×
27.06.2013
216.012.503d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИТИЧЕСКИ АКТИВНОГО ДИОКСИДА ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, катализаторов. Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана включает осаждение диоксида титана одновременным сливанием в воду раствора соли титана и водного раствора аммиака при постоянных pH и температуре и интенсивном перемешивании, промывку, сушку и термообработку образовавшегося осадка. Осаждение ведут из раствора сульфата титанила при pH=3-6 и температуре 50-80°C. При этом раствор сульфата титанила готовят растворением четыреххлористого титана при комнатной температуре в слабоконцентрированной серной кислоте 4,5-22% при массовом соотношении SO/Ti=0,5-3 с последующим разбавлением дистиллированной водой до концентрации 150-250 г/л TiO. Изобретение позволяет повысить фотокаталитическую активность диоксида титана, получаемого из четыреххлористого титана. 1 табл., 8 пр.
Основные результаты: Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана, включающий осаждение диоксида титана одновременным сливанием в воду раствора соли титана и водного раствора аммиака при постоянных pH и температуре и интенсивном перемешивании, промывку, сушку и термообработку образовавшегося осадка, отличающийся тем, что осаждение ведут из раствора сульфата титанила при pH 3-6 и температуре 50-80°C, при этом раствор сульфата титанила готовят растворением четыреххлористого титана при комнатной температуре в слабоконцентрированной серной кислоте 4,5-22% при массовом соотношении SO/Ti=0,5-3 с последующим разбавлением дистиллированной водой до концентрации 150-250 г/л TiO.

Изобретение относится к способу получения нанодисперсного диоксида титана, используемого в качестве фотокатализатора.

Нанодисперсный диоксид титана в последнее время находит все более широкое применение в различных областях современной науки и техники, в том числе в фотокатализе, электрохимии, оптике, микроэлектронике, в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, газовых датчиков, в синтезе мезопористых пленочных покрытий, катализаторов и носителей катализаторов для процессов экологической очистки, в нанобиотехнологии, фундаментальной медицине и др.

В качестве фотокатализатора применяется нанодисперсный диоксид титана анатазной модификации, который под воздействием ультрафиолетового излучения может эффективно обезвреживать многие вредные химические вещества в воздухе и воде, такие как органические спирты, альдегиды, кислоты, ароматические и хлорорганические соединения, красители и др. Фотокаталитическая активность диоксида титана в значительной степени зависит от природы исходного сырья и способа его приготовления. Для получения диоксида титана в качестве наиболее доступных источников исходного сырья, производимых в мире в достаточно больших объемах, могут быть использованы растворы сульфата титанила, применяемые в производстве пигментного диоксида титана, и четыреххлористый титан, применяемый в производстве губчатого титана [1]. Из анализа патентной и научно-технической информации следует, что диоксид титана, содержащий сульфат-ионы, часто обладает более высокой фотокаталитической активностью по сравнению с катализаторами, не содержащими сульфат-ионов [2-6].

Известные методы приготовления сульфатированного диоксида титана можно разделить на две группы: сульфатирование TiO2 пропиткой сульфатом аммония или серной кислотой [5, 6] и гидротермальный синтез TiO2 непосредственно из растворов сульфата титанила [2-4]. При синтезе по второму способу получают нанодисперсные частицы анатаза с сильно разупорядоченной кристаллической структурой, в которой стабилизируются сульфат-ионы [7-8].

В России в настоящее время в достаточно больших объемах производится лишь четыреххлористый титан, который может стать перспективным материалом в качестве исходного соединения титана в получении фотокаталитически активного диоксида титана.

