×
27.06.2013
216.012.51ea

Результат интеллектуальной деятельности: СИСТЕМА ИДЕНТИФИКАЦИИ ОБЪЕКТОВ УПРАВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к автоматическому управлению и может быть использовано в системах автоматического управления динамическими нестационарными объектами, математические модели которых содержат переменные операторы и/или параметры. Технический результат заключается в повышении точности идентификации объектов управления. Система содержит модель объекта управления, третий блок сравнения и блок расчета параметров модели объекта, вход которого соединен с выходом операторного регулятора, выход блока расчета параметров модели подключен к второму выходу системы идентификации объекта управления и соединен с первым входом модели объекта управления, второй и третий входы которой соединены соответственно с входом и выходом объекта управления; первый, второй и третий выходы модели объекта управления подключены соответственно к первому входу третьего блока сравнения, к второму и третьему входам операторного регулятора, второй вход третьего блока сравнения соединен с выходом объекта управления, а выход третьего блока сравнения подключен к второму входу второго блока сравнения и к входу блока формирования свойств ошибок регулирования. 2 з.п. ф-лы, 3 ил.

Изобретение относится к автоматическому управлению и может быть использовано в системах автоматического управления динамическими нестационарными объектами, математические модели которых содержат переменные операторы и/или параметры.

Примером таких объектов может служить вихревая топка для сжигания смеси угля и водно-шламового топлива, технологический процесс в которой подвержен влиянию неконтролируемых возмущений, обусловленных, в частности, изменениями характеристик качества угля и водно-шламового топлива, нарушениями процесса распыления последнего, старением элементов конструкции топки, что приводит к изменению динамики тепловых процессов и, соответственно, динамики каналов преобразования материальных и энергетических потоков. Кроме того, рассматриваемый объект является объектом с вариабельной структурой, которая изменяется, например, при переключении установки на работу с подачей и без подачи угля, что наряду с изменением структуры объекта управления влечет за собой необходимость изменения его математической модели.

Для идентификации объектов управления известен адаптивный идентификатор [1], содержащий первую модель объекта, первый блок сравнения, сумматор, первый блок задержки, вторую модель объекта, второй блок сравнения, последовательно включенные регулятор, экстраполятор и второй блок задержки, соединенный выходом с первым входом второй модели объекта и второго блока сравнения, второй вход которого соединен с выходом регулятора, а выход - с первым входом первой модели объекта, выход которой соединен с первым входом сумматора, первый и второй входы первого блока сравнения соединены соответственно с выходом сумматора и первым входом идентификатора, второй вход которого соединен через первый блок задержки с вторым входом первой и второй моделей объекта, выходы которых соединены соответственно с первым и вторым входами сумматора, выход первого блока сравнения подключен к входу регулятора.

При работе идентификатора в модельно-замкнутом контуре регулирования, составленном из сумматора, первой модели объекта, регулятора, первого и второго блоков сравнения, восстанавливается с запаздыванием оценка коэффициента передачи объекта. Эта оценка экстраполируется на текущий момент времени, а также корректируется с учетом ошибки экстраполяции, которая определяется в контуре, содержащем второй блок задержки и второй блок сравнения.

Недостатком известного идентификатора являются его низкие функциональные возможности, так как он ориентирован для определения лишь оценки коэффициента передачи динамического объекта.

Наиболее близкой по технической сущности к предлагаемой системе идентификации объектов управления является система управления [2], содержащая объект управления, последовательно включенные задатчик, первый блок сравнения, блок формирования свойств ошибок регулирования, второй блок сравнения, операторный регулятор, координатный регулятор, второй вход которого соединен с выходом первого блока сравнения, выход координатного регулятора соединен с входом объекта управления, выход которого подключен к второму входу первого блока сравнения, выход которого подключен к второму входу второго блока сравнения, выход объекта управления подключен к выходу системы.

При работе системы управления в зависимости от сигнала рассогласования на выходе первого блока сравнения координатным регулятором вырабатывается регулирующее воздействие, например, с целью обеспечения заданных свойств ошибок регулирования выходного воздействия объекта управления, подверженного влиянию неизвестного возмущения. При этом если ошибка координатного регулирования не соответствует заданным ее свойствам, сигнал о которых формируется на выходе блока формирования свойств ошибок регулирования, то операторным регулятором вырабатываются управляющие воздействия на изменения структуры или значений параметров закона регулирования, реализуемого в координатном регуляторе.

Недостатком этой системы является низкая функциональная возможность, так как она не предназначена для выполнения функции идентификации нестационарного объекта, т.е. оценивания структуры и значений параметров его математической модели.

