×
10.07.2013
216.012.545e

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГАЛЬВАНИЧЕСКОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ, СОДЕРЖАЩЕГО НАНОАЛМАЗНЫЕ ПОРОШКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению гальванических композиционных покрытий, в частности на основе никеля с дисперсной фазой в виде наноалмазных порошков. Способ включает приготовление суспензии из наноалмазных порошков и жидкой фазы, введение суспензии в электролит и электролиз для осаждения композиционного покрытия. В качестве жидкой фазы для получения суспензии берут этиловый спирт или ацетон, при этом наноалмазные порошки вводят в жидкую фазу в количестве 60-80 об.% и осуществляют дезагрегирование порошков в суспензии путем их раздавливания и истирания притиром, после чего суспензию вводят в электролит. Технический результат: осуществление дезагрегирования наноалмазных порошков и придание им высокой седиментационной и коагуляционной устойчивости в электролите.
Основные результаты: Способ получения гальванического композиционного покрытия, содержащего наноалмазные порошки, включающий приготовление суспензии из наноалмазных порошков и жидкой фазы, введение суспензии в электролит и электролиз для осаждения композиционного покрытия, отличающийся тем, что в качестве жидкой фазы для получения суспензии берут этиловый спирт или ацетон, при этом наноалмазные порошки вводят в жидкую фазу в количестве 60-80 об.% и осуществляют дезагрегирование порошков в суспензии путем их раздавливания и истирания притиром, после чего суспензию вводят в электролит.

Изобретение относится к получению гальванических композиционных покрытий, в частности на основе никеля с дисперсной фазой в виде наноалмазных порошков.

Способ может быть использован для изготовления алмазных инструментов, у которых режущие алмазные зерна удерживаются на корпусе инструмента с помощью гальванического композиционного покрытия на основе никеля, содержащего наноалмазные порошки. Также способ может быть использован для нанесения композиционных покрытий для повышения твердости, износостойкости деталей машин, приборов, металлорежущих инструментов и т.п.

Гальванические композиционные покрытия представляют собой металлическую матрицу, содержащую дисперсную фазу, в частности наноалмазные порошки, осажденную на поверхность изделия из электролита, содержащего соль осаждаемого металла и наноалмазные порошки. Качество покрытия в большей степени определяется состоянием дисперсной фазы, ее концентрацией и распределением по поверхности и толщине покрытия. Концентрация и распределение частиц в покрытии в большей степени зависит от седиментационной и коагуляционной устойчивости дисперсной фазы в электролите, концентрации частиц в гальванической ванне.

Известен способ получения композиционных покрытий, включающий введение в электролит алмазных частиц размером 1-1000 нм и суспензирование электролита газом, содержащим кислород (JP №2006225730, кл. C25D 15/02, 2006 г.). В результате получают электролит с равномерно распределенными по объему алмазными частицами. Недостаток способа заключается в том, что суспензирование алмазных частиц в электролите газом не придает частицам седиментационной и коагуляционной устойчивости, т.к. не гарантирует полное разрушение конгломератов частиц, что не позволяет получать качественное покрытие.

Известен способ получения композиционных покрытий из электролитов, включающий введение в электролит дисперсной фазы - наноалмазов и диспергирование воздействием на электролит кавитацией, пропуская его через кавитационный диспергатор, либо использованием гидродинамического или акустического диспергатора (RU №2368709, кл. C25D 15/00, 2007 г.). Недостаток способа заключается в использования сложных устройств для диспергирования частиц в электролите.

Известен способ получения композиционных покрытий из электролитов, включающий воздействие на электролит, содержащий твердые субмикрочастицы ультразвуковыми колебаниями. Под действием УЗ колебаний осуществляется дипергирование конгломератов субмикрочастиц до уровня первоначальных образований или кристаллитов, при этом повышается вязкость электролита и повышается его седиментационная устойчивость (RU №2088689, кл. C25C 18/00, 1996 г.).

Известен способ получения композиционных покрытий, предлагающий использовать коллоидные кластерные частицы алмаза размером 0,001-0,120 мкм, по форме близкие к сферической или овальной без острых кромок, в количестве 0,1-35 г/л, которые образуют седиментационную и коагуляционную устойчивую систему в электролите (RU №2191227, кл. C25D 15/00, 2000 г.).

