×
10.07.2013
216.012.5406

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ РАСТВОРА ДИЭТАНОЛАМИНА ОТ ПРИМЕСЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к новому способу очистки раствора диэтаноламина от примесей, включающему нагрев загрязненного водного раствора диэтаноламина, содержащего продукты деструкции диэтаноламина и термостабильные соли, с последующим фракционированием полученной парожидкостной смеси. При этом указанную парожидкостную смесь фракционируют в ректификационной колонне при давлении 100-110 кПа и температуре куба 170-180°C с подачей в кубовую часть инертного газа, отгоняя воду, далее полученный кубовый остаток фракционируют в вакуумной ректификационной колонне при давлении 1-3 кПа и температуре куба 180-185°C с подачей в кубовую часть углеводородов C-C, получая дистиллят - очищенный диэтаноламин и кубовый остаток, содержащий продукты деструкции диэтаноламина и термостабильные соли. Способ позволяет повысить степень извлечения диэтаноламина из загрязненного водного раствора и уменьшить его потери при очистке. 1 з.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к области очистки газов и может быть использовано в газовой или нефтеперерабатывающей промышленности для очистки абсорбентов от примесей.

Одним из наиболее широко применяющихся абсорбентов для поглощения кислых газов (H2S и CO2) из различных газовых потоков является водный раствор диэтаноламина (ДЭА). В промышленных условиях при очистке газов, содержащих до 40% об. кислых газов, ДЭА подвергается существенной термохимической деструкции амина, скорость которой возрастает с увеличением насыщения амина кислыми газами (до 0,8 моль/моль и выше) и повышенной температуры насыщенного абсорбента (до 90-100°C). В этих условиях концентрация продуктов деструкции ДЭА (ПДД) может составлять до 50% от массы исходного ДЭА в растворе. Основными продуктами превращения ДЭА в результате необратимого взаимодействия с CO2 являются оксазолидоны, производные этилендиаминов и пиперазина. В наибольшем количестве присутствует диэтанолпиперазин (ДЭП), который является конечным продуктом термохимического превращения ДЭА. В значительно меньших количествах присутствуют производные имидазолидона и аминоэтиловых эфиров. Кроме ПДД в растворах абсорбентов могут накапливаться термостабильные соли (ТСС), которые представляют собой нелетучие продукты взаимодействия органических кислот (муравьиной, уксусной, щавелевой, тиосерной) со щелочами, в частности с ДЭА.

Наличие в растворе ПДД и ТСС повышает вязкость раствора, способствует его вспениванию, т.е. приводит к снижению производительности и увеличению энергетических затрат. Для нормальной эксплуатации установки очистки газа необходимо осуществлять очистку раствора от ПДД и ТСС.

Известен процесс одностадийной рекуперации ДЭА из загрязненного абсорбента очистки газа от кислых компонентов (US №2892775, C10G 21/28, опубл. 30.06.1959). В данном способе загрязненный амин предварительно смешивают с раствором щелочи для разложения ТСС и подают в дистилляционную колонну, в куб которой подводится тепло, а в верхнюю часть - охлаждающая вода. Водяные пары поднимаются вверх, контактируя на насадке с раствором амина, а не сконденсировавшиеся пары воды отводят с верха колонны. Пары амина выводят с нижней части колонны и конденсируют их путем охлаждения, а из кубовой части отводят расплав нелетучих солей. Необходимая температура в кубовой части 205-245°C поддерживается циркуляцией теплоносителя в трубчатом подогревателе.

Недостатками способа являются существенные потери ДЭА, обусловленные термическим разложением из-за достаточно высокой температуры процесса, а также повышенные энергетические затраты за счет использования для отгонки амина из раствора водяного пара.

Наиболее близким к предлагаемому способу является способ очистки водного раствора технологической жидкости при пониженном давлении (около 400 мм рт.ст.), содержащей амин (гликоль) и термостабильные соли, включающий нагрев технологической жидкости, однократное испарение (дистилляцию) воды и амина на первой стадии и последующее фракционирование газожидкостной смеси в колонне с конденсатором на второй стадии (US №5993608, B01D 53/14, опубл. 30.11.1999). В данном способе на второй стадии с верха ректификационной колонны выводят воду, частично используя ее в качестве флегмового орошения, а из кубовой части колонны - очищенную технологическую жидкость.

