терапии и может быть использовано в регенеративной медицине, травматологии, трансплантологии и нейробиологии для стимуляции роста и регенерации нервов и восстановления иннервации ишемизированных тканей. Способ по настоящему изобретению...
Тип: Изобретение
Номер охранного документа: 0002538621
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c90

Способ синтеза монокристаллических тетрагональных теллуридов железа и теллуридов железа, легированных серой и/или селеном

Изобретение относится к неорганической химии. Способ синтеза тетрагональных теллуридов железа и теллуридов железа, легированных селеном и/или серой, включает размещение в одном конце герметичной ампулы шихты из теллура, селена, серы и железа, заполнение ее смесью эвтектического состава из...
Тип: Изобретение
Номер охранного документа: 0002538740
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d0a

Меченные тритием наноалмазы и способ их получения

Изобретение может использоваться для получения биологических радиоактивных меток. Способ получения меченных тритием наноалмазов методом термической активации трития включает приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от...
Тип: Изобретение
Номер охранного документа: 0002538862
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1df2

Способ получения органических растворителей из непищевого возобновляемого растительного сырья

Изобретение относится к биотехнологии. Способ получения комплекса органических растворителей, включающего ацетон, бутанол и этанол, из возобновляемого растительного целлюлозосодержащего сырья включает измельчение до размера частиц 20-80 мкм. Осуществляют предварительное осахаривание...
Тип: Изобретение
Номер охранного документа: 0002539094
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e0c

Способ изготовления кремниевого чувствительного элемента для люминесцентного наносенсора кислорода

Изобретение относится к технологии получения кремниевых наноструктур. В способе изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным...
Тип: Изобретение
Номер охранного документа: 0002539120
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.202c

Зонд на основе полевого транзистора с наноразмерным каналом

Изобретение относится к измерительной технике, представляет собой зонд на основе полевого транзистора с наноразмерным каналом и может быть использовано при определении физико-химических и электрических параметров наноразмерных объектов физической, химической и биологической природы. Зонд...
Тип: Изобретение
Номер охранного документа: 0002539677
Дата охранного документа: 20.01.2015
27.01.2015
№216.013.206e

Способ оценки иммуносупрессивных свойств мезенхимальных стромальных клеток человека

Изобретение относится к области медицины, молекулярной биологии и биофармакологии. Предложен способ определения иммуносупрессивных свойств мезенхимальных стромальных клеток человека путем измерения уровня экспрессии молекулы HLA-DR на поверхности мембран клеток и измерение в клетках уровня...
Тип: Изобретение
Номер охранного документа: 0002539750
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.2070

Гуманизированное антитело и антигенсвязывающий фрагмент (fab), связывающиеся с интерфероном- γ человека, фрагменты днк, кодирующие указанное антитело и антигенсвязывающий фрагмент, клетка, трансформированная фрагментом днк, и способ получения указанного антитела и антигенсвязывающего фрагмента

Изобретение относится к области иммунологии и биотехнологии. Описаны гуманизированное антитело и его антигенсвязывающий фрагмент (Fab), которые селективно связывают человеческий ИФН-γ и содержат вариабельный участок тяжелой цепи (VH) и вариабельный участок легкой цепи (VL), где VH и VL имеют...
Тип: Изобретение
Номер охранного документа: 0002539752
Дата охранного документа: 27.01.2015
+ добавить свой РИД