Известны способы получения фотокаталитически активного диоксида титана по сернокислотной технологии [2-4] путем термического гидролиза растворов сульфата титанила в присутствии избытка серной кислоты при температуре 100-250°C в течение нескольких часов. Полученный в результате термического гидролиза гидрогель гидратированного диоксида титана (метатитановая кислота) промывают водой, сушат и прокаливают на воздухе при температуре не выше 500°C. Готовый катализатор имеет кристаллическую структуру анатаза. В зависимости от условий проведения процесса термического гидролиза и температуры термообработки получают диоксид титана с удельной поверхностью от 50 до 330 м2/г. К недостаткам данного способа следует отнести большое количество образующейся гидролизной серной кислоты, представляющей собой отходы производства, а также отсутствие в России производства сульфата титанила.

Известен способ получения фотокаталитически активного диоксида титана методом высокотемпературного газо-фазного окисления паров четыреххлористого титана. Получаемый TiO2 представляет собой смесь анатаза и рутила, содержание которого может достигать до 60%. Диоксид титана, полученный данным способом, содержит примеси хлора до 0,6 мас.% и характеризуется удельной поверхностью около 50 м2/г. По данной технологии фирма "Degussa" производит фотокаталитически активный диоксид титана марки Р-25, широко используемый в Европе [1, 9]. Недостатком данного метода получения TiO2 является сложность технологического процесса с применением специального дорогостоящего оборудования и более низкая активность получаемого фотокатализатора по сравнению с катализаторами, полученными по сернокислотной технологии.

Известен способ получения фотокаталитически активного диоксида титана, путем модифицирования его добавками ионов фтора [10], состоящий в приготовлении водного раствора фторида аммония к которому при комнатной температуре прибавляют спиртовый раствор металлорганического соединения титана. Полученную при этом суспензию гидроксида титана подвергают длительному старению для завершения процесса гидролиза, после чего воду и спирт удаляют выпариванием, а осадок гидроксида диоксида титана высушивают при температуре 100°C и прокаливают при температуре 400-500°C. При данном способе получения образуется диоксид титана, представляющий собой смесь анатаза и брукита, его удельная поверхность при температуре прокаливания 400°C составляет 140 м2/г, а после прокаливания при 500°C - около 80 м2/г. К недостаткам данного метода приготовления можно отнести использование дорогих металлорганических соединения титана и фтора, а также невысокую фотокаталитическую активность получаемого диоксида титана.

Известен способ получения фотокаталитически активного диоксида титана термическим гидролизом или осаждением металлорганических соединений титана с последующей сушкой и термообработкой [11, 12]. Недостатком метода получения из металлорганических соединений титана является высокая цена исходных соединений титана и часто более низкая активность.

Известен способ получения диоксида титана из четыреххлористого титана, включающий реакцию TiCl4 с 60-80% раствором серной кислоты с образованием промежуточного продукта - сульфата титанила, который затем нагревают в автоклаве в течение 6-7 часов при дополнительном добавлении 35-50% серной кислоты. В результате получают кристаллический дигидрат сульфата титанила TiOSO4·2H2O, который отфильтровывают, а затем снова растворяют в воде, и раствор подвергают термическому гидролизу при температуре 130-150°C. В процессе термического гидролиза получают гидратированный диоксид титана, который отделяют от раствора, сушат и подвергают термической обработке. По фазовому составу получаемый диоксид титана представляет собой смесь рутила и анатаза. Недостатками данного способа являются многостадийность, низкая производительность и низкий выход готового продукта [13]. Увеличение выхода готового продукта может достигаться уменьшением концентрации серной кислоты до 20-55% на первой стадии процесса образования промежуточного продукта сульфата титанила [14]. К недостаткам относится отсутствие данных о фотокаталитической активности полученного данными методами диоксида титана.

Наиболее близким способом получения фотокаталитически активного диоксида титана из четыреххлористого титана является осаждение из солянокислого раствора TiCl4 водным раствором аммиака при постоянном значении pH=7, с последующей фильтрацией осадка, сушкой и термообработкой [15]. Способ состоит в том, что раствор четыреххлористого титана в соляной кислоте, разбавленной водой (1:1), и водный раствор аммиака одновременно приливают в реактор, частично наполненный дистиллированной водой, при поддержании постоянного значения pH=7, и температуры 70-80°C. Процесс проводят при интенсивном перемешивании образующейся суспензии гидрогеля диоксида титана. После завершения процесса осаждения полученный осадок отфильтровывают, промывают дистиллированной водой, сушат и прокаливают на воздухе при температуре 450-500°C.

