×
20.06.2013
216.012.4e7e

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ПАРАМЕТРОВ АТМОСФЕРЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении, температуре и влажности атмосферы (воздуха). Технический результат заключается в расширении функциональных возможностей за счет одновременного дистанционного измерения температуры и влажности атмосферы (воздуха). Устройство для дистанционного измерения параметров атмосферы содержит сканирующее устройство и приемоответчик. Сканирующее устройство содержит задающий генератор 1, усилитель 2 мощности, дуплексер 3, приемопередающую антенну 4, удвоители 5, 26 и 27 фазы, делители 6, 28 и 29 фазы на два, узкополосные фильтры 7, 19, 21, 30 и 31, фазовый детектор 8, фазометры 9, 32 и 33, блок 10 регистрации, перемножители 18 и 20, сумматор 22, полосовые фильтры 23, 24 и 25. Приемоответчик содержит звукопровод 11, микрополосковую приемопередающую антенну 12, электроды 13.1, 13.2 и 13.3, шины 14.1, 14.2, 14.3, 15.1, 15.2 и 15.3, чувствительные элементы 16.1, 16.2 и 16.3, отражающие решетки 17.1, 17.2 и 17.3, встречно-штыревые преобразователи I, II и III. 3 ил.
Основные результаты: Устройство для дистанционного измерения параметров атмосферы, содержащее сканирующие устройство и приемоответчик, при этом сканирующее устройство содержит последовательно включенные усилитель мощности и дуплексер, вход/вход которого связан с приемопередающей направленной или ненаправленной антенной, последовательно включенные первый удвоитель фазы, первый делитель фазы на два, первый узкополосный фильтр, фазовый детектор и блок регистрации, последовательно включенные задающий генератор и первый фазометр, второй вход которого соединен с вторым выходом первого узкополосного фильтра, а выход подключен к второму входу блока регистрации, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей первый встречно-штыревой преобразователь, который выполнен в виде двух гребенчатых систем электродов, нанесенных на поверхность звукопровода, электроды которой из гребенок соединены между собой шинами, которые связаны с микрополосковой приемопередающей антенной, при этом на звукопроводе размещены первый чувствительный элемент, выполненный в виде тонкой мембраны, и первая отражательная решетка, отличающееся тем, что сканирующее устройство снабжено двумя перемножителями, вторым, третьим, четвертым и пятым узкополосными фильтрами, сумматором, тремя полосовыми фильтрами, вторым и третьим удвоителями фазы, вторым и третьим делителями фазы, вторым и третьим фазометрами, причем к второму выходу задающего генератора последовательно подключены первый перемножитель, второй вход которого соединен с вторым выходом задающего генератора, второй узкополосный фильтр и сумматор, второй вход которого соединен с вторым выходом задающего генератора, а выход подключен к входу усилителя мощности, к выходу второго узкополосного фильтра последовательно подключены второй перемножитель, второй вход которого соединен с выходом второго узкополосного фильтра, и третий узкополосный фильтр, выход которого подключен к третьему входу сумматора, выход дуплексера через первый полосовой фильтр подключен к входу первого удвоителя фазы и к второму входу фазового детектора, к выходу дуплексера последовательно подключены второй полосовой фильтр, второй удвоитель фазы, второй делитель фазы на два, четвертый узкополосный фильтр и второй фазометр, второй вход которого соединен с выходом второго узкополосного фильтра, а выход подключен к третьему входу блока регистрации, к выходу дуплексера последовательно подключены третий полосовой фильтр, третий удвоитель фазы, третий делитель фазы на два, пятый узкополосный фильтр и третий фазометр, второй вход которого соединен с выходом третьего узкополосного фильтра, а выход подключен к четвертому входу блока регистрации, а приемоответчик снабжен вторым и третьим встречно-штыревым преобразователем, вторым и третьим чувствительными элементами, второй и третьей отражающими решетками, которые нанесены на поверхность одного и того же звукопровода, причем шины второго и третьего встречно-штыревых преобразователей связаны с одной и той же микрополосковой приемопередающей антенной, центральные частоты ω, ω и ω встречно-штыревых преобразователей определяются шагом размещения электродов, их количеством и выбраны следующим образом: ω=2ω, ω=2ω.

Предлагаемое устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении, температуре и влажности атмосферы (воздуха) в различных отраслях промышленности.

