×
10.07.2013
216.012.5406

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ РАСТВОРА ДИЭТАНОЛАМИНА ОТ ПРИМЕСЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к новому способу очистки раствора диэтаноламина от примесей, включающему нагрев загрязненного водного раствора диэтаноламина, содержащего продукты деструкции диэтаноламина и термостабильные соли, с последующим фракционированием полученной парожидкостной смеси. При этом указанную парожидкостную смесь фракционируют в ректификационной колонне при давлении 100-110 кПа и температуре куба 170-180°C с подачей в кубовую часть инертного газа, отгоняя воду, далее полученный кубовый остаток фракционируют в вакуумной ректификационной колонне при давлении 1-3 кПа и температуре куба 180-185°C с подачей в кубовую часть углеводородов C-C, получая дистиллят - очищенный диэтаноламин и кубовый остаток, содержащий продукты деструкции диэтаноламина и термостабильные соли. Способ позволяет повысить степень извлечения диэтаноламина из загрязненного водного раствора и уменьшить его потери при очистке. 1 з.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к области очистки газов и может быть использовано в газовой или нефтеперерабатывающей промышленности для очистки абсорбентов от примесей.

Одним из наиболее широко применяющихся абсорбентов для поглощения кислых газов (H2S и CO2) из различных газовых потоков является водный раствор диэтаноламина (ДЭА). В промышленных условиях при очистке газов, содержащих до 40% об. кислых газов, ДЭА подвергается существенной термохимической деструкции амина, скорость которой возрастает с увеличением насыщения амина кислыми газами (до 0,8 моль/моль и выше) и повышенной температуры насыщенного абсорбента (до 90-100°C). В этих условиях концентрация продуктов деструкции ДЭА (ПДД) может составлять до 50% от массы исходного ДЭА в растворе. Основными продуктами превращения ДЭА в результате необратимого взаимодействия с CO2 являются оксазолидоны, производные этилендиаминов и пиперазина. В наибольшем количестве присутствует диэтанолпиперазин (ДЭП), который является конечным продуктом термохимического превращения ДЭА. В значительно меньших количествах присутствуют производные имидазолидона и аминоэтиловых эфиров. Кроме ПДД в растворах абсорбентов могут накапливаться термостабильные соли (ТСС), которые представляют собой нелетучие продукты взаимодействия органических кислот (муравьиной, уксусной, щавелевой, тиосерной) со щелочами, в частности с ДЭА.

Наличие в растворе ПДД и ТСС повышает вязкость раствора, способствует его вспениванию, т.е. приводит к снижению производительности и увеличению энергетических затрат. Для нормальной эксплуатации установки очистки газа необходимо осуществлять очистку раствора от ПДД и ТСС.

Известен процесс одностадийной рекуперации ДЭА из загрязненного абсорбента очистки газа от кислых компонентов (US №2892775, C10G 21/28, опубл. 30.06.1959). В данном способе загрязненный амин предварительно смешивают с раствором щелочи для разложения ТСС и подают в дистилляционную колонну, в куб которой подводится тепло, а в верхнюю часть - охлаждающая вода. Водяные пары поднимаются вверх, контактируя на насадке с раствором амина, а не сконденсировавшиеся пары воды отводят с верха колонны. Пары амина выводят с нижней части колонны и конденсируют их путем охлаждения, а из кубовой части отводят расплав нелетучих солей. Необходимая температура в кубовой части 205-245°C поддерживается циркуляцией теплоносителя в трубчатом подогревателе.

Недостатками способа являются существенные потери ДЭА, обусловленные термическим разложением из-за достаточно высокой температуры процесса, а также повышенные энергетические затраты за счет использования для отгонки амина из раствора водяного пара.

Наиболее близким к предлагаемому способу является способ очистки водного раствора технологической жидкости при пониженном давлении (около 400 мм рт.ст.), содержащей амин (гликоль) и термостабильные соли, включающий нагрев технологической жидкости, однократное испарение (дистилляцию) воды и амина на первой стадии и последующее фракционирование газожидкостной смеси в колонне с конденсатором на второй стадии (US №5993608, B01D 53/14, опубл. 30.11.1999). В данном способе на второй стадии с верха ректификационной колонны выводят воду, частично используя ее в качестве флегмового орошения, а из кубовой части колонны - очищенную технологическую жидкость.