Недостатком данного способа является низкая степень очистки раствора от примесей, особенно от примесей, которые имеют близкую к ДЭА температуру кипения (летучесть) и выводятся вместе с рекуперированным амином, а также повышенные потери из-за невысокой степени извлечения амина из загрязненного раствора.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение степени извлечения ДЭА из загрязненного водного раствора и уменьшение его потерь при очистке.

Технический результат достигается за счет того, что в способе очистки раствора диэтаноламина от примесей, включающем нагрев загрязненного водного раствора диэтаноламина, содержащего продукты деструкции диэтаноламина и термостабильные соли, с последующим фракционированием полученной парожидкостной смеси, указанную парожидкостную смесь фракционируют в ректификационной колонне при давлении 100-110 кПа и температуре куба 170-180°C с подачей в кубовую часть инертного газа, отгоняя воду, далее полученный кубовый остаток фракционируют в вакуумной ректификационной колонне при давлении 1-3 кПа и температуре куба 180-185°C с подачей в кубовую часть углеводородов C9-C13, получая дистиллят - очищенный диэтаноламин и кубовый остаток, содержащий продукты деструкции диэтаноламина и термостабильные соли.

В качестве инертного газа в кубовую часть ректификационной колонны может быть подан азот, а в качестве углеводородов C9-C13 в кубовую часть вакуумной ректификационной колонны может быть подана смесь жидких алифатических и ароматических углеводородов, выкипающих в пределах 155-210°C.

Сущность изобретения поясняется чертежом, на котором представлена схема очистки раствора ДЭА от примесей. Схема состоит из ректификационной колонны 1, вакуумной ректификационной колонны 2, холодильников 3 и 5, сепаратора 4, вакуумного трехфазного сепаратора 6, барометрических сборников 7 и 8, паровых подогревателей 9-12, рекуперативного теплообменника 13.

Способ реализуется следующим образом.

Загрязненный раствор ДЭА предварительно подогревают потоком кубового остатка из вакуумной ректификационной колонны 2 до 60-70°C в теплообменнике 13 и подают в верхнюю часть ректификационной колонны 1. На первой стадии разделения при контакте паровой и жидкой фаз на контактных элементах колонны происходит разделение воды и остатка, содержащего ДЭА, ПДД и ТСС. Не сконденсировавшиеся в холодильнике 3 пары углеводородов, ПДД, кислых газов (H2S и CO2) и азота из сепаратора 4 направляют на утилизацию. Сконденсированную воду из сепаратора 4 направляют на приготовление абсорбента путем смешения с перегнанным ДЭА, полученным на второй стадии.

Жидкий остаток ректификационной колонны 1 направляют на вторую стадию разделения в вакуумную ректификационную колонну 2, в которой осуществляют разделение ДЭА от ПДД и ТСС. С верхней части колонны 2 производят отбор паров ДЭА с их последующей конденсацией в холодильнике 5. В кубовую часть вакуумной ректификационной колонны 2 подают пары углеводородов С913. Сконденсированный ДЭА из вакуумного трехфазного сепаратора 6 поступает через гидрозатвор в барометрический сборник 7, а сконденсированные углеводороды С913 в барометрический сборник 8. Часть ДЭА из барометрического сборника 7 используют в качестве рефлюксного орошения, подаваемого наверх колонны 2. Кубовый остаток - ПДД и ТСС выводят под контролем уровня из кубовой части колонны 2 и через рекуперативный теплообменник 13 направляют на утилизацию.

Для ограничения содержания воды в кубовой части колонны 1 в нижнюю часть колонны 1 подают предварительно подогретый в паровом подогревателе 11 отдувочный инертный газ (азот) с температурой 180°C. С целью уменьшения потерь ДЭА с кубовым остатком в кубовую часть вакуумной ректификационной колонны 2 подают фракцию углеводородов C9-C13, предварительно подогретой в подогревателе 11 до температуры 180°C.

