×
10.07.2013
216.012.5401

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ СМЕСЕВОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА ДЛЯ СВАРКИ ВЗРЫВОМ И СМЕСЕВОЕ ВЗРЫВЧАТОЕ ВЕЩЕСТВО

Вид РИД

Изобретение

Аннотация: Изобретение относится области производства взрывчатых веществ (ВВ), а именно производства смесевых взрывчатых веществ, используемых для сварки взрывом. Способ изготовления смесевого ВВ для сварки взрывом включает подготовку и смешение компонентов ВВ, при этом перед смешением взрывчатый компонент перекристаллизовывают с получением нанодисперсного порошка из органического растворителя в виде соединений из группы диметилформамида, диметилсульфида или ацетона в воду, стабилизируют полученную дисперсию при повышенной температуре не более 100°С с последующим испарением органического растворителя и сушкой осадка, который затем перемешивают с инертным наполнителем и формируют смесевое взрывчатое вещество. Вещество, полученное данным способом, в качестве взрывчатого компонента содержит ТЭН, или октоген, или гексоген в виде предварительно преобразованного до ультрадисперсного состояния порошкообразного материала с размером частиц не более 10-10 м в количестве 30-70 масс.% и порошкообразный инертный наполнитель в виде бикарбоната натрия - остальное. Изобретение обеспечивает возможность проведения сварки взрывом мелких деталей и тонкопленочных элементов сборочных конструкций, например, тонких пластин или фольг, без деформирования и повреждений за счет обеспечения минимизации слоя ВВ и уменьшения критического слоя детонации до ~1,5 мм. 2 н.п. ф-лы, 3 ил., 1 табл., 1 пр.

Предлагаемое изобретение относится к области производства взрывчатых веществ (ВВ), а именно к производству смесевых взрывчатых веществ, используемых для сварки взрывом мелких деталей и тонкопленочных элементов конструкций.

Известно смесевое взрывчатое вещество (патент РФ №023845551, МПК C06B 23/00, публ. 20.03.2010 г.) на основе порошкообразного высокобризантного ВВ, содержащее взрывчатый компонент ТЭН, или октоген, или гексоген, и наполнителя в виде инертного невзрывчатого компонента, в качестве которого содержится неорганическое соединение в виде бикарбоната, при соотношении ингредиентов, % масс.: ВВ - 30-70, наполнитель - остальное, и способ его изготовления, включающий подготовку и смешение компонентов взрывчатого вещества и формирование заряда из него.

К недостаткам аналога относится отсутствие возможности осуществить сварку взрывом с его использованием для соединения тонкопленочных элементов (толщина привариваемой пленки не превышает 1-10 мкм) сборочных конструкций без деформирования и повреждения их целостности.

Задачей авторов предлагаемого изобретения является разработка состава смесевого ВВ для реализации сварки взрывом для соединения тонкопленочных элементов сборочных конструкций без деформирования и повреждения их целостности и способа изготовления смесевого ВВ, характеризующегося сравнительно невысокими показателями бризантности, фугасностью и величиной критического диаметра, скоростью детонации, достаточной для обеспечения качественной и точной сварки взрывом тонкопленочных элементов.

Новый технический результат, обеспечиваемый при использовании предлагаемого изобретения (способа), заключается в обеспечении возможности проведения сварки взрывом тонкопленочных элементов (толщина привариваемой пленки не превышает 1-10 мкм) сборочных конструкций без деформирования и повреждений за счет обеспечения минимизации критического слоя детонации ВВ до ~1,5 мм и повышения качества и точности сварного шва.

Указанные задача и новый технический результат обеспечиваются тем, что в известном способе изготовления смесевого взрывчатого вещества для сварки взрывом, включающем подготовку и смешение компонентов взрывчатого вещества, согласно предлагаемому изобретению перед смешением производят перекристаллизацию взрывчатого компонента с получением нанодисперсного порошка из органического растворителя в виде соединений из группы диметилформамида, диметилсульфида или ацетона в воду, стабилизацию полученной дисперсии в воде при повышенной температуре не более 100°C с последующим испарением органического растворителя и сушкой осадка, который затем перемешивают с инертным наполнителем и формируют смесевое взрывчатое вещество.