Недостатком данного способа является низкая степень очистки раствора от примесей, особенно от примесей, которые имеют близкую к ДЭА температуру кипения (летучесть) и выводятся вместе с рекуперированным амином, а также повышенные потери из-за невысокой степени извлечения амина из загрязненного раствора.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение степени извлечения ДЭА из загрязненного водного раствора и уменьшение его потерь при очистке.

Технический результат достигается за счет того, что в способе очистки раствора диэтаноламина от примесей, включающем нагрев загрязненного водного раствора диэтаноламина, содержащего продукты деструкции диэтаноламина и термостабильные соли, с последующим фракционированием полученной парожидкостной смеси, указанную парожидкостную смесь фракционируют в ректификационной колонне при давлении 100-110 кПа и температуре куба 170-180°C с подачей в кубовую часть инертного газа, отгоняя воду, далее полученный кубовый остаток фракционируют в вакуумной ректификационной колонне при давлении 1-3 кПа и температуре куба 180-185°C с подачей в кубовую часть углеводородов C9-C13, получая дистиллят - очищенный диэтаноламин и кубовый остаток, содержащий продукты деструкции диэтаноламина и термостабильные соли.

В качестве инертного газа в кубовую часть ректификационной колонны может быть подан азот, а в качестве углеводородов C9-C13 в кубовую часть вакуумной ректификационной колонны может быть подана смесь жидких алифатических и ароматических углеводородов, выкипающих в пределах 155-210°C.

Сущность изобретения поясняется чертежом, на котором представлена схема очистки раствора ДЭА от примесей. Схема состоит из ректификационной колонны 1, вакуумной ректификационной колонны 2, холодильников 3 и 5, сепаратора 4, вакуумного трехфазного сепаратора 6, барометрических сборников 7 и 8, паровых подогревателей 9-12, рекуперативного теплообменника 13.

Способ реализуется следующим образом.

Загрязненный раствор ДЭА предварительно подогревают потоком кубового остатка из вакуумной ректификационной колонны 2 до 60-70°C в теплообменнике 13 и подают в верхнюю часть ректификационной колонны 1. На первой стадии разделения при контакте паровой и жидкой фаз на контактных элементах колонны происходит разделение воды и остатка, содержащего ДЭА, ПДД и ТСС. Не сконденсировавшиеся в холодильнике 3 пары углеводородов, ПДД, кислых газов (H2S и CO2) и азота из сепаратора 4 направляют на утилизацию. Сконденсированную воду из сепаратора 4 направляют на приготовление абсорбента путем смешения с перегнанным ДЭА, полученным на второй стадии.

Жидкий остаток ректификационной колонны 1 направляют на вторую стадию разделения в вакуумную ректификационную колонну 2, в которой осуществляют разделение ДЭА от ПДД и ТСС. С верхней части колонны 2 производят отбор паров ДЭА с их последующей конденсацией в холодильнике 5. В кубовую часть вакуумной ректификационной колонны 2 подают пары углеводородов С913. Сконденсированный ДЭА из вакуумного трехфазного сепаратора 6 поступает через гидрозатвор в барометрический сборник 7, а сконденсированные углеводороды С913 в барометрический сборник 8. Часть ДЭА из барометрического сборника 7 используют в качестве рефлюксного орошения, подаваемого наверх колонны 2. Кубовый остаток - ПДД и ТСС выводят под контролем уровня из кубовой части колонны 2 и через рекуперативный теплообменник 13 направляют на утилизацию.

Для ограничения содержания воды в кубовой части колонны 1 в нижнюю часть колонны 1 подают предварительно подогретый в паровом подогревателе 11 отдувочный инертный газ (азот) с температурой 180°C. С целью уменьшения потерь ДЭА с кубовым остатком в кубовую часть вакуумной ректификационной колонны 2 подают фракцию углеводородов C9-C13, предварительно подогретой в подогревателе 11 до температуры 180°C.