Недостаток этих способов заключается в том, что седиментационная устойчивость частиц обеспечивается определенными по форме и размерам частицами, что существенно сужает область использования такого электролита.

Известен способ получения композиционных покрытий из электролитов, в состав которых вводят ПАВ, содержащий одну аминогруппу и одну карбоксилгруппу или их смесь. ПАВ образует на поверхности частиц оболочку, препятствующую их агломерацию (RU №1097718, кл. C25D 15/00, 1982 г). Известен способ получения композиционных покрытий, включающий введение в электролит алмазных частиц, обработанных смачивателем анионного типа, который повышает агломерационную устойчивость частиц (GB №1391001, кл. C25D 15/00, 1975 г.). Недостаток способов состоит в том, что и ПАВ, и смачиватель, адсорбируясь на поверхности дисперсных частиц, попадает в материал покрытия, влияя на его физико-механические свойства. Кроме того, ПАВ и смачиватель, снижая степень агломерации частиц, не обеспечивают их достаточное диспергирование в электролите.

Известен способ получения композиционных покрытий, включающий приготовление суспензии из ультрадисперстных алмазов размером до 300 нм на водной основе с добавлением стеаракса и двуокиси кремния. После перемешивания ингредиентов суспензию вводят в электролит и проводят электролиз. Введение в электролит добавок позволяет получить стабильную суспензию с определенными размерами агрегатов (RU №2094371, кл. C25D 15/00, 1991 г). Недостаток способа заключается в том, что введенные в электролит добавки при электролизе, попадая в материал покрытия, отрицательно влияют на физико-механические характеристики покрытия.

Известен способ получения композиционных покрытий, включающий приготовление суспензии на водной основе, которую после введения в нее дисперсной фазы в виде детонационных алмазов обрабатывают для дезагрегациии высокой седиментационной и коагуляционной устойчивости на роторно-пульсирующей или ультразвуковой установке, нагревают в течение 2 часов в соляной кислоте, отмывают осадок от избытка кислоты, затем обрабатывают в течение 2 часов раствором натриевой щелочи (RU №2357017, кл. C25D 15/00, 2007 г.). Недостаток способа заключается в сложности и длительности подготовки суспензии, значительные потери алмазных порошков при приготовлении суспензии.

Известен способ получения композиционных покрытий, включающий приготовление суспензии на водной основе, которую вводят в электролит. Суспензия содержит частицы синтетического углеродного алмазосодержащего материала, содержащего углерод в виде ядер ультрадисперсного алмаза, окруженных оболочкой, содержащей рентгеноаморфный углерод, и имеющего на поверхности частиц поверхностные функциональные группы, содержащие кислород, азот и водород (RU №2404294, кл. C25D 15/00, 2009 г.). Алмазосодержащий материал получают обработкой предварительно высушенного порошка алмазосодержащей шихты, представляющей собой смесь алмазов и неалмазных форм углерода, азотной кислотой при кипении в течение 2-5 ч. Суспензия, введенная в электролит, обеспечивает высокую рассеивающую способность электролита. Недостаток способа заключается в трудоемкости процесса получения частиц синтетического углеродного алмазосодержащего материала.

Наиболее близким способом является получение композиционных металлоалмазных покрытий из электролита, содержащего ультрадисперсные порошки алмаза с удельной поверхностью 400-500 м2/г повышенной степени очистки в количестве 2-20 г/л (RU №2156838, кл. C25D 15/00, 1999 г.). Для получения гомогенной системы ультрадисперсный алмазный порошок вводят в электролит в виде суспензии. Суспензию готовят из ультрадисперсных алмазов и электролита с концентрацией ультрадисперсных частиц 28-30%, затем концентрат в несколько приемов разбавляют электролитом при тщательном перемешивании до получения суспензии с концентрацией ультрадисперсных алмазов 8-10%. Полученную суспензию вводят в электролит. Способ позволяет достаточно легко перемешивать ультрадисперсные алмазные порошки с электролитом. Недостаток способа заключается в том, что при перемешивании суспензии с концентрацией ультрадисперсных частиц 28-30% не происходит их дезагрегирование, т.е. ультрадисперсные алмазные частицы, представляющие собой агрегаты разного размера и разной формы, в суспензии сохраняют свое первоначальное состоянии. Кроме того, обработка ультрадисперсных частиц тем же электролитом, в котором проводится электролиз, не придает частицам необходимой седиментационной и коагуляционной устойчивости.