Новый технический результат, обеспечиваемый при использовании предлагаемого изобретения (взрывчатого состава), заключается в обеспечении возможности проведения сварки взрывом тонкопленочных элементов (толщина привариваемой пленки не превышает 1-10 мкм) сборочных конструкций без деформирования и повреждений за счет обеспечения минимизации критического слоя детонации ВВ до ~1,5 мм и повышения стабильности процесса сварки.

Указанные задача и новый технический результат обеспечиваются тем, что в известном смесевом взрывчатом веществе, содержащем взрывчатый компонент, порошкообразный инертный наполнитель в виде бикарбоната натрия, при соотношении ингредиентов, % масс.: ВВ - 30-70, наполнитель - остальное, согласно изобретению в качестве взрывчатого компонента содержится или ТЭН, или октоген, или гексоген в виде предварительно преобразованного до нанодисперсного состояния порошка с размером частиц не более 10-6-10-8 м.

Предлагаемый способ и смесевое ВВ поясняются следующим образом.

Первоначально проводят подготовку компонентов ВВ, для чего навеску мелкодисперсного ВВ растворяют в органическом растворителе заданной концентрации, режимы и концентрации процесса подбираются для каждого опыта индивидуально в зависимости от условий последующего процесса сварки тонких пленок.

Затем проводят перекристаллизацию взрывчатого компонента с получением нанодисперсного порошка из органического растворителя на основе соединений группы диметилформамида, диметилсульфоксида или ацетона в воду и стабилизацию полученной дисперсии в воде при повышенной температуре не более 100°C. Далее проводят испарение органического растворителя с последующей сушкой осадка. Высушенный нанодисперсный порошок ВВ перемешивают с инертным наполнителем и формируют смесевое ВВ. Испытания по осуществлению процесса сварки тонких пленок проводят с использованием опытной сборки.

На фиг.1 представлен вид опытной сборки, в которой применено предлагаемое BB. На жесткое основание (1) устанавливается металлическая пластина (2), к которой необходимо приваривать взрывом металлическую фольгу (3). Фольга размещается параллельно пластине на базе 1-2 мм. Фольга плотно без зазаоров и воздушных включений примыкает к дну контейнера (4) из плотной бумаги (толщина стенок 100 -200 мкм). В контейнер равномерно засыпается исходное смесевое ВВ (5). Излишки смесевого ВВ удаляют выравниванием горизонтальной линии относительно бортов контейнера. Предварительно в контейнер устанавливается инициатор детонационной волны (6) в смесевое BB.

Экспериментально показано, что для приваривания тонких металлических листов или фольг к другому металлу необходим их устойчивый полет до соударения. Однако использование ВВ с большой скоростью детонации или большой толщины образца ВВ приводит к нарушению стационарности метания тонкого листа. Лист теряет устойчивость, приобретает волнообразный профиль. Одни его участки отстают в полете, другие опережают. При соударении пластины, летящей с ярко выраженной разнодинамичностью, с неподвижной пластиной сварка взрывом не реализуется. Более того, фольга из малопрочного металла может порваться в полете. Поэтому для реализации сварки взрывом тонких листов и фольг требуется использование ВВ с малой скоростью детонации (D≈2 мм/мкс) в тонких слоях образца (h≤10 мм). Дальнейшее уменьшение толщины слоя ВВ достигается при использовании его в нанодисперсном состоянии.

Также экспериментальным путем установлено: оптимальным режимом сварки взрывом является режим с первоначально параллельным расположением листов (пластин, образцов). В данном случае скорость смыкания зазора между пластинами, т.н. скорость точки контакта υк=D (скорость смыкания или скорости перемещения точки контакта равна скорости детонации). В эксперименте показано, что при D≈2 мм/мкс реализуется сварка взрывом практически для всех существующих металлов и сплавов. Причем сварной шов приобретает оптимальную линейную (безволновую) форму. При скоростях D>2 мм/мкс (но в дозвуковом режиме косого соударения пластин) реализуется сварное соединение, имеющее волнообразный вид. Такая форма сварного шва специфична тем, что в точках, близких к гребню волны линии шва, возможно возникновение интерметаллических соединений, следствием чего возможно охрупчивание в таких зонах и некачественного соединения в целом.