Известные датчики давления основаны на различных физических принципах (авт.свид. СССР №№355.519, 427.257, 508.700, 723.413, 781.638, 797.701, 885.843, 922.086, 1.000.806, 1.177.698, 1.290.113, 1.368.677, 1.486.818, 1.493.895, 1.508.114, 1.645.862, 1.686.322, 1.736.951, 1.769.010, 1.814.040, 1.815.598, 1.817.929, 1.818.560, 1.831.669, 1.838.250, патенты РФ №№2.058.020, 2.244.908, 2.311.623; патенты США №№4.562.742, 4.387.601, 4.395.915, 4.317.372, 6.003.378; патент Японии №50-9.190; Бусурин В.И. Оптические и волоконно-оптические датчики // Квантовая электроника, 1985, №5, С.901-944 и другие).

Из известных устройств наиболее близким к предлагаемому является «Устройство для дистанционного измерения давления» (патент РФ №2.244.908, G01L 9/00, 2002), которое и выбрано в качестве прототипа.

Известное устройство обеспечивает повышение точности дистанционного измерения только давления.

Однако в ряде случаев необходима совместная одновременная оценка давления, температуры и влажности атмосферы (воздуха) в различных отраслях промышленности и науки.

Технической задачей изобретения является расширение функциональных возможностей устройства путем одновременного дистанционного измерения температуры и влажности атмосферы (воздуха).

Поставленная задача решается тем, что устройство для дистанционного измерения параметров атмосферы, содержащее сканирующее устройство и приемоответчик, при этом сканирующее устройство содержит последовательно включенные усилитель мощности и дуплексер, выход/выход которого связан с приемопередающей направленной или ненаправленной антенной, последовательно включенные первый удвоитель фазы, первый делитель фазы на два, первый узкополосный фильтр, фазовый детектор и блок регистрации, последовательно включенные задающий генератор и первый фазометр, второй вход которого соединен с вторым выходом первого узкополосного фильтра, а выход подключен к второму входу блока регистрации, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающий первый встречно-штыревой преобразователь, который выполнен в виде двух гребенчатых систем электродов, нанесенных на поверхность звукопровода, электроды каждой из гребенок соединены между собой шинами, которые связаны с микрополосковой приемопередающей антенной, при этом на звукопроводе размещены первый чувствительный элемент, выполненный в виде тонкой мембраны, и первая отражающая решетка, отличается от ближайшего аналога тем, что сканирующее устройство связано двумя перемножителями, вторым, третьим, четвертым и пятым узкополосными фильтрами, сумматором, тремя полосовыми фильтрами, вторым и третьим удвоителями фазы, вторым и третьим делителями фазы на два, вторым и третьим фазометрами, причем к второму выходу задающего генератора последовательно подключены первый перемножитель, второй вход которого соединен с вторым выходом задающего генератора, второй узкополосный фильтр и сумматор, второй вход которого соединен с вторым выходом задающего генератора, а выход подключен к входу усилителя мощности, к выходу второго узкополосного фильтра последовательно подключены второй перемножитель, второй вход которого соединен с выходом второго узкополосного фильтра, и третий узкополосный фильтр, выход которого подключен к третьему входу сумматора, выход дуплексера через первый полосовой фильтр подключен к входу первого удвоителя фазы и к второму входу фазового детектора, к выходу дуплексера последовательно подключены второй полосовой фильтр, второй удвоитель фазы, второй делитель фазы на два, четвертый узкополосный фильтр и второй фазометр, второй вход которого соединен с выходом второго узкополосного фильтра, а выход подключен к третьему входу блока регистрации, к выходу дуплексера последовательно подключены третий полосовой фильтр, третий удвоитель фазы, третий делитель фазы на два, пятый узкополосный фильтр и третий фазометр, второй вход которого соединен с выходом третьего узкополосного фильтра, а выход подключен к четвертому входу блока регистрации, а приемоответчик снабжен вторым и третьим встречно-штыревыми преобразователями, вторым и третьим чувствительными элементами, второй и третьей отражающими решетками, которые нанесены на поверхность одного и того же звукопровода, причем шины второго и третьего встречно-штыревых преобразователей связаны с одной и той же микрополосковой приемопередающей антенной, центральные частоты ω1, ω2 и ω3 встречно-штыревых преобразователей определяются шагом размещения электродов, их количеством и выбраны следующим образом: ω2=2ω1, ω3=2ω2.

Структурная схема сканирующего устройства представлена на фиг.1. Структурная схема приемоответчика изображена на фиг.2. Частотная диаграмма показана на фиг.3.