Технической задачей является создание способа получения композиционных покрытий, позволяющего просто и эффективно осуществлять дезагрегирование наноалмазных порошков и придавать им высокую седиментационную и коагуляционную устойчивость в электролите, что позволит получать покрытия с равномерным распределением наночастиц по поверхности и по объему покрытия.

Техническое решение задачи заключается в том, что в способе получения гальванического композиционного покрытия, содержащего наноалмазные порошки, включающем приготовление суспензии из наноалмазных порошков и жидкой фазы, введение суспензии в электролит и электролиз для осаждения композиционного покрытия, в качестве жидкой фазы для получения суспензии берут этиловый спирт или ацетон, при этом наноалмазные порошки вводят в жидкую фазу в количестве 60-80 об.% и осуществляют дезагрегирование в суспензии наноалмазных порошков путем их раздавливания и истирания, после чего суспензию вводят в электролит.

В качестве жидкой фазы также можно брать водный раствор этилового спирта или ацетона.

Сущность способа заключается в следующем. Раздавливание и истирание наноалмазных порошков производят, например, в сосуде с криволинейным дном с помощью притира. При большой концентрации наноалмазного порошка в суспензии, агрегативное состояние которой приближается к пастообразному, дезагрегирование будет происходить не только за счет раздавливающего и истирающего воздействия притира на порошки о стенки и дно сосуда, но и воздействием агрегированных наноалмазных порошков друг на друга. При этом происходит не только дезагрегирование порошков, но и одновременная обработка их этиловым спиртом или ацетоном с образованием на поверхности наноалмазных порошков оболочки, препятствующей слипанию частиц в электролите, что повышает седиментационную устойчивость частиц в течение длительного времени.

Способ осуществляют следующим образом.

Из наноалмазов готовят суспензию, содержащую этиловый спирт или ацетон. Количество наноалмазов в жидкой среде должно составлять 60-80 об.%. При такой концентрации наноалмазов суспензия имеет состояние, близкое к пастообразному. Суспензию готовят, преимущественно, в фарфоровом сосуде, дно которого имеет криволинейную форму. Для дезагрегирования наноалмазных частиц их раздавливают и истирают, например, притиром, форма рабочей поверхности которого аналогична форме дна фарфорового сосуда. Раздавливание и истирание производят вручную или механизировано.

Электролит готовят растворением солей металлов в дистиллированной воде и прорабатывают его под током в течение 1 ч. Затем в электролит вводят деталь. После завешивания детали в ванну никелирования вводят суспензию с наноалмазами. После этого производят электролиз, при котором на поверхности детали осаждается композиционное покрытие, содержащее наноалмазные порошки.

Концентрация 60-80% наноалмазных порошков в суспензии обеспечивает эффективное их дезагрегирование. При меньшем содержании нанопорошков в суспензии в последней будет присутствовать большое количество жидкой фазы, что существенно увеличит трудоемкость дезагрегирования нанопорошков, и возможна неполное их дезагрегирование. Увеличение концентрации нанопорошков в суспензии значительно уменьшит количество жидкой фазы - этилового спирта или ацетона, при этом небольшого количества этих компонентов будет недостаточно для эффективного смачивания наноалмазных порошков и образования оболочки, препятствующей их слипанию в электролите и обеспечению седиментационной устойчивости.

Этиловый спирт и ацетон, в отличие от электролита, хорошо смачивают алмазные порошки и, растекаясь по поверхностям наноалмазных частиц, проникают внутрь агрегата. Одновременно этиловый спирт и ацетон взаимодействуют с полярными функциональными группами, адсорбированными на частицах алмаза, образуя на их поверхностях положительно заряженную оболочку, которая оказывает расклинивающее действие на частицы, препятствует их агрегированию в электролите и по электрофоретическому механизму способствует движению частиц к катоду. Раздавливание и истирание наноалмазных порошков в водном растворе этилового спирта или ацетона позволяет более эффективно и качественно производить диспергирование порошков за короткое время.