Пример реализации предлагаемого способа

Загрязненный раствор ДЭА, содержащий, % масс: 24,83 ДЭА; 14,82 ПДД; 1,0 ТСС; 58,82 H2O; 0,01 H2S; 0,05 CO2 - в количестве 2000 кг/ч с температурой 45°C подают насосом в рекуперативный теплообменник 13 и нагревают потоком кубового остатка из колонны 2 до 75°C. На первой стадии разделения нагретый загрязненный раствор ДЭА подают в верхнюю часть колонны 1, в которой при давлении 105 кПа происходит разделение воды и амина, содержащего ПДД и ТСС. В куб колонны 1 подают подогретый до 180°C азот в количестве 9,5 кг/ч. Пары с верха колонны 1 охлаждают и конденсируют в водяном холодильнике-дефлегматоре 3 до 50-55°C, далее газовую фазу отделяют от сконденсированной воды в сепараторе 4. Сконденсированную воду отводят из сепаратора 4 в количестве 1172,10 кг/ч и направляют на смешение с очищенным ДЭА для приготовления абсорбента для очистки газа, а несконденсированную газовую фазу в количестве 11,49 кг/ч, содержащую, % масс: 1,48 H2S, 8,18 CO2, 82,68 N2 и 7,66 воды направляют на утилизацию (в печь дожига).

Кубовую жидкость колонны 1, содержащую, % масс: 60,03 ДЭА, 36,06 ПДД, 2,42 ТСС и остатки воды, не отогнанной с первой стадии в количестве 825,91 кг/ч, под контролем уровня направляют в вакуумную ректификационную колонну 2, в которой при остаточном давлении 1,5 кПа и температуре куба 180°C осуществляют отделение ДЭА от ПДД и ТСС. Температуру верха колонны 150-160°C поддерживают подачей рефлюксного орошения в количестве 400-550 кг/ч.

В кубовую часть колонны подают предварительно нагретую до 185°C смесь парафиновых углеводородов (% масс: 40 С10, 35 С11, 25 C12) в количестве 230 кг/ч.

С верхней части вакуумной ректификационной колонны 2 после конденсации паров и разделения двух жидких фаз отводят 499,65 кг/ч жидкого ДЭА, содержащего около 3% примесей (ДЭП, ТСС, H2O) и смеси углеводородов в количестве 223,78 кг/ч. Несконденсированная паровая фаза, включая 9,6 кг/ч паров воды, 0,3 кг/ч ДЭА и 1,49 кг/ч углеводородов С913 поступает в вакуумный насос и далее на утилизацию. Из кубовой части вакуумной ректификационной колонны 2 под контролем уровня отбирается 321,99 кг/ч остатка перегонки, содержащего, % масс: 90,08 ПДД, 4,10 ДЭА и 4,35 ТСС и 1,47 смеси углеводородов. Потери углеводородов с кубовым остатком восполняются подпиткой в линию их циркуляции.

Необходимая температура кубовой части колонн 1 и 2 обеспечивается циркуляцией кубовой жидкости через паровые подогреватели 10 и 12, в которые подается водяной пар среднего давления. Подогрев смеси углеводородов и инертного газа обеспечивается паровыми подогревателями 9 и 11 соответственно.

Данные материального баланса, проведенной экспериментальной проверки предлагаемого способа с производительностью 2 т/ч по исходному загрязненному раствору ДЭА, показаны в таблицах 1 и 2. В таблице 1 показан материальный баланс при реализации первой стадии фракционирования загрязненного раствора ДЭА, в таблице 2 - материальный баланс при реализации второй стадии фракционирования ДЭА, в таблице 3 - общий баланс процесса в целом.

Из таблиц видно, что повышение степени извлечения ДЭА и уменьшение его потерь при очистке загрязненного водного раствора обеспечивается за счет двухстадийного процесса, в котором первую стадию осуществляют в ректификационной колонне при давлении 100-110 кПа и температуре куба 170-180°C с использованием отпарного агента - азота, отгоняя воду от загрязненного абсорбента, а вторую - под вакуумом при давлении 1,3-2 кПа и температуре куба 180-185°C с подачей смеси углеводородов C9-C13, получая очищенный дистиллят ДЭА и кубовый остаток, содержащий продукты деструкции диэтаноламина и термостабильные соли. Извлечение ДЭА из загрязненного раствора составляет 96,7%.