Задача изобретения - расширение функциональных возможностей системы.

Поставленная задача достигается тем, что в систему, содержащую задатчик, последовательно соединенные объект управления, первый блок сравнения, координатный регулятор, последовательно соединенные блок формирования свойств ошибок регулирования, второй блок сравнения, операторный регулятор, причем выход координатного регулятора соединен с входом объекта управления, выход которого является первым выходом системы, выход задатчика подключен к второму входу первого блока сравнения, введены модель объекта управления, третий блок сравнения и блок расчета параметров модели объекта, вход которого соединен с выходом операторного регулятора, выход блока расчета параметров модели подключен к второму выходу системы идентификации объекта управления и соединен с первым входом модели объекта управления, второй и третий входы которой соединены соответственно с входом и выходом объекта управления; первый, второй и третий выходы модели объекта управления подключены соответственно к первому входу третьего блока сравнения, к второму и третьему входам операторного регулятора, второй вход третьего блока сравнения соединен с выходом объекта управления, а выход третьего блока сравнения подключен к второму входу второго блока сравнения и к входу блока формирования свойств ошибок регулирования.

Модель объекта управления содержит последовательно соединенные первый блок задержки, четвертый блок сравнения, модель объекта в приращениях и пятый блок сравнения, второй блок задержки, вход которого соединен с третьим входом модели объекта управления, а выход второго блока задержки подключен к второму входу пятого блока сравнения, выход которого соединен с первым выходом модели объекта управления, выход модели объекта в приращениях соединен с вторым выходом модели объекта управления, третий выход которой соединен с первым входом модели объекта в приращениях, второй вход четвертого блока сравнения соединен с входом первого блока задержки и вторым входом модели объекта управления, второй вход модели объекта в приращениях подключен к первому входу модели объекта управления, который соединен с выходом блока расчета параметров модели.

Операторный регулятор содержит последовательно соединенные первый блок переопределения сигнала, первый блок возведения в квадрат, сумматор, первый блок деления, первый блок умножения, первый блок интегрирования и первый масштабирующий блок, последовательно соединенные блок дифференцирования, второй блок переопределения сигнала, второй блок деления, второй блок умножения, второй блок интегрирования и второй масштабирующий блок, второй блок возведения в квадрат, вход которого соединен с выходом второго блока переопределения сигнала, а своим выходом подключен к второму входу сумматора, первый вход операторного регулятора, соединенный с выходом второго блока сравнения, подключен к вторым входам первого и второго блоков умножения соответственно, второй вход операторного регулятора, соединенный с вторым выходом модели объекта управления, подключен к входу блока дифференцирования, третий вход операторного регулятора, соединенный с третьим выходом модели объекта управления, подключен к входу первого блока переопределения сигнала, выход которого соединен с вторым входом первого блока деления, первый вход которого соединен с вторым входом второго блока деления, первый вход которого подключен к входу второго блока возведения в квадрат, выходы первого и второго масштабирующих блоков подключены к выходу операторного регулятора и являются составляющими его выходного сигнала, соединенного с входом блока расчета параметров модели.

На фиг.1 приведена блок-схема системы идентификации объекта управления. На фиг.1 приведены следующие обозначения:

u(t) - сигнал об управляющем воздействии;

y(t) - сигнал о выходном воздействии объекта управления;

kj(t); - сигнал об оценках коэффициентов модели объекта управления;

J - число этих коэффициентов;

t - непрерывное время.

На фиг.2 представлена блок-схема модели объекта управления, которая является одним из вариантов реализации модели объекта управления 5. На фиг.2 приведены следующие обозначения:

yM(t) - сигнал о выходном воздействии модели объекта управления;

δu(t) - разность сигналов u(t) и u(t-τ);

δy(t) - сигнал о выходном воздействии модели объекта управления в приращениях.

На фиг.3 приведен пример блок-схемы операторного регулятора, реализующего закон функционирования (16), (17), (10), (11). На фиг.3 приведены следующие обозначения:

σ(t) - сигнал об отклонении ошибки модели объекта εy(t) от задания на свойства ошибки операторного регулирования;

; - сигналы о текущих оценках коэффициентов линейно-параметрической модели (9).

Система идентификации объектов управления содержит объект управления 1, координатный регулятор 2, первый блок 3 сравнения, задатчик 4, модель 5 объекта управления, третий блок 6 сравнения, блок 7 расчета параметров модели, операторный регулятор 8, второй блок 9 сравнения, блок 10 формирования свойств ошибок регулирования.

Модель объекта управления содержит первый блок 11 задержки, четвертый блок 12 сравнения, модель 13 объекта в приращениях, пятый блок 14 сравнения и второй блок 15 задержки.