Пример реализации предлагаемого способа

Загрязненный раствор ДЭА, содержащий, % масс: 24,83 ДЭА; 14,82 ПДД; 1,0 ТСС; 58,82 H2O; 0,01 H2S; 0,05 CO2 - в количестве 2000 кг/ч с температурой 45°C подают насосом в рекуперативный теплообменник 13 и нагревают потоком кубового остатка из колонны 2 до 75°C. На первой стадии разделения нагретый загрязненный раствор ДЭА подают в верхнюю часть колонны 1, в которой при давлении 105 кПа происходит разделение воды и амина, содержащего ПДД и ТСС. В куб колонны 1 подают подогретый до 180°C азот в количестве 9,5 кг/ч. Пары с верха колонны 1 охлаждают и конденсируют в водяном холодильнике-дефлегматоре 3 до 50-55°C, далее газовую фазу отделяют от сконденсированной воды в сепараторе 4. Сконденсированную воду отводят из сепаратора 4 в количестве 1172,10 кг/ч и направляют на смешение с очищенным ДЭА для приготовления абсорбента для очистки газа, а несконденсированную газовую фазу в количестве 11,49 кг/ч, содержащую, % масс: 1,48 H2S, 8,18 CO2, 82,68 N2 и 7,66 воды направляют на утилизацию (в печь дожига).

Кубовую жидкость колонны 1, содержащую, % масс: 60,03 ДЭА, 36,06 ПДД, 2,42 ТСС и остатки воды, не отогнанной с первой стадии в количестве 825,91 кг/ч, под контролем уровня направляют в вакуумную ректификационную колонну 2, в которой при остаточном давлении 1,5 кПа и температуре куба 180°C осуществляют отделение ДЭА от ПДД и ТСС. Температуру верха колонны 150-160°C поддерживают подачей рефлюксного орошения в количестве 400-550 кг/ч.

В кубовую часть колонны подают предварительно нагретую до 185°C смесь парафиновых углеводородов (% масс: 40 С10, 35 С11, 25 C12) в количестве 230 кг/ч.

С верхней части вакуумной ректификационной колонны 2 после конденсации паров и разделения двух жидких фаз отводят 499,65 кг/ч жидкого ДЭА, содержащего около 3% примесей (ДЭП, ТСС, H2O) и смеси углеводородов в количестве 223,78 кг/ч. Несконденсированная паровая фаза, включая 9,6 кг/ч паров воды, 0,3 кг/ч ДЭА и 1,49 кг/ч углеводородов С913 поступает в вакуумный насос и далее на утилизацию. Из кубовой части вакуумной ректификационной колонны 2 под контролем уровня отбирается 321,99 кг/ч остатка перегонки, содержащего, % масс: 90,08 ПДД, 4,10 ДЭА и 4,35 ТСС и 1,47 смеси углеводородов. Потери углеводородов с кубовым остатком восполняются подпиткой в линию их циркуляции.

Необходимая температура кубовой части колонн 1 и 2 обеспечивается циркуляцией кубовой жидкости через паровые подогреватели 10 и 12, в которые подается водяной пар среднего давления. Подогрев смеси углеводородов и инертного газа обеспечивается паровыми подогревателями 9 и 11 соответственно.

Данные материального баланса, проведенной экспериментальной проверки предлагаемого способа с производительностью 2 т/ч по исходному загрязненному раствору ДЭА, показаны в таблицах 1 и 2. В таблице 1 показан материальный баланс при реализации первой стадии фракционирования загрязненного раствора ДЭА, в таблице 2 - материальный баланс при реализации второй стадии фракционирования ДЭА, в таблице 3 - общий баланс процесса в целом.

Из таблиц видно, что повышение степени извлечения ДЭА и уменьшение его потерь при очистке загрязненного водного раствора обеспечивается за счет двухстадийного процесса, в котором первую стадию осуществляют в ректификационной колонне при давлении 100-110 кПа и температуре куба 170-180°C с использованием отпарного агента - азота, отгоняя воду от загрязненного абсорбента, а вторую - под вакуумом при давлении 1,3-2 кПа и температуре куба 180-185°C с подачей смеси углеводородов C9-C13, получая очищенный дистиллят ДЭА и кубовый остаток, содержащий продукты деструкции диэтаноламина и термостабильные соли. Извлечение ДЭА из загрязненного раствора составляет 96,7%.