Основным недостатком данного способа приготовления диоксида титана является его сравнительно низкая фотокаталитическая активность (таблица).

Изобретение решает задачу по разработке способа получения фотокаталитически активного диоксида титана с использованием четыреххлористого титана, обеспечивающего улучшения качества катализатора путем дополнительной стабилизации сульфат-ионов в структуре TiO2.

Задача получения диоксида титана с высокой фотокаталитической активностью с использованием четыреххлористого титана решается способом приготовления, состоящим в том, что растворение четыреххлористого титана проводят при комнатной температуре в слабоконцентрированных растворах серной кислоты (4,5-22%) при соотношении SO4/Ti (мас.) = 0,5-3, после чего раствор разбавляют дистиллированной водой до концентрации 150-250 г/л TiO2 и получают раствор сульфата титанила. Затем из полученного раствора проводят осаждение диоксида титана 25% водным раствором аммиака. Процесс осаждения проводят одновременным приливанием полученного раствора сульфата титанила и раствора аммиака в реактор, частично наполненный дистиллированной водой, при поддержании постоянного значения pH=3-6 и температуры 50-80°C. Процесс ведут при интенсивном перемешивании образующейся суспензии гидрогеля диоксида титана механической мешалкой. После завершения процесса осаждения осадок отфильтровывают на нутч-фильтре и промывают дистиллированной водой, затем сушат на воздухе до воздушно-сухого состояния и в сушильном шкафу при 100-110°C и, если необходимо, прокаливают в муфельной печи при температуре не выше 350°C.

Указанные интервалы соотношения SO4/Ti (мас.)=0,5-3 определяются тем, что увеличение соотношения SO4/Ti (мас.)>3 приводит к образованию побочного продукта сульфатдихлорида титана TiCl2SO4, который оседает на мешалке и стенках реактора, что снижает выход основного продукта. При уменьшении соотношения SO4/Ti (мас.)<0,5 образуется побочный продукт титан оксихлорид гидроксид. Интервалы значений pH=3-6 и температуры 50-80°C являются наилучшим для получения катализаторов с оптимальными свойствами, такими как фазовый состав, удельная поверхность, содержание сульфат-ионов.

Отличительным признаком предлагаемого способа получения фотокаталитически активного диоксида титана является концентрация серной кислоты 4,5-22%, используемой для растворения четыреххлористого титана, интервал соотношений SO4/Ti (мас.)=0,5-3, концентрация раствора сульфата титанила 150-250 г/л TiO2, интервал значений pH=3-6, при котором проводят процесс осаждения.

Технический результат - повышение фотокаталитической активности диоксида титана, получаемого из четыреххлористого титана.

Сущность изобретения иллюстрируется следующими примерами и таблицей.

Пример 1.

К 30 мл дистиллированной воды добавляют 5 мл концентрированной серной кислоты, получают 8,7% серную кислоту. В полученный раствор при комнатной температуре при перемешивании постепенно добавляют 20 мл четыреххлористого титана до соотношения SO4/Ti (мас.)=1. Получают раствор сульфата титанила. К полученному раствору сульфата титанила добавляют 20 мл дистиллированной воды до достижения концентрации 220 г/л TiO2. Затем из этого раствора проводят осаждение диоксида титана путем одновременного сливания раствора сульфата титанила и 25% водного раствора аммиака в реактор, в который налито 200 мл дистиллированной воды, нагретой до 80°C, при поддержании постоянного значения pH=4 и температуры 80°C, процесс ведут при интенсивном перемешивании механической мешалкой суспензии гидрогеля диоксида титана, образующегося в процессе осаждения. После завершения процесса осаждения осадок отфильтровывают на нутч-фильтре и промывают дистиллированной водой, сушат на воздухе, затем в сушильном шкафу при 100°C.