Кроме того, введенные в электролит этиловый спирт или ацетон, являющиеся жидкой фазой в суспензии, работают в электролите как выравнивающая добавка, позволяя получать ровные качественные покрытия. В случае необходимости, этиловый спирт и ацетон могут быть введены в электролит дополнительно в необходимом количестве.

Этиловый спирт и ацетон в суспензии могут быть использованы в виде 70-80% водного раствора. Использование водных растворов этих компонентов более экономично.

По предложенному способу изготавливали алмазный инструмент - алмазные трубчатые сверла.

В алмазном инструменте композиционное покрытие является материалом, удерживающим рабочие алмазные зерна на корпусе инструмента.

В сосуде с криволинейным дном готовили две суспензии, содержащие наноалмазные порошки и жидкую фазу. В одной суспензии в качестве жидкой фазы использовали водный раствор этилового спирта, в другой - водный раствор ацетона. Концентрация наноалмазных порошков составляла 60-80 об.%. Притиром вручную раздавливали и растирали агрегаты наноалмазных порошков в течение 15 минут. В результате получали близкую к пастообразному состоянию однородную массу из наноалмазных порошков без конгломератов, сгустков и т.п.

Готовили две ванны следующего состава:

Никель сернокислый 7-водный - 300 г/л

Никель двухлористый 6-водный - 50 г/л

Борная кислота - 40 г/л.

В первой ванне осуществляли прикрепление и частичное заращивание на корпусе инструмента рабочих алмазных порошков зернистостью 125/100 слоем никеля на величину 20 мкм.

Корпус инструмента с частично зарощенными в первой ванне рабочими алмазными порошками завешивали во вторую ванну. В электролит вводили одну из суспензий, тщательно перемешивали и производили электролиз до осаждения слоя композиционного покрытия до заращивания рабочих алмазных порошков на величину 70-80% их размера. Количество нанодисперсного порошка в покрытии регулировали количеством введенной в электролит суспензии.

Получали инструмент, у которого матрица, окончательно заращивающая рабочие алмазные порошки на корпусе инструмента, представляла собой композиционное покрытие, содержащее наноалмазные порошки. Покрытие имело равномерный по толщине осадок. Для определения качества гальванического покрытия, содержащего наноалмазные порошки, покрытие наносили на специально подготовленную фольгу и полученную поверхность рассматривали с помощью электронного микроскопа (по фотографиям, фотографиям в темном поле и их фурье-образам). Поверхность покрытия имела невысокую равномерную шероховатость при заданных плотностях тока, нанодисперсные алмазы обнаруживались в структуре никелевого покрытия в виде агломератов. Использование этилового спирта или ацетона приводило к уменьшению количества агломератов и к более равномерному распределению частиц в структуре никелевого покрытия.

Таким образом, введение в электролит наноалмазных порошков путем предварительного приготовления суспензии с высоким содержанием наноалмазных порошков в жидкой фазе из этилового спирта или ацетона позволило обеспечить эффективное дезагрегирование наноалмазных порошков и получить покрытие с высокими физико-механическими характеристиками благодаря высокой седиментационной и коагуляционной устойчивости частиц в электролите.

Способ получения гальванического композиционного покрытия, содержащего наноалмазные порошки, включающий приготовление суспензии из наноалмазных порошков и жидкой фазы, введение суспензии в электролит и электролиз для осаждения композиционного покрытия, отличающийся тем, что в качестве жидкой фазы для получения суспензии берут этиловый спирт или ацетон, при этом наноалмазные порошки вводят в жидкую фазу в количестве 60-80 об.% и осуществляют дезагрегирование порошков в суспензии путем их раздавливания и истирания притиром, после чего суспензию вводят в электролит.
Источник поступления информации: Роспатент

Показаны записи 201-210 из 243.
20.09.2015
№216.013.7d35

Способ получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена с повышенными радиационно-защитными свойствами

Изобретение относится к способу получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена для изготовления конструкционных изделий радиационной защиты. Способ включает предварительную сушку при температуре 100-130°C порошков сверхвысокомолекулярного полиэтилена,...
Тип: Изобретение
Номер охранного документа: 0002563650
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e28

Способ взрывания на открытых разработках разнопрочных слоистых массивов горных пород