Таблица 2
Материальный баланс второй стадии фракционирования
Компоненты Питание колонны 2 Газ из сепаратора 6 Дистиллят колонны 2 (ДЭА) Кубовая фракция колонны 2
кг/ч % масс. кг/ч % масс. кг/ч % масс. кг/ч % масс.
H2S 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
СО2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Вода 12,30 1,49 9,60 84,28 3,60 0,72 0,00 0,00
ДЭА 495,81 60,03 0,30 2,63 482,31 96,53 13,20 4,10
ПДД 297,80 36,06 0,00 0,00 7,74 1,55 290,06 90,08
ТСС 20,00 2,42 0,00 0,00 6,00 1,20 14,00 4,35
Углеводородная фракция 230,00 1,49 13,09 223,78 4,73 1,47
Итого 1055,91 100,00 11,39 100,00 499,65 100,00 321,99 100,00

Таблица 3
Материальный баланс процесса фракционирования
Наименование кг/ч %
Приход 2000,00 99,22
1. Загрязненный абсорбент
2. Азот 9,50 0,47
3. Подпитка углеводородной фракции 6,22 0,31
ИТОГО 2015,72 100,00
Расход
1. Вода 1172,1 58,15
2. Фракция ДЭА 498,75 24,74
3. Кубовый остаток колонны 2 321,99 15,97
4. Газовые сбросы 22,88 1,14
ИТОГО 2015,72 100,00


СПОСОБ ОЧИСТКИ РАСТВОРА ДИЭТАНОЛАМИНА ОТ ПРИМЕСЕЙ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 164.
18.03.2020
№220.018.0cce

Способ оценки качества осушки полости трубопровода

Изобретение относится к транспорту углеводородных продуктов по трубопроводам и может быть использовано при эксплуатации, ремонте и реконструкции магистральных трубопроводов. В способе оценки качества осушки полости трубопровода, включающем перемещение пенополиуретанового поршня в осушенной...
Тип: Изобретение
Номер охранного документа: 0002716801
Дата охранного документа: 16.03.2020
30.03.2020
№220.018.11c1

Способ утилизации очищенных сточных вод

Изобретение относится к области экологии и может быть использовано для утилизации очищенных сточных вод при отсутствии возможности их сброса в поверхностные водные объекты. Способ состоит в принудительной подаче в сопло Лаваля очищенной сточной воды и воздуха, имеющего температуру, достаточную...
Тип: Изобретение
Номер охранного документа: 0002717995
Дата охранного документа: 27.03.2020
12.04.2023
№223.018.448c

Способ определения коррозионной активности гликолей в теплообменном оборудовании

Изобретение относится к области исследований коррозионных процессов и может быть использовано при определении скорости коррозии стали и коррозионной активности гликолей в теплообменном оборудовании. Способ определения коррозионной активности гликолей в теплообменном оборудовании включает...
Тип: Изобретение
Номер охранного документа: 0002777000
Дата охранного документа: 29.07.2022
12.04.2023
№223.018.449d

Способ контроля дебита газовой скважины

Изобретение относится к газодобывающей промышленности и может быть использовано для непрерывного измерения дебита газовых скважин в процессе их эксплуатации. Согласно способу газовую скважину переводят из рабочего режима в исследовательский режим, для чего перенаправляют газ, выходящий из...
Тип: Изобретение
Номер охранного документа: 0002770023
Дата охранного документа: 14.04.2022
12.04.2023
№223.018.449f

Устройство определения мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами

Изобретение относится к измерительной технике. Устройство поиска дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, состоит из неполяризующихся электродов сравнения, рамки, тросика фуникулера, сматывающего устройства, барабана, счетчика длины кабеля,...
Тип: Изобретение
Номер охранного документа: 0002770170
Дата охранного документа: 14.04.2022
12.04.2023
№223.018.44a2

Способ редуцирования природного газа

Изобретение относится к области газораспределения, в частности снижения давления природного газа с использованием редуцирующего устройства, и может быть использовано на газораспределительных станциях магистральных газопроводов. Техническим результатом изобретения является уменьшение перепада...
Тип: Изобретение
Номер охранного документа: 0002770349
Дата охранного документа: 15.04.2022
12.04.2023
№223.018.44ca

Устройство контроля качества изоляционного покрытия стального трубопровода, уложенного в грунт

Устройство контроля качества изоляционного покрытия участка стального трубопровода, уложенного в грунт, относится к системе контроля качества изоляции на законченных строительством участках стального трубопровода, в том числе, уложенного методом наклонно-направленного бурения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002767717
Дата охранного документа: 18.03.2022
12.04.2023
№223.018.4906