Операторный регулятор содержит первый блок 16 переопределения сигнала, первый блок 17 возведения в квадрат, первый блок 18 деления, первый блок 19 умножения, сумматор 20, первый блок 21 интегрирования, первый масштабирующий блок 22, блок 23 дифференцирования, второй блок 24 переопределения сигнала, второй блок 25 возведения в квадрат, второй блок 26 деления, второй блок 27 умножения, второй блок 28 интегрирования и второй масштабирующий блок 29.

Система идентификации объектов управления работает следующим образом. Сигнал y(t) о выходном воздействии объекта управления 1 поступает по первому входу в первый блок 3 сравнения, где он сравнивается с сигналом y*(t) о задании на выходную переменную объекта 1, который поступает с выхода задатчика 4 на второй вход первого блока 3 сравнения. Выходной сигнал ε(t) первого блока 3 сравнения поступает в координатный регулятор 2, на выходе которого появляется сигнал u(t) об управляющем воздействии, вырабатываемый в соответствии с алгоритмом fR{·} координатного регулирования

Сигнал u(t) с выхода координатного регулятора 2 подается на второй вход модели 5 объекта управления и на вход объекта управления 1, где он обеспечивает с требуемой точностью компенсацию отклонений сигналов y(t) от y*(t). Одновременно с сигналом u(t) на вход модели 5 объекта управления подается сигнал y(t), с использованием которых осуществляется расчет сигнала yM(t) о выходном воздействии модели 5 объекта управления.

Функционирование модели 5 объекта управления осуществляется следующим образом. Сигнал u(t) с выхода координатного регулятора 2 задерживается в первом блоке 11 задержки на время задержки τ и вычитается из сигнала u(t). Полученная разность сигналов δu(t) поступает на первый вход модели 13 объекта в приращениях, на второй вход которой подается с выхода блока 7 расчета параметров модели сигнал о текущих значениях оценок ее коэффициентов a 1(t). Сигнал δy(t) с выхода модели 13 объекта в приращениях, характеризующий ее реакцию на приращение δu(t), суммируется в пятом блоке 14 сравнения с предварительно задержанным на время τ во втором блоке 15 задержки выходным сигналом y(t-τ) объекта управления 1, формируя на первом выходе модели 5 объекта управления сигнал yM(t).

Закон функционирования модели 5 объекта управления в общем виде представлен следующими выражениями

где τ - время задержки сигналов u(t) и y(t);

fз{·} - оператор задержки сигналов на время τ;

φ{·) - оператор модели объекта в приращениях;

- коэффициенты модели объекта в приращениях;

J - число коэффициентов.

В частности, модель (4), в том числе и нелинейная, может быть представлена в удобной для идентификации линейно-параметрической форме

где ; - коэффициенты линейно-параметрической модели объекта в приращениях;

Jл - число коэффициентов линейно-параметрической модели.

Например, если модель 13 объекта в приращениях представлена в виде линейного дифференциального уравнения первого порядка

где Т(t), k(t) - текущие значения оценок параметров модели в приращениях: постоянной времени и коэффициента передачи соответственно, которые являются составляющими сигнала kj(t), то выражение (7) будет иметь вид

Сигнал yM(t) с первого выхода модели 5 объекта управления поступает по первому входу в третий блок 6 сравнения, где он вычитается из сигнала y(t), поступающего по второму входу третьего блока 6 сравнения с выхода объекта управления 1. Выходной сигнал εy(t) третьего блока сравнения 6, пропорциональный разности сигналов с выхода объекта управления 1 y(t) и с первого выхода модели 5 объекта управления yM(t), т.е.

поступает по второму входу во второй блок 9 сравнения и на вход блока 10 формирования свойств ошибок регулирования, в котором реализуется оператор S{εy(t)}, отражающий в общем виде задание на свойства ошибок операторного регулирования.

Как вариант, это задание может быть связано с характером переходного процесса ошибки εy(t) и, в частности, выражено с помощью соотношения следующего вида

где α - постоянный коэффициент.

Сигнал поступает по первому входу во второй блок 9 сравнения, где он сравнивается с сигналом εy(t), вырабатывая на выходе второго блока 9 сравнения сигнал

который поступает на первый вход операторного регулятора 8, на второй и третий входы которого поступают сигналы δy(t) и δu(t) соответственно со второго и третьего выходов модели 5 объекта управления.

Закон функционирования операторного регулятора 8, который может реализовать в частном случае функции параметрического регулятора, в общем виде представлен с помощью следующих выражений

;

;

;

εy(t)=y(t)-yM(t),

где fи{·} - оператор текущего оценивания коэффициентов модели в приращениях.