Изобретение относится к горной промышленности и строительству, а именно к способам взрывания на открытых разработках слоистых массивов горных пород с нижним менее прочным слоем породы и верхним более прочным слоем. Способ включает бурение нисходящих скважин, их заряжание комбинированными...
Тип: Изобретение
Номер охранного документа: 0002563893
Дата охранного документа: 27.09.2015
20.10.2015
№216.013.8425

Способ получения наночастиц нитрида бора для доставки противоопухолевых препаратов

Изобретение относится к области наномедицинских технологий, а именно к созданию нанотранспортеров лекарственных препаратов, и описывает способ получения наночастиц нитрида бора для доставки противоопухолевого препарата в опухолевые клетки. Способ характеризуется тем, что синтезируют сферические...
Тип: Изобретение
Номер охранного документа: 0002565432
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.856d

Высокотемпературная универсальная смазка для узлов трения, подшипников качения и скольжения

Настоящее изобретение относится к высокотемпературной универсальной смазке для узлов трения, подшипников качения и скольжения, содержащей основу, загущенную комплексными кальциевыми мылами, наполнители, содержащие графит, молибденосодержащие вещества и многофункциональную присадку, в качестве...
Тип: Изобретение
Номер охранного документа: 0002565760
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.85ac

Способ сшивания рваных и резаных ран в условиях экстренной хирургии и устройство для его осуществления

Группа изобретений относится к хирургии и может быть применима для сшивания рваных и резаных ран века в условиях экстренной хирургии. Накладывают скобку, выполненную из материала, обладающего эффектом памяти формы, на края раны. Перед наложением на рану скобку пластически деформируют при...
Тип: Изобретение
Номер охранного документа: 0002565823
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86eb

Способ формирования бидоменной структуры в пластинах монокристаллов сегнетоэлектриков

Изобретение относится к области получения монокристаллов сегнетоэлектриков с бидоменной структурой и может быть использовано в нанотехнологии и микромеханике при создании и работе приборов точного позиционирования, в частности зондовых микроскопов, лазерных резонаторов, а также при юстировке...
Тип: Изобретение
Номер охранного документа: 0002566142
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.88b3

Способ определения радиуса кривизны цилиндрических поверхностей бесконечной длины

Изобретение относится к карьерному железнодорожному транспорту и может быть использовано при определении радиуса кривизны рабочей поверхности железнодорожного рельса. Для определения радиуса кривизны цилиндрических поверхностей бесконечной длины, например рабочей поверхности железнодорожного...
Тип: Изобретение
Номер охранного документа: 0002566598
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8be7

Способ регулирования электроплавки железорудных металлизованных окатышей в дуговой сталеплавильной печи

Изобретение относится к области металлургии, в частности к электропечам с погруженными в шлаковый расплав графитовыми электродами, имеющими осевые отверстия, через которые в зону электрических дуг подают железорудные металлизованные окатыши (ЖМО), осуществляют их плавление с дожиганием окиси...
Тип: Изобретение
Номер охранного документа: 0002567422
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8be9

Способ плавки стали из железорудных металлизованных окатышей в дуговой сталеплавильной печи

Изобретение относится к области металлургии, в частности к выплавке стали из железорудных металлизованных окатышей (ЖМО) в дуговой печи. Подачу ЖМО ведут непрерывно в зону испарения металла, образующуюся при контакте электрических дуг с металлическим расплавом, и осуществляют их плавление с...
Тип: Изобретение
Номер охранного документа: 0002567424
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bea

Способ управления выплавкой стали в дуговой сталеплавильной печи

Изобретение относится к металлургии, в частности к электрометаллургии стали с использованием способа подачи металлизованных окатышей через полые электроды в зону электрических дуг и на поверхность менисков при контакте этих дуг с жидким металлом под шлаком. При подаче окатышей определяют...
Тип: Изобретение
Номер охранного документа: 0002567425
Дата охранного документа: 10.11.2015
Показаны записи 201-210 из 262.
20.09.2015
№216.013.7d03

Сверхчувствительный интеллектуальный магнитоимпедансный датчик с расширенным диапазоном рабочих температур