Устройство для защиты и закрепления трубопровода

Изобретение относится к трубопроводному транспорту нефти и газа и может быть использовано для механической защиты подземных трубопроводов на переходах через водные преграды. Техническим результатом изобретения является обеспечение защиты трубопровода от внешних механических воздействий,...
Тип: Изобретение
Номер охранного документа: 0002793804
Дата охранного документа: 06.04.2023
20.04.2023
№223.018.4ab0

Регулятор давления газа

Изобретение относится к области регулирования давления природных газов. Регулятор давления газа содержит внешний корпус с крышкой, в котором размещены электрогенератор, подключенный к электрогенератору через устройство управления нагревательный кабель, расположенный в стенке внешнего корпуса,...
Тип: Изобретение
Номер охранного документа: 0002787975
Дата охранного документа: 13.01.2023
20.04.2023
№223.018.4ab2

Протектор для защиты от коррозии труб с утяжеляющим покрытием

Протектор для защиты от коррозии труб с утяжеляющим покрытием относится к системе протекторной защиты от коррозии стальных сооружений, имеющих конструкцию с внешней металлополимерной оболочкой («труба в трубе»). Протектор для защиты от коррозии труб с утяжеляющим покрытием конструкции типа...
Тип: Изобретение
Номер охранного документа: 0002787326
Дата охранного документа: 09.01.2023
Показаны записи 81-89 из 89.
04.04.2018
№218.016.3017

Способ подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе...
Тип: Изобретение
Номер охранного документа: 0002645102
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3022

Способ абсорбционной подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе...
Тип: Изобретение
Номер охранного документа: 0002645124
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.30d4

Способ исследования скважин при кустовом размещении

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении газогидродинамических исследований и эксплуатации газовых, газоконденсатных и нефтяных скважин. Технический результат изобретения - расширение функциональных возможностей, заключающихся в...
Тип: Изобретение
Номер охранного документа: 0002644997
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3179

Способ частичного сжижения природного газа

Изобретение относится к области сжижения газов и их смесей и может быть применено для частичного сжижения в каскадных установках на газораспределительных станциях (ГРС) магистральных газопроводов. Отбирают поток природного газа из магистрального газопровода на ГРС, предварительно осушают,...
Тип: Изобретение
Номер охранного документа: 0002645095
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.31dc

Способ крепления продуктивного пласта-коллектора газовой скважины

Изобретение относится к газовой промышленности, в частности к способам повышения продуктивности эксплуатационных скважин подземных хранилищ газа и снижения водонасыщенности призабойной зоны пласта с использованием физико-химических методов воздействия на пласт-коллектор. В способе крепления...
Тип: Изобретение
Номер охранного документа: 0002645233
Дата охранного документа: 19.02.2018
04.04.2018
№218.016.36bd

Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон возможных разрушений и поражений человека осколками при авариях на объектах с обращением сжатого газа. Изобретение позволяет определять максимальную...
Тип: Изобретение
Номер охранного документа: 0002646525
Дата охранного документа: 05.03.2018
29.03.2019
№219.016.f0dd

Способ подготовки кислого газа для закачки в пласт через нагнетательную скважину

Изобретение относится к нефтегазовой промышленности, а именно к способам подготовки кислых газов к закачке в пласт через нагнетательную скважину с целью их утилизации. Обеспечивает исключение использования воды при закачке кислых газов в пласт, снижение риска коррозионных разрушений...
Тип: Изобретение
Номер охранного документа: 0002342525
Дата охранного документа: 27.12.2008
09.06.2019
№219.017.7d0f

Способ получения одоранта для природного газа

Изобретение относится к способу получения одоранта для природного газа из меркаптансодержащих углеводородов. Получение одоранта для природного газа осуществляют таким образом, что смесь природных меркаптанов подвергают фракционированию в две стадии с получением паровой и жидкой фаз, при этом...
Тип: Изобретение
Номер охранного документа: 0002419479
Дата охранного документа: 27.05.2011
24.01.2020
№220.017.f8f8

Бесступенчатый вариатор

Изобретение относится к машиностроению и может быть использовано в качестве бесступенчатой трансмиссии транспортных средств. Сущность изобретения заключается в том, что разработан бесступенчатый вариатор, характеризующийся тем, что ведущий и ведомый шкивы с изменяющимся диаметром, охваченные...
Тип: Изобретение
Номер охранного документа: 0002711843
Дата охранного документа: 22.01.2020
+ добавить свой РИД