Бикарбонат натрия (сода) - как это показано экспериментально, функционально проявляет себя как флегматизатор. Экспериментально установлено, что при содержании этого компонента в ВВ реализуются следующие величины скорости детонации:

при содержании 70% об.- скорость детонации 2 км/сек;

при 50% об. - скорость детонации 4 км/сек;

при 30% об. - скорость детонации 6 км/сек;

при содержании соды менее 30 об.% - не реализуется процесс сварки, из-за достаточно высокой скорости детонации процесс сварки выходит в режим развития высоких скоростей (переход в сверхзвуковой режим, когда сварка взрывом невозможна).

При малых количествах гексогена (ТЭНа, октогена) в взрывчатом веществе недостаточно энергии соударения соединяемых фрагментов, чтобы перевести область контакта в пластическое (расплавленное) состояние.

При малых количествах нанодисперсного гексогена (ТЭНа, октогена) во взрывчатом веществе недостаточно энергии соударения соединяемых фрагментов, чтобы перевести область контакта в пластическое (расплавленное) состояние.

При низких значениях ВВ (~30%) объем газовыделения соды и энергии взрыва гексогена (ТЭНа, октогена) не позволяет достигнуть скорости метания пластин, приемлемой для процесса сварки тонколистовых деталей. При более 70% содержании ВВ развиваются более высокие скорости полета пластины, чем это достаточно для указанного типа сварки. Изобретательский уровень в этом случае достигается экспериментальным подбором количественных соотношений компонентов смесевого ВВ, когда энергетические свойства высокобризантного компонента ВВ компенсируются газовыделяющей функцией соды, выступающей в роли дополнительного компрессионного агента (флегматизатора), что теоретически трудно было бы предположить.

Наличие газообразных продуктов при использовании в составе ВВ именно в заявляемых пределах соотношений бикарбоната натрия (соды): гексогена (ТЭНА, октогена), определенных экспериментально, образующихся при разложении невзрывчатого компонента, способствует удлинению времени контакта соединяемых фрагментов и препятствует значительному (сверх необходимой величины) развитию бризантности. Кроме того, наличие газов обеспечивает продолжительное воздействие газообразных продуктов на плоскость контакта свариваемых фрагментов деталей, что позволяет достичь перехода контактной границы свариваемых деталей в пластическое состояние в течение времени контакта и реализоваться более качественному сварному соединению.

Это способствует также плавному снижению показателя метательной способности, свойственной высокобризантным ВВ, и фугасности состава.

Метательная способность сохраняется на уровне прототипа, критический диаметр понижен (критический диаметр при плотности 1,7-3 г/см - 19-24 мм у прототипа, у заявляемого ВВ - критический диаметр менее 10 мм), бризантность качественно ниже (о чем свидетельствует состояние малодеформированных деталей после взрыва), чем в прототипе.

Преобразование порошкообразных ВВ до наноразмерного состояния (порошок с размером частиц не более 10-6-10-8 м) способствует еще большей минимизации слоя ВВ, способного к устойчивой детонации и достаточного для сварки тонких пленок, а следовательно, и уменьшению критического слоя детонации до ~1,5 мм.

В эксперименте опробованы нанодисперсные взрывчатые составы (НДВС) с диаметром компонент ~1 мкм (в прототипе - 20 мкм) и получены следующие характеристики: толщина критического слоя детонации - 1,5 мм, что, по-видимому, достигнуто за счет принципиального изменения режима процесса возбуждения детонации, что вызвано практическим отсутствием пор в массе нанодисперсного ВВ, возбуждение детонации происходит от ударной волны. В прототипе такой вид детонации проблематичен из-за наличия пустот между более крупными частицами мелкодисперсного порошка.