Пример 2.

Аналогичен примеру 1 с тем исключением, что к 30 мл дистиллированной воды добавляют 10 мл концентрированной серной кислоты и получают 16% серную кислоту и в полученный раствор при комнатной температуре при перемешивании постепенно добавляют 20 мл четыреххлористого титана до соотношения SO4/Ti (мас.)=2.

Пример 3.

Аналогичен примеру 1, отличие состоит в том, что осаждение диоксида титана проводят при pH=3.

Пример 4.

Аналогичен примеру 1, отличие состоит в том, что осаждение диоксида титана проводят при pH=3, катализатор прокаливают при температуре 350°C.

Пример 5.

Аналогичен примеру 1, отличие состоит в том, что осаждение гидроксида титана проводят при pH=6 и температуре 50°C.

Пример 6.

Аналогичен примеру 2, отличие состоит в том, что осаждение проводят при pH=7 и температуре 50°C.

Пример 7.

Аналогичен примеру 1, отличие состоит в том, что растворение четыреххлористого титана проводят в 22% серной кислоте при соотношении SO4/Ti (мас.)=3, а осаждение ведут при pH=5.

Пример 8.

Аналогичен примеру 1, отличие состоит в том, что растворение четыреххлористого титана проводят в 4,5% серной кислоте при соотношении SO4/Ti (мас.)=0,5.

У катализаторов, полученных по примерам 1-8, измеряют фотокаталитическую активность, определяют фазовый состав, величину удельной поверхности, содержание примесей серы и хлора.

Измерение фотокаталитической активности проводят в реакции фотокаталитического окисления ацетона в CO2 в воздухе при следующем составе реакционной смеси: концентрация паров ацетона - 500 млн. д., относительная влажность - 30%, температура - 40°C. Объемная скорость реакционной смеси (U) составляет 0,03 л/мин. Испытания проводят в стальном реакторе с циркулированием реакционной смеси на образце катализатора, нанесенном на стеклянную подложку размером 2.4×2.9 см2. Освещение проводили УФ светом лампы Philips, 365 нм, 9 Вт. Измерение концентраций ацетона и CO2 проводили методом ИК-спектроскопии на спектрометре Nicolet 380. Фотокаталитическую активность катализаторов оценивали по скорости образования по формуле: , где - разность концентраций CO2 в конечной реакционной смеси (КРС) и исходной реакционной смеси (ИРС), мкмоль/л; U - объемная скорость, л/мин.

Определение рентгенофазового состава катализаторов проводят на дифрактометре URD-63 (Германия) с монохроматизированным Cukα-излучением методом сканирования по точкам (шаг 0.05°, время накопления 10 сек в точке) в интервале 2θ 10-60°.

Величину удельной поверхности S (м2/г) измеряют по традиционной методике термодесорбции аргона по четырем точкам сорбционного равновесия на приборе СОР-БИ-М фирмы "МЕТА" (Россия).

Содержание примесей серы и хлора определяют на рентгеноспектральном флуоресцентном анализаторе ARL - Advant'x с Rh анодом. Результаты анализа по содержанию S (мас.%) пересчитывали на SO4 (мас.%).

В таблице приведены результаты испытаний фотокаталитических свойств, химический и фазовый состав, величина удельной поверхности предлагаемых катализаторов.

Из приведенных примеров и таблицы видно, что предлагаемый способ позволяет получать нанодисперсный диоксид титана из четыреххлористого титана с более высокой фотокаталитической активностью по сравнению с прототипом. Увеличение фотокаталитической активности достигается путем получения диоксида титана со структурой анатаза, в которой стабилизируются сульфат-ионы в количестве 0,9-8,1 мас.%. Это достигается проведением процесса осаждения из раствора сульфата титанила, полученного растворением четыреххлонистого титана в растворе серной кислоты заданной концентрации, при температуре 50-80°C в области значений pH=3-6. Увеличение pH при проведении процесса осаждения до 7 приводит к появлению рентгеноаморфной фазы диоксида титана и уменьшению содержания фазы TiO2 со структурой анатаза с одновременным снижением содержания сульфат-ионов в образце до 0,3 вес.%, что в свою очередь приводит к снижению фотокаталитической активности.