Сканирующее устройство состоит из последовательно включенных задающего генератора 1, первого перемножителя 18, второй вход которого соединен с выходом задающего генератора 1, второго узкополосного фильтра 19, второго перемножителя 20, второй вход которого соединен с выходом второго узкополосного фильтра 19, третьего узкополосного фильтра 21, сумматора 22, второй и третий входы которых соединены с выходами задающего генератора 1 и второго узкополосного фильтра 19 соответственно, усилителя 2 мощности, дуплексера 3, вход-выход которого связан с приемопередающей антенной 4, первого полосового фильтра 23, первого удвоителя 5 фазы, первого делителя фазы 6 на два, первого узкополосного фильтра 7, фазового детектора 8, второй вход которого соединен с выходом первого полосового фильтра 23, и блока 10 регистрации, второй вход которого через первый фазометр 9 соединен с вторыми выходами задающего генератора 1 и первого узкополосного фильтра 7. К выходу дуплексера 3 последовательно подключены второй полосовой фильтр 24, второй удвоитель 26 фазы, второй делитель 28 фазы на два, четвертый узкополосный фильтр 30 и второй фазометр 32, второй вход которого соединен с выходом второго узкополосного фильтра 19, а выход подключен к третьему входу блока 10 регистрации. К выходу дуплексера 3 последовательно подключены третий полосовой фильтр 25, третий удвоитель 27 фазы, третий делитель 29 фазы на два, пятый узкополосный фильтр 31 и третий фазометр 33, второй вход которого соединен с выходом третьего узкополосного фильтра 21, а выход подключен к четвертому входу блока 10 регистрации.

Приемоответчик выполнен на многоотводных линиях задержки на поверхностных акустических волнах (ПАВ), которые представляют собой дискретно-аналоговые реализации цифровых трансферсальных фильтров. Роль отводов в таких фильтрах играют встречно-штыревые преобразователи I, II, III, каждый из которых состоит из двух гребенчатых систем электродов 13.1 (13.2, 13.3), нанесенных на поверхность звукопровода 11. Электроды каждой из гребенок соединены друг с другом шинами 14.1 и 15.1 (14.2 и 15.2, 14.3 и 15.3). Шины, в свою очередь, связаны с микрополосковой приемопередающей антенной 12. На звукопроводе 11, кроме того, размещены чувствительные элементы 16.1, 16.2, 16.3 и отражающие решетки 17.1, 17.2, 17.3.

Отводы многоотводных линий задержки равномерно распределены по поверхности звукопровода с шагом

Δh=VτЭ,

где V - скорость поверхностных волн, она примерно на пять порядков меньше скорости распространения электромагнитных колебаний;

τЭ - длительность элементарных посылок.

Приемоответчик представляет собой пьезокристалл, с нанесенным на его поверхность алюминиевыми тонкопленочными пьезоэлектрическими преобразователями и набором отражателей. Преобразователи подключены к микрополосковой приемопередающей антенне 12, которая также изготовлена на поверхности пьезокристалла.

Устройство для дистанционного измерения параметров атмосферы работает следующим образом.

Задающий генератор 1 формирует высокочастотное колебание

u1(t)=U1cos(ω1t+φ1), 0≤t≤Tc,

где U1, ω1, φ1, Tc - амплитуда, несущая частота, начальная фаза и длительность высокочастотного колебания,

которое поступает на первый вход сумматора 22 и на два входа перемножителя 18, на выходе которого образуется следующее гармоническое колебание

u2(t)=U2cos(ω2t+φ2), 0≤t≤Tc,

где , ω2=2ω1; φ2=2φ1.

Это колебание поступает на второй вход сумматора 22 и на два входа перемножителя 20, на выходе которого образуется следующее гармоническое колебание (фиг.3)

u3(t)=U3cos(ω3t+φ3), 0≤t≤Tc,

где , ω3=2ω2; φ3=2φ2.

Это колебание поступает на третий вход сумматора 22. На выходе сумматора 22 образуется суммарное напряжение

u(t)=u1(t)+u2(t)+u3(t),

которое после усиления в усилителе 2 мощности через дуплексер 3 поступает в приемопередающую антенну 4 и излучается ею в эфир, улавливается микропо-лосковой приемопередающей антенной 12 и возбуждает приемоответчик, а именно первый I, второй II и третий III встречно-штыревые преобразователи (ВШП) на поверхностных акустических волнах (ПАВ).

В основе работы устройства на ПАВ лежат три физических процесса:

- преобразование входного электрического сигнала в акустическую волну;

- распространение акустической волны вдоль поверхности звукопровода;

- обратное преобразование ПАВ в электрический сигнал.

Для прямого и обратного преобразования ПАВ используются три встречно-штыревых преобразователя (ПАВ), работа которых основана на том, что переменные в пространстве и времени электрические поля, создаваемые в пьезоэлектрическом кристалле системой электродов 13.1, 13.2, 13.3, вызывают из-за пьезоэффекта упругие деформации, которые распространяются в кристалле в виде ПАВ. Центральные частоты ω1i, ω2 и ω3 первого I, второго II и третьего III ВШП определяются шагом размещения электродов 13.1, 13.2, 13.3 и их количеством. Изготовление ВШП осуществляется стандартными методами фотолитографии и травлением тонкой металлической пленки, осажденной на пьезоэлектрическом кристалле. Возможности современной фотолитографии позволяют создавать ВШП, работающие на частотах до 3 ГГц.