Если модель 13 объекта в приращениях представлена в виде выражения (9), то выражение (15) примет следующий вид

δu1(t)=δu(t);

где θ - интервал интегрирования.

Функционирование операторного регулятора осуществляется следующим образом. Сигнал δu(t) с третьего выхода модели объекта управления 5 поступает по третьему входу операторного регулятора в первый блок 16 переопределения сигнала и, после преобразования в соответствии с выражением (10) в сигнал δu1(t), поступает в первый блок 17 возведения в квадрат, формируя на его выходе сигнал, пропорциональный значению , который по первому входу поступает в сумматор 20.

Одновременно с сигналом δu(t) сигнал δy(t) с второго выхода модели 5 объекта управления поступает по второму входу операторного регулятора в блок 23 дифференцирования, на выходе которого формируется сигнал, пропорциональный значению производной , который, поступая во второй блок 24 переопределения сигнала, преобразуется в соответствии с выражением (11) в сигнал δu2(t). Последний, поступая во второй блок 25 возведения в квадрат, формирует на его выходе сигнал, пропорциональный значению , который через второй вход поступает в сумматор 20, где, суммируясь с сигналом , вырабатывает на выходе блока 20 сигнал, пропорциональный . Этот сигнал по вторым входам поступает в блоки 18 и 26 деления, на выходе которых вырабатываются сигналы, пропорциональные значениям и соответственно.

Одновременно с сигналами δu(t) и δy(t) через первый вход операторного регулятора на вторые входы первого 19 и второго 27 блоков умножения поступает с выхода второго блока 9 сравнения сигнал σ(t), пропорциональный отклонению ошибки модели 5 объекта εy(t) от сигнала о задании на свойства ошибки операторного регулирования, т.е.

Значения сигнала определяются в блоке 10 формирования свойств ошибок регулирования. Выходные сигналы блоков 19 и 27 умножения поступают соответственно в первый 21 и второй 28 блоки интегрирования, а затем в первый 22 и второй 29 масштабирующие блоки, где умножаются на величину .

Таким образом, на выходе первого масштабирующего блока 22 вырабатывается сигнал, пропорциональный текущей оценке коэффициента

,

что соответствует выражению (16), а на выходе второго масштабирующего блока 29 - сигнал, пропорциональный

,

что соответствует выражению (17). Эти сигналы, являясь составляющими сигнала поступают с выхода операторного регулятора 8 на вход блока 7 расчета параметров модели, в котором текущие оценки коэффициентов и линейно-параметрической модели (9) пересчитываются в коэффициенты модели объекта в приращениях (4). В частности, если эта модель представлена выражением (8), то их пересчет осуществляется по формулам

Текущие оценки коэффициентов модели (8), являющейся частным случаем модели объекта в приращениях (4), поступают как составляющие сигнала kj(t)={k(t);T(t)} из блока 7 расчета параметров модели в модель 13 объекта в приращениях, как одного из элементов модели объекта управления. Тем самым обеспечивается непрерывная корректировка оценок коэффициентов этой модели.

Введение новых блоков и связей позволяет расширить функциональные возможности системы идентификации объектов управления, т.е. оценивать структуру и значения параметров математической модели нестационарного объекта управления. Это также дает возможность использовать эту систему для идентификации линейных и нелинейных объектов управления, модели которых можно привести к линейно-параметрической форме.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. SU 1365047 A1. 07.07.1986.

2. Емельянов С.В., Коровин С.К. Новые типы обратной связи: Управление при неопределенности. - М.: Наука. Физматлит, 1997. - 352 с., с. 143, рис.3.16.


СИСТЕМА ИДЕНТИФИКАЦИИ ОБЪЕКТОВ УПРАВЛЕНИЯ
СИСТЕМА ИДЕНТИФИКАЦИИ ОБЪЕКТОВ УПРАВЛЕНИЯ
СИСТЕМА ИДЕНТИФИКАЦИИ ОБЪЕКТОВ УПРАВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
27.02.2015
№216.013.2cb2

Система регулирования объекта с рециклом

Изобретение относится к автоматическому управлению. Технический результат - расширение функциональных возможностей и обеспечение работоспособности системы регулирования объекта с рециклом при смене режимов технологического процесса. Это достигается тем, что в систему регулирования для объектов...
Тип: Изобретение
Номер охранного документа: 0002542910
Дата охранного документа: 27.02.2015
10.09.2015
№216.013.7835