Предлагаемый способ получения фотокаталитически активного сульфатированного диоксида титана отличается от других известных в литературе способов простотой исполнения, поскольку позволяет получать исходный раствор сульфата титанила в низкоконцентрированных растворах серной кислоты, что позволяет снизить количество вредных стоков, а также исключить стадию термического гидролиза раствора сульфата титанила, которая осуществляется при длительным автоклавировании при повышенных температурах.

Источники информации

1. Тарасов А.В. Металлургия титана. Москва: ИКЦ, Академкнига, 2003. 325 с.

2. US 6726891, 27.04.2004.

3. RU 2408427, B01J 37/08, C01G 23/053, 10.01.2011.

4. RU 2408428, B01J 37/34, C01G 23/053, B01D 53/86, 10.01.2011.

5. D.V.Kozlov, A.V.Vorontsov и др. // Journal of Catalysis. 2008. V.258. P.87.

6. Ma Z., Yue Y., Deng X., Gao Z. // J. Molec. Catal. A. 2002. V.178. P.97.

7. Зенковец Г.А., Цыбуля С.В., Бургина Е.Б., Крюкова Г.Н. Кинетика и катализ. // 1999. Т.40. №4. С.623.

8. Жеребцов Д.А., Сюткин С.А., Первушин В.Ю., Кузнецов Г.Ф., Клещев Д.Г., Герман В.А., Викторов В.В., Колмогорцев A.M., Сериков А.С. // Журнал неорганической химии. 2010. Т.55. №8. С.1271.

9. Hadjiivanov K.I., Klissurdki D.G. // Chem. Sos. Rev. // 1996.V.25. P.61.

10. Yu J.C., Yu J., Ho W., Jiang Z., Zhang L. // Chem. Mater. 2002. V.14. P.3808.

11. WO 2010091478, 19.08.2010.

12. US 6576589, 10.06.2003.

13. ЕПВ 424058, 24.04.1991.

14. RU 2102324, C01G 23/053, 20.01.1998.

15. Тарасова Д.В., Максимов Н.Г., Цикоза Л.Т., Зенковец Г.А., Оленькова И.П. // Изв. Сиб. Отд. АН СССР. 1981. №7. С.81.

Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана, включающий осаждение диоксида титана одновременным сливанием в воду раствора соли титана и водного раствора аммиака при постоянных pH и температуре и интенсивном перемешивании, промывку, сушку и термообработку образовавшегося осадка, отличающийся тем, что осаждение ведут из раствора сульфата титанила при pH 3-6 и температуре 50-80°C, при этом раствор сульфата титанила готовят растворением четыреххлористого титана при комнатной температуре в слабоконцентрированной серной кислоте 4,5-22% при массовом соотношении SO/Ti=0,5-3 с последующим разбавлением дистиллированной водой до концентрации 150-250 г/л TiO.
Источник поступления информации: Роспатент

Показаны записи 131-140 из 403.
27.04.2015
№216.013.45a3

Инфракрасный коллиматорный комплекс

Комплекс предназначен для контроля и измерения параметров тепловизионных приборов. Комплекс содержит объектив, сменную миру, расположенную в фокальной плоскости объектива, фоновый излучатель, расположенный за мирой и снабженный исполнительным элементом, устройство управления, выход которого...
Тип: Изобретение
Номер охранного документа: 0002549331
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4808