Использование предлагаемого изобретения позволит осуществлять приваривание взрывом сверхтонких пленок к к внутренним поверхностям труб, что обеспечит их работоспособность в экстремальных условиях (транспортировка агрессивных и токсичных сред) и существенно повысит экономический эффект при использовании, например, трубопроводов из стали, традиционно применяемых в газовой промышленности.

Таким образом, использование предлагаемого нанодисперсного ВВ в процессе сварки взрывом металлических деталей обеспечивает проведение качественной сварки взрывом тонкопленочных изделий или фольг за счет снижения показателей бризантности, фугасности, величины критического диаметра при детонации ВВ по сравнению с прототипом.

Возможность промышленной реализации предлагаемого смесевого взрывчатого вещества подтверждается следующими примерами.

Пример 1. В лабораторных условиях химическим методом получали микросоставы ВВ с заданным значением удельной поверхности (размером кристаллов) путем перекристаллизации *высадки) из ацетонового раствора в воду (или раствора другого органического соединения, например, диметилформамида, диметилсульфида) и стабилизации полученного микросостава в воде при повышенной температуре (Т≈100°C) в течение заданного времени (несколько часов).

Экспериментально подбирают и оптимизируют следующие параметры: концентрация раствора, модуль разбавления, темп слива, время слива, скорость вращения мешалки и осадителя в стабилизаторе.

Варьируется температура сушки.

Процесс изготовления смесевого ВВ включает следующие этапы:

- растворение красителя органического родамина (Ж) 6Ж в воде с соединением по массе ~1:1000, фильтрование раствора;

- окрашивание кристаллов ВВ путем внесения в расчетное количество порошкового ВВ раствора родамина Ж(6Ж) в воде, тщательное перемешивание;

- фильтрация суспензии окрашенного ВВ для визуализации процесса смешения (контроль степени смешения и исключения «комочков»);

- сушка в термостате слоя окрашенного ВВ толщиной <10 мм при температуре (90±%)°C не менее 1 часа, охлаждение в эксикаторе, контроль удельной поверхности (S уд.);

- взятие навески бикарбоната натрия, сушка в термостате слоя толщиной <10 мм при температуре (90±%)°C не менее 1 часа, охлаждение в эксикаторе;

- измельчение навески бикарбоната натрия до полного исчезновения «комочков», визуальный осмотр и контроль удельной поверхности (S уд.);

- механическое перемешивание порошкового ВВ и бикарбоната натрия до получения однородного состава;

- сушка в термостате слоя смесевого ВВ толщиной <10 мм при температуре (90±%)°C не менее 2 часов.

Затем производилась механическая сборка свариваемого узла (опытная сборка) со слоем полученного состава смесевого ВВ (фиг.1).

Предварительно выполняются экспериментальные измерения зависимости скорости детонации D от толщины слоя насыпного ВВ.

На фиг.2 приведена такая зависимость дл смесевых ВВ состава 35/65% весовых (ВВ - наполнитель): ТС (ТЭН-сода); ГС (гексоген - сода); ОС (октоген - сода).

На фиг.3 приведена такая зависимость дл смесевых ВВ той же концентрации, но с частицами наноразмера.

На массивном основании устанавливается пластина (объект, образец, предназначенный для приваривания к нему фольги, фольга). Над ней параллельно ее поверхности располагается метаемая (привариваемая) фольга толщиной ≤0,05 мм. Расстояние между пластинами (база полета ударника) составляет 0,5 мм ≤h≤1 мм и устанавливается при помощи стоек соответствующей конструкции. Метаемая фольга внешней поверхностью плотно, без воздушных включений, присоединяется к дну фиксирующего контейнера для смесевого ВВ (прямоугольная коробка из плотного картона).

Смесевое ВВ засыпается в контейнер. Порошок (смесевое ВВ) выравнивается по горизонтали относительно бортов контейнера. Инициирование осуществляется дополнительным зарядом ВВ либо по торцу (слоем пластического ВВ на основе мелкодисперсного ТЭНа, толщиной 1,5 мм), либо в одной точке (цилиндрическим зарядом пластического ВВ ⌀2 мм и высотой, равной толщине слоя смесевого ВВ).