Изобретение относится к измерительной технике и представляет собой сверхчувствительный интеллектуальный магнитометрический датчик (МИ датчик) с расширенным диапазоном рабочих температур области. Датчик включает магнитоимпедансный элемент (МИ элемент) с двумя катушками, выполненными одна над...
Тип: Изобретение
Номер охранного документа: 0002563600
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d0f

Способ извлечения серебра из лома серебряно-цинковых аккумуляторов, содержащих свинец

Изобретение относится к пирометаллургии. Способ извлечения серебра из лома серебряно-цинковых аккумуляторов, содержащих свинец, включает плавку лома при температуре нагрева 1150-1200°C, охлаждение полученного расплава со скоростью от 1950°C/час до 2050°C/час до температуры 400°C и плавку...
Тип: Изобретение
Номер охранного документа: 0002563612
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d35

Способ получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена с повышенными радиационно-защитными свойствами

Изобретение относится к способу получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена для изготовления конструкционных изделий радиационной защиты. Способ включает предварительную сушку при температуре 100-130°C порошков сверхвысокомолекулярного полиэтилена,...
Тип: Изобретение
Номер охранного документа: 0002563650
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e28

Способ взрывания на открытых разработках разнопрочных слоистых массивов горных пород

Изобретение относится к горной промышленности и строительству, а именно к способам взрывания на открытых разработках слоистых массивов горных пород с нижним менее прочным слоем породы и верхним более прочным слоем. Способ включает бурение нисходящих скважин, их заряжание комбинированными...
Тип: Изобретение
Номер охранного документа: 0002563893
Дата охранного документа: 27.09.2015
20.10.2015
№216.013.8425

Способ получения наночастиц нитрида бора для доставки противоопухолевых препаратов

Изобретение относится к области наномедицинских технологий, а именно к созданию нанотранспортеров лекарственных препаратов, и описывает способ получения наночастиц нитрида бора для доставки противоопухолевого препарата в опухолевые клетки. Способ характеризуется тем, что синтезируют сферические...
Тип: Изобретение
Номер охранного документа: 0002565432
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.856d

Высокотемпературная универсальная смазка для узлов трения, подшипников качения и скольжения

Настоящее изобретение относится к высокотемпературной универсальной смазке для узлов трения, подшипников качения и скольжения, содержащей основу, загущенную комплексными кальциевыми мылами, наполнители, содержащие графит, молибденосодержащие вещества и многофункциональную присадку, в качестве...
Тип: Изобретение
Номер охранного документа: 0002565760
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.85ac

Способ сшивания рваных и резаных ран в условиях экстренной хирургии и устройство для его осуществления

Группа изобретений относится к хирургии и может быть применима для сшивания рваных и резаных ран века в условиях экстренной хирургии. Накладывают скобку, выполненную из материала, обладающего эффектом памяти формы, на края раны. Перед наложением на рану скобку пластически деформируют при...
Тип: Изобретение
Номер охранного документа: 0002565823
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86eb

Способ формирования бидоменной структуры в пластинах монокристаллов сегнетоэлектриков

Изобретение относится к области получения монокристаллов сегнетоэлектриков с бидоменной структурой и может быть использовано в нанотехнологии и микромеханике при создании и работе приборов точного позиционирования, в частности зондовых микроскопов, лазерных резонаторов, а также при юстировке...
Тип: Изобретение
Номер охранного документа: 0002566142
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.88b3

Способ определения радиуса кривизны цилиндрических поверхностей бесконечной длины

Изобретение относится к карьерному железнодорожному транспорту и может быть использовано при определении радиуса кривизны рабочей поверхности железнодорожного рельса. Для определения радиуса кривизны цилиндрических поверхностей бесконечной длины, например рабочей поверхности железнодорожного...
Тип: Изобретение
Номер охранного документа: 0002566598
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8be7

Способ регулирования электроплавки железорудных металлизованных окатышей в дуговой сталеплавильной печи

Изобретение относится к области металлургии, в частности к электропечам с погруженными в шлаковый расплав графитовыми электродами, имеющими осевые отверстия, через которые в зону электрических дуг подают железорудные металлизованные окатыши (ЖМО), осуществляют их плавление с дожиганием окиси...
Тип: Изобретение
Номер охранного документа: 0002567422
Дата охранного документа: 10.11.2015
+ добавить свой РИД