Установка и способ утилизации биомассы

Изобретение относится к устройству и способу для переработки отходов, преимущественно биомассы, путем газификации с получением жидких и газообразных горючих продуктов, используемых в качестве топлива или промежуточных полупродуктов для химического синтеза или жидких моторных топлив. Техническим...
Тип: Изобретение
Номер охранного документа: 0002549947
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.48c6

Смазочная композиция синтетического турбинного масла для паротурбинных установок

Настоящее изобретение относится к смазочной композиции синтетического турбинного масла для паротурбинных установок, которая включает основу, состоящую из смеси базовых компонентов: полиальфаолефинов с вязкостью 5,6-6,1 мм/с при 100°C и триметилолпропанового эфира карбоновых кислот C-C с...
Тип: Изобретение
Номер охранного документа: 0002550137
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a80

Способ создания предварительного напряжения в районе соединения стыкуемых элементов предварительно напряженного железобетонного понтона

Изобретение относится к технологии судостроения, а именно к методам создания предварительного напряжения в районе соединения предварительно напряженных железобетонных элементов на плаву. Предложенный способ создания предварительного напряжения в районе соединения стыкуемых элементов...
Тип: Изобретение
Номер охранного документа: 0002550579
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4ac1

Мягкий реданированный поплавок

Изобретение относится к мягким реданированным поплавкам транспортного средства. Мягкий реданированный поплавок содержит по меньшей мере один редан и по меньшей мере одну пневмооболочку, в которой размещен пневмобаллон. Пневмобаллон оснащен устройством для наполнения газом. Нижняя часть...
Тип: Изобретение
Номер охранного документа: 0002550644
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4b63

Способ управления мотор-генератором

Изобретение относится к области электротехники и может быть использовано в системах управления мотор-генераторными устройствами транспортных средств с двигателями внутреннего сгорания. Техническим результатом является снижение дополнительных (коммутационных) потерь в силовом преобразователе. В...
Тип: Изобретение
Номер охранного документа: 0002550813
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d1d

Винтовой нагнетатель

Изобретение относится к гидравлическим машинам объемного вытеснения с вращающимися рабочими органами, в частности к винтовым роторным нагнетателям. Винтовой нагнетатель содержит корпус 3, имеющий торцевые переднюю, заднюю и боковые стенки 4, 5 и 6, винтовые роторы 1 и 2, окно выпуска,...
Тип: Изобретение
Номер охранного документа: 0002551255
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.50b4

Устройство защиты от контрафакта и фальсификации интегральных схем

Изобретение относится к полупроводниковым микроэлектронным устройствам, а именно - к устройствам защиты от контрафакта и фальсификации интегральных схем (ИС), которые встраиваются в кристалл ИС. Технический результат - проверка подлинности ИС (т.е. ИС является либо подлинной, либо контрафактной...
Тип: Изобретение
Номер охранного документа: 0002552181
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5163

Способ получения пропилена

Изобретение относится к способу получения пропилена путем каталитического окислительного дегидрирования пропана, включающему пропускание потока реакционной смеси, состоящей из пропана и окисляющего реагента в инертном газе, используемом в качестве разбавителя, через слой катализатора в...
Тип: Изобретение
Номер охранного документа: 0002552356
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55bc

Устройство для подвода к двигателю газообразного топлива

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложено устройство для подвода к двигателю газообразного топлива, содержащее трубку 1 для подачи газообразного топлива к впускному клапану 3 цилиндра двигателя, расположенную во впускном канале 4 головки цилиндров....
Тип: Изобретение
Номер охранного документа: 0002553478
Дата охранного документа: 20.06.2015
Показаны записи 131-140 из 343.
10.01.2015
№216.013.1967

Трехосный автомобиль с комбинированной энергетической установкой

Изобретение относится к транспортному машиностроению. Трехосный автомобиль с комбинированной энергетической установкой содержит тепловой двигатель, связанный с колесами среднего моста, обратимые электрические машины, трансмиссию и бортовую управляющую систему. Автомобиль выполнен с приводом...
Тип: Изобретение
Номер охранного документа: 0002537931
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a7a