После детонации смесевого ВВ в скользящем режиме продукты взрыва (ПВ) разгоняют и разворачивают метаемую фольгу. Осуществляется соударение образцов под углом. При этом реализуются необходимые условия для сварки взрывом (скорость перемещения точки контакта метаемой пластины по поверхности неподвижной υк≈км/с; угол соударения пластин γ≈15°, критический диаметр детонации dкр≈2 мм), что позволяет оптимизировать режим сварки взрывом именно деталей из фольг.

Для контроля сварного соединения пластины (после опыта) разрезались (вдоль направления вектора υк).

В таблице 1 приведены результаты трех опытов с наноразмерным смесевым ВВ (ТС, ГС, ОС) и сравнение их с прототипом (смесевое ВВ ТС с размером кристаллов 20 мкм).

Таблица 1.
Примеры реализации Величина критического диаметра, мм Скорость детонации, км/с Толщина ВВ (навеска) мм Толщина соединяемых тонкопленочных элементов, мкм Качество сварного шва
Прототип 6 2 6 100 Локальные микроискривления, наблюдаемые визуально
Пример 1 1,5 2 2 5 Отсутствие локальных дефектов
Пример 2 1,5 2 2 5 Отсутствие локальных дефектов
Пример 3 1,5 2 2 5 Отсутствие локальных дефектов


СПОСОБ ИЗГОТОВЛЕНИЯ СМЕСЕВОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА ДЛЯ СВАРКИ ВЗРЫВОМ И СМЕСЕВОЕ ВЗРЫВЧАТОЕ ВЕЩЕСТВО
СПОСОБ ИЗГОТОВЛЕНИЯ СМЕСЕВОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА ДЛЯ СВАРКИ ВЗРЫВОМ И СМЕСЕВОЕ ВЗРЫВЧАТОЕ ВЕЩЕСТВО
СПОСОБ ИЗГОТОВЛЕНИЯ СМЕСЕВОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА ДЛЯ СВАРКИ ВЗРЫВОМ И СМЕСЕВОЕ ВЗРЫВЧАТОЕ ВЕЩЕСТВО
Источник поступления информации: Роспатент

Показаны записи 171-180 из 207.
11.03.2019
№219.016.ddb3

Способ определения золота в отходах производства элементов электронной техники

Изобретение относится к способу определения золота в отходах производства элементов электронной техники методом атомно-абсорбционной спектрометрии (ААС). Способ включает приготовление и введение анализируемой пробы в виде раствора с помощью пневматической распылительной системы через гибкий...
Тип: Изобретение
Номер охранного документа: 0002464546
Дата охранного документа: 20.10.2012
10.04.2019
№219.017.0640

Измерительный преобразователь

Изобретение относится к измерительной технике и может быть использовано для преобразования сигнала в виде частоты импульсов. Согласно изобретению измерительный преобразователь содержит генератор опорной частоты, делитель частоты, дешифратор, первый мультиплексор, селектор, вход которого...
Тип: Изобретение
Номер охранного документа: 0002416071
Дата охранного документа: 10.04.2011
10.04.2019
№219.017.07da

Стенд для ударных испытаний

Изобретение относится к испытательной технике. Преимущественная область использования - исследования высокоскоростных ударных явлений. Технический результат заключается в обеспечении с высокой точностью требуемой взаимной ориентации ударника и мишени в момент их соударения, исключении...
Тип: Изобретение
Номер охранного документа: 0002402004
Дата охранного документа: 20.10.2010
10.04.2019
№219.017.081d

Способ определения концентрации бета-радиоактивных газов

Изобретение относится к области радиохимии и может быть использовано при проведении технологического контроля или научно-исследовательских работ, связанных с изучением кинетики взаимодействия бета-радиоактивных газов. Технический результат - проведение прямого определения концентрации...
Тип: Изобретение
Номер охранного документа: 0002400773
Дата охранного документа: 27.09.2010
10.04.2019
№219.017.083a