Таблица 2
Материальный баланс второй стадии фракционирования
Компоненты Питание колонны 2 Газ из сепаратора 6 Дистиллят колонны 2 (ДЭА) Кубовая фракция колонны 2
кг/ч % масс. кг/ч % масс. кг/ч % масс. кг/ч % масс.
H2S 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
СО2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Вода 12,30 1,49 9,60 84,28 3,60 0,72 0,00 0,00
ДЭА 495,81 60,03 0,30 2,63 482,31 96,53 13,20 4,10
ПДД 297,80 36,06 0,00 0,00 7,74 1,55 290,06 90,08
ТСС 20,00 2,42 0,00 0,00 6,00 1,20 14,00 4,35
Углеводородная фракция 230,00 1,49 13,09 223,78 4,73 1,47
Итого 1055,91 100,00 11,39 100,00 499,65 100,00 321,99 100,00

Таблица 3
Материальный баланс процесса фракционирования
Наименование кг/ч %
Приход 2000,00 99,22
1. Загрязненный абсорбент
2. Азот 9,50 0,47
3. Подпитка углеводородной фракции 6,22 0,31
ИТОГО 2015,72 100,00
Расход
1. Вода 1172,1 58,15
2. Фракция ДЭА 498,75 24,74
3. Кубовый остаток колонны 2 321,99 15,97
4. Газовые сбросы 22,88 1,14
ИТОГО 2015,72 100,00


СПОСОБ ОЧИСТКИ РАСТВОРА ДИЭТАНОЛАМИНА ОТ ПРИМЕСЕЙ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 164.
10.06.2016
№216.015.46e5

Способ биологической очистки сточных вод и устройство для его осуществления

Группа изобретений может быть использована для биологической очистки хозяйственно-бытовых и промышленных сточных вод. Для осуществления способа не менее 70% активного ила подвергают обработке пероксидом водорода в течение 2 часов в непрерывном режиме с внесением пероксида водорода в количестве...
Тип: Изобретение
Номер охранного документа: 0002586155
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.687c

Буровой раствор для бурения в глинистых отложениях

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых набухающих пластичных глин и аргиллитов. Технический результат - снижение расхода полиэлектролита ВПК-402 и улучшение...
Тип: Изобретение
Номер охранного документа: 0002591284
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6990

Состав для сохранения устойчивости стенок скважины (варианты)

Группа изобретений относится к строительству нефтяных и газовых скважин, в частности, к созданию составов для сохранения устойчивости стенок скважин в глинистых породах. Предлагаемые составы могут найти применение при ликвидации межколонных давлений при закачке жидкости для гидрозатвора. Состав...
Тип: Изобретение
Номер охранного документа: 0002591858
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6ab9

Буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород и вскрытии продуктивных пластов. Буровой раствор содержит, мас.%: глинопорошок 5-8; полиэлектролит ВПК-402 3-5;...
Тип: Изобретение
Номер охранного документа: 0002593159
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.71ad

Способ катодной защиты

Изобретение относится к области катодной защиты металлической поверхности от коррозии в грунте или другой токопроводящей среде и может быть использовано в системе трубопроводного транспорта. Способ включает пропускание постоянного электрического тока между сооружением и группой анодов с...
Тип: Изобретение
Номер охранного документа: 0002596571
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7829

Многопоточная контактная тарелка

Изобретение относится к контактным устройствам, используемым в колонных массообменных аппаратах при больших жидкостных нагрузках, в газовой, нефтяной, химической и нефтехимической промышленности, в частности к переливным многопоточным тарелкам. Многопоточная контактная тарелка содержит...
Тип: Изобретение
Номер охранного документа: 0002599400
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7932

Катионный буровой раствор

Изобретение относится к бурению нефтяных и газовых скважин, преимущественно к бурению в условиях высоких температур, неустойчивых глинистых пород и при вскрытии продуктивных пластов. Технический результат изобретения - повышение термоустойчивости раствора. Буровой раствор включает, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002599394
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79ee