Способ получения катализатора дожига пропана на стекловолокнистом носителе

Изобретение относится к области каталитической химии и может быть использовано при очистке промышленных газовых выбросов и выбросов автотранспорта от углеводородов. Катализатор получают пропиткой стекловолокнистого носителя (структурированного в виде материала, тканого из нитей диаметром 1 мм)...
Тип: Изобретение
Номер охранного документа: 0002538206
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1e48

Устройство для предотвращения ледяных заторов

Изобретение относится к области гидрологии, в частности к регулированию ледового режима рек, а именно к технике проведения работ по ликвидации ледовых заторов на реках, и направлено на предотвращение наводнений, возникающих при заторах. Устройство представляет собой катамаран, в трюме одного из...
Тип: Изобретение
Номер охранного документа: 0002539193
Дата охранного документа: 20.01.2015
27.01.2015
№216.013.20a5

Способ определения статического дисбаланса заготовок непосредственно на металлорежущем станке

Изобретение относится к области измерений, а именно к процессу определения статического дисбаланса заготовок, и может быть использовано для балансировки заготовок. Способ заключается в следующем. Планшайба станка (поворотный стол станка) с установленной на ней заготовкой устанавливается в...
Тип: Изобретение
Номер охранного документа: 0002539805
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.20ae

Способ определения пространственного распределения напряженности электромагнитного поля

Изобретение относится к измерительной технике и предназначено для решения задач электромагнитной совместимости и экологической безопасности электротехнического и радиоэлектронного оборудования промышленных, транспортных, общественных и бытовых объектов. На габаритных обводах материальных...
Тип: Изобретение
Номер охранного документа: 0002539814
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.240f

Лопасть гребного винта судна ледового класса

Изобретение относится к области судостроения, в частности к лопастям гребных винтов судов ледового класса, в том числе и гребных винтов судов ледового класса, работающих в составе винторулевых колонок. Лопасть гребного винта судна ледового класса имеет плавную криволинейную поверхность, а в...
Тип: Изобретение
Номер охранного документа: 0002540684
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ed

Устройство для измерения и контроля сопротивления изоляции под рабочим напряжением в силовых сетях переменного тока с резистивной нейтралью

Изобретение относится к области электротехники. Устройство содержит резистор, соединенный с нейтралью одним выводом, резистивный датчик тока, источник стабилизированного напряжения постоянного тока, шунтирующий конденсатор C1, RC-фильтр на 50 Гц, блок гальванической развязки, электронный...
Тип: Изобретение
Номер охранного документа: 0002541418
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2819

Система диагностики устойчивости комплекса радиоэлектронных приборов к преднамеренным силовым электромагнитным воздействиям

Изобретение относится к электроизмерительной области техники и может быть использовано для диагностики устойчивости оборудования к воздействию преднамеренных силовых электромагнитных воздействий (ПД ЭМВ). В систему диагностики, содержащую генератор испытательных помех с полеобразующей системой...
Тип: Изобретение
Номер охранного документа: 0002541722
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.28ae

Сверхширокополосная многолучевая зеркальная антенна

Изобретение относится к области радиотехники, а именно к антенной технике. Технический результат - снижение уровня боковых лепестков парциальных диаграмм направленности и повышение надежности работы антенны при одновременном упрощении конструкции отражателя. Для этого сверхширокополосная...
Тип: Изобретение
Номер охранного документа: 0002541871
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.29f4

Способ получения изделий из твердого сплава

Изобретение относится к порошковой металлургии и может быть использовано для получения твердосплавного концевого инструмента. В сплав на основе карбида вольфрама с размером частиц 1-3 мкм добавляют ультрадисперсный порошок (УДП) карбида вольфрама с размером частиц 50-100 нм в количестве 2-5%...
Тип: Изобретение
Номер охранного документа: 0002542197
Дата охранного документа: 20.02.2015
+ добавить свой РИД