Ударный стенд

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Технический результат - приближение условий испытаний к натурным. Ударный стенд содержит цилиндрическую взрывную камеру с установленным в нее зарядом ВВ, к которой...
Тип: Изобретение
Номер охранного документа: 0002438109
Дата охранного документа: 27.12.2011
10.04.2019
№219.017.0844

Ударный стенд

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие перегрузок. Устройство содержит камеру высокого давления, соединенную с полостью ствола, установленный в стволе контейнер в виде полого поршня, стол, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002438110
Дата охранного документа: 27.12.2011
10.04.2019
№219.017.0845

Устройство для заполнения емкости газом высокой чистоты

Изобретение относится к устройствам для заполнения емкостей газами высокой чистоты. Устройство для заполнения емкости газом высокой чистоты содержит систему напуска газа, снабженную заправочным трубопроводом с разъемом для емкости и коммутационной арматурой. Устройство характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002438946
Дата охранного документа: 10.01.2012
10.04.2019
№219.017.093c

Блок кодовый сменный

Изобретение относится к вычислительной технике. Технический результат заключается в исключении влияния помехи электрической природы и внешних электромагнитных полей. Блок кодовый сменный, содержащий соединитель, блок защиты цепей, блок сопряжения, блок управления и блок памяти, последовательно...
Тип: Изобретение
Номер охранного документа: 0002447502
Дата охранного документа: 10.04.2012
10.04.2019
№219.017.0985

Способ обращения к данным, хранимым в параллельной файловой системе, с иерархической организацией памяти

Изобретение относится к организации иерархической памяти компьютерных файлов данных. Техническим результатом является повышение производительности передачи данных, масштабируемость и обеспечение гибких механизмов управления потоками данных и политиками хранения, балансировки нагрузки. Способ...
Тип: Изобретение
Номер охранного документа: 0002469388
Дата охранного документа: 10.12.2012
19.04.2019
№219.017.30cd

Датчик положения объекта (варианты)

Изобретение относится к области измерения параметров движения объектов и может быть применено для определения положения и скорости объекта, движущегося относительно другого объекта (основания). По первому варианту датчик положения объекта, движущегося относительно другого объекта, содержит...
Тип: Изобретение
Номер охранного документа: 0002410700
Дата охранного документа: 27.01.2011
Показаны записи 171-174 из 174.
20.06.2019
№219.017.8d3a

Способ получения соединения антифрикционного сплава со сталью сваркой взрывом

Изобретение может найти применение при изготовлении многослойной конструкции подшипников скольжения, в частности, состоящих из стального основания и плакирующего слоя из антифрикционного сплава бронзы, содержащей свинец, например оловянно-свинцовой бронзы. Устанавливают пластину из...
Тип: Изобретение
Номер охранного документа: 0002692009
Дата охранного документа: 19.06.2019
31.07.2019
№219.017.ba52

Способ спектрометрического анализа газообразных продуктов разложения взрывчатых веществ

Данное изобретение относится к области методов анализа механизмов поведения взрывчатых веществ (ВВ) при термических воздействиях и может быть использовано для исследования продуктов терморазложения ВВ. Сущность изобретения заключается в том, что в отличие от известного способа анализа...
Тип: Изобретение
Номер охранного документа: 0002695954
Дата охранного документа: 29.07.2019
31.07.2019
№219.017.ba6a

Способ сварки взрывом металлических листов

Изобретение может быть использовано для получения крупнотолщинных биметаллических деталей сваркой взрывом. Листовую заготовку из бронзы толщиной не менее 30 мм разделяют по меньшей мере на два фрагмента вдоль площади их соприкосновения. Оуществляют сборку пакета из листовой заготовки из...
Тип: Изобретение
Номер охранного документа: 0002695855
Дата охранного документа: 29.07.2019
29.02.2020
№220.018.073e

Способ изготовления взрывчатого наноструктурированного материала

Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в...
Тип: Изобретение
Номер охранного документа: 0002715195
Дата охранного документа: 25.02.2020
+ добавить свой РИД