Технологическая жидкость для капитального ремонта скважин

Изобретение относится к нефтедобывающей промышленности, в частности к составам, используемым в качестве технологических жидкостей для заканчивания и ремонта нефтяных и газовых скважин, и может быть использовано в условиях аномально высоких пластовых давлений для глушения и консервации скважин,...
Тип: Изобретение
Номер охранного документа: 0002599395
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8052

Термостойкий катионный буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород в терригенных и солевых отложениях в условиях воздействия высоких температур до 200°С. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002602262
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8948

Способ моделирования циркуляции бурового раствора в скважине

Изобретение относится к строительству скважин и может быть использовано для исследований циркуляционных процессов в скважине. Техническим результатом изобретения является повышение точности определения параметров циркуляции бурового раствора для исследования различных скважинных процессов. В...
Тип: Изобретение
Номер охранного документа: 0002602635
Дата охранного документа: 20.11.2016
Показаны записи 41-50 из 89.
10.06.2016
№216.015.46e5

Способ биологической очистки сточных вод и устройство для его осуществления

Группа изобретений может быть использована для биологической очистки хозяйственно-бытовых и промышленных сточных вод. Для осуществления способа не менее 70% активного ила подвергают обработке пероксидом водорода в течение 2 часов в непрерывном режиме с внесением пероксида водорода в количестве...
Тип: Изобретение
Номер охранного документа: 0002586155
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.687c

Буровой раствор для бурения в глинистых отложениях

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых набухающих пластичных глин и аргиллитов. Технический результат - снижение расхода полиэлектролита ВПК-402 и улучшение...
Тип: Изобретение
Номер охранного документа: 0002591284
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6990

Состав для сохранения устойчивости стенок скважины (варианты)

Группа изобретений относится к строительству нефтяных и газовых скважин, в частности, к созданию составов для сохранения устойчивости стенок скважин в глинистых породах. Предлагаемые составы могут найти применение при ликвидации межколонных давлений при закачке жидкости для гидрозатвора. Состав...
Тип: Изобретение
Номер охранного документа: 0002591858
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6ab9

Буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород и вскрытии продуктивных пластов. Буровой раствор содержит, мас.%: глинопорошок 5-8; полиэлектролит ВПК-402 3-5;...
Тип: Изобретение
Номер охранного документа: 0002593159
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.71ad

Способ катодной защиты

Изобретение относится к области катодной защиты металлической поверхности от коррозии в грунте или другой токопроводящей среде и может быть использовано в системе трубопроводного транспорта. Способ включает пропускание постоянного электрического тока между сооружением и группой анодов с...
Тип: Изобретение
Номер охранного документа: 0002596571
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7829

Многопоточная контактная тарелка

Изобретение относится к контактным устройствам, используемым в колонных массообменных аппаратах при больших жидкостных нагрузках, в газовой, нефтяной, химической и нефтехимической промышленности, в частности к переливным многопоточным тарелкам. Многопоточная контактная тарелка содержит...
Тип: Изобретение
Номер охранного документа: 0002599400
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7932

Катионный буровой раствор

Изобретение относится к бурению нефтяных и газовых скважин, преимущественно к бурению в условиях высоких температур, неустойчивых глинистых пород и при вскрытии продуктивных пластов. Технический результат изобретения - повышение термоустойчивости раствора. Буровой раствор включает, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002599394
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79ee

Технологическая жидкость для капитального ремонта скважин

Изобретение относится к нефтедобывающей промышленности, в частности к составам, используемым в качестве технологических жидкостей для заканчивания и ремонта нефтяных и газовых скважин, и может быть использовано в условиях аномально высоких пластовых давлений для глушения и консервации скважин,...
Тип: Изобретение
Номер охранного документа: 0002599395
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8052

Термостойкий катионный буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород в терригенных и солевых отложениях в условиях воздействия высоких температур до 200°С. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002602262
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8948

Способ моделирования циркуляции бурового раствора в скважине

Изобретение относится к строительству скважин и может быть использовано для исследований циркуляционных процессов в скважине. Техническим результатом изобретения является повышение точности определения параметров циркуляции бурового раствора для исследования различных скважинных процессов. В...
Тип: Изобретение
Номер охранного документа: 0002602635
Дата охранного документа: 20.11.2016
+ добавить свой РИД