Система регулирования объекта с рециклом

Изобретение относится к автоматическому управлению и регулированию. Технический результат - обеспечение работоспособности системы регулирования объекта с рециклом при числе управляющих воздействий объекта больше числа целевых выходных переменных. Это достигается тем, что в систему регулирования...
Тип: Изобретение
Номер охранного документа: 0002562362
Дата охранного документа: 10.09.2015
10.05.2016
№216.015.3adc

Система управления динамическими объектами управления с их идентификацией

Изобретение относится к автоматическому управлению и может быть использовано в системах автоматического управления динамическими нестационарными объектами, математические модели которых могут содержать переменные операторы и/или параметры. Технический результат - расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002583746
Дата охранного документа: 10.05.2016
Показаны записи 61-70 из 104.
10.12.2015
№216.013.9636

Складывающаяся искусственная неровность для принудительного снижения скорости движения автомобилей

Изобретение относится к участкам дорог, на которых устраиваются искусственные неровности (ИН), и может быть использовано при строительстве (ИН). Технический результат - обеспечение безопасности передвижения людей по «пешеходному переходу», увеличение пропускной способности автодороги....
Тип: Изобретение
Номер охранного документа: 0002570074
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.99d9

Сдвижные тиски

Изобретение относится к машиностроению, а именно к винтовым механизмам в виде сдвижных тисков. Сдвижные тиски содержат вал с резьбой, соединенный со стойкой в поворотную пару, подвижную губку, соединенную со стойкой в поступательную пару и с валом в винтовую кинематическую пару. На валу...
Тип: Изобретение
Номер охранного документа: 0002571010
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ac4

Способ упрочняющей обработки стали 20х13

Изобретение относится к упрочняющей обработке детали из стали с использованием концентрированных потоков энергии. Для повышения ресурса работы деталей машин и механизмов, работающих в условиях многоциклового усталостного разрушения, способ включает получение поверхностных слоев с...
Тип: Изобретение
Номер охранного документа: 0002571245
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a043

Шлакообразующая смесь для непрерывной разливки стали

Изобретение относится к черной металлургии. Шлакообразующая смесь содержит, мас.%: аморфный графит 10-20, известь 20-30, микрокремнезем 30-40 и пылевидные отходы производства алюминия 20-30. Смесь обеспечивает снижение брака по поверхностным дефектам, уменьшение неметаллических включений и...
Тип: Изобретение
Номер охранного документа: 0002572669
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c2b0

Образец для испытания на прочность при нагреве прямым пропусканием тока

Изобретение относится к испытательной технике, в частности к высокотемпературным испытаниям на прочность, и может быть использовано при исследовании свойств наплавленного металла, обладающего высокой твердостью, на установках тепловой микроскопии. Образец выполнен в виде стержневой рабочей...
Тип: Изобретение
Номер охранного документа: 0002574233
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2c18

Шихта порошковой проволоки

Изобретение может быть использовано при наплавке порошковой проволокой рабочих поверхностей деталей металлургического оборудования, к которым предъявляются повышенные требования по твердости и износостойкости. Шихта порошковой проволоки содержит компоненты в следующем соотношении, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002579328
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3a3d

Способ получения окатышей

Изобретение относится к области черной металлургии, а именно к производству железорудных окатышей. На днище окомкователя формируют гарнисаж, подают влажную шихту в окомкователь двумя потоками, первый из них вводят в поток сжатого газа в корпусе струйного аппарата с образованием...
Тип: Изобретение
Номер охранного документа: 0002583226
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3a57

Уравновешенный кривошипно-ползунный механизм

Изобретение относится к машиностроению, а именно к кривошипно-ползунным механизмам. Уравновешенный кривошипно-ползунный механизм содержит четыре кинематически подвижных звена, в том числе кривошип, шатун и ползун. Шатун соединен с ползуном через четвёртое звено, образующее сферическую пару с...
Тип: Изобретение
Номер охранного документа: 0002583329
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3acd

Валковая дробилка

Изобретение предназначено для измельчения материалов. Валковая дробилка содержит корпус, приводной вращающийся валок (1) и неподвижную щеку (3). Упоры (2) выполнены на поверхности валка. Упоры валка расположены параллельно оси валка. Рабочая поверхность упоров валка направлена в сторону...
Тип: Изобретение
Номер охранного документа: 0002583096
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3adc

Система управления динамическими объектами управления с их идентификацией

Изобретение относится к автоматическому управлению и может быть использовано в системах автоматического управления динамическими нестационарными объектами, математические модели которых могут содержать переменные операторы и/или параметры. Технический результат - расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002583746
Дата охранного документа: 10.05.2016
+ добавить свой РИД