Чувствительный элемент 16.1, например, выполненный в виде тонкой мембраны, реагирует на давление Р атмосферы (воздуха), которое вызывает ее деформацию. Чувствительный элемент 16.3 реагирует на влажность W.

Скорость ПАВ в области чувствительных элементов 16.1, 16.2 и 16.3 изменяется и фазы отраженных от решеток 17.1, 17.2 и 17.3 волн изменяются в соответствии с деформацией чувствительных элементов 16.1, 16.2 и 16.3.

Акустические волны модифицируются уникальным, зависящим от топологии приема ответчика образом. Затем отраженные акустические волны претерпевают обратное преобразование в электромагнитные сигналы с фазовой манипуляцией (ФМн), которые поступают в антенну 12 и излучаются в пространство:

u4(t)=U4cos[ω1t+φk(t)+φ1+Δφ1],

u5(t)=U5cos[ω2t+φk(t)+φ2+Δφ2],

u6(t)=U6cos[ω3t+φk(t)+φ3+Δφ3], 0≤t≤Tc,

где φk(t)={0, π} - манипулируемая составляющая, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t), который определяется структурой ВШП;

Δφ1 - разность фаз, вызванная изменением давления атмосферы (воздуха);

Δφ2 - разность фаз, вызванная изменением температуры атмосферы (воздуха);

Δφ3 - разность фаз, вызванная изменением влажности атмосферы (воздуха).

Указанные сигналы с фазовой манипуляцией принимаются приемопередающей антенной 4 и через дуплексер 3 поступают на входы полосовых фильтров 23, 24 и 25.

Частота настройки ωн1 полосового фильтра 23 выбирается равной ω1н11). Частота настройки ωн2 полосового фильтра 24 выбирается равной ω2н22). Частота настройки ωн3 полосового фильтра 25 выбирается равной ω3н33).

Полосовыми фильтрами 23, 24 и 25 выделяются ФМн-сигналы u4(t), u5(t) и u6(t), которые поступают на входы удвоителей 5, 26 и 27 фазы. На выходах последних образуются следующие гармонические колебания:

u7(t)=U7cos[2ω1t+2φ1+2Δφ1],

u8(t)=U8cos[2ω2t+2φ2+2Δφ2],

u9(t)=U9cos[2ω3t+2φ3+2Δφ3], 0≤t≤Tc,

где ; ; .

Так как 2φk(t)={0, π}, то в данных колебаниях манипуляция фазы уже отсутствует. Эти колебания делятся по фазе на два в делителях фазы 6, 28 и 29 на два и выделяются узкополосными фильтрами 7, 30 и 31:

u10(t)=U10cos[ω1t+φ1+Δφ1],

u11(t)=U11cos[ω2t+φ2+Δφ2],

u12(t)=U12cos[ω3t+φ3+Δφ3], 0≤t≤Tc.

Полученное гармоническое колебание u10(t) используется в качестве опорного напряжения и поступает на второй (опорный) вход фазового детектора 8, на первый (информационный) вход которого подается ФМн-сигнал u4(t). На выходе фазового детектора 8 образуется низкочастотное колебание

uн(t)=Uнcosφk(t),

где ,

которое содержит информацию о номере устройства для дистанционного измерения параметров атмосферы (воздуха) и фиксируется на первом входе блока 10 регистрации.

Одновременно напряжения u10(t), u11(t) и u12(t), u1(t), u2(t) и u3(t) поступают на два входа фазометров 9, 32 и 33, где измеряются фазовые сдвиги Δφ1, Δφ2 и Δφ3, пропорциональные измеряемым давлению Р, температуре Т и влажности W соответственно.

Следовательно, блоком 10 регистрации фиксируется номер устройства для дистанционного измерения параметров атмосферы (воздуха) и измеряемое им давление Р, температура Т и влажность W.

Сканирующее устройство обеспечивает последовательный опрос всех устройств для дистанционного измерения параметров атмосферы (воздуха), регистрацию их номеров и измеряемых давлений, температур и влажности.

Таким образом, предлагаемое устройство по сравнению с прототипом обеспечивает дистанционное измерение не только давления атмосферы (воздуха) с повышенной точностью, но и одновременного дистанционного измерения температуры и влажности атмосферы (воздуха) с повышенной точностью. Это необходимо в тех случаях, когда непосредственное (контактное) измерение параметров атмосферы (воздуха) невозможно выполнить. Повышение точности дистанционного измерения давления, температуры и влажности обеспечивается фазовым методом.

Основное преимущество систем автоматической телеиндикации с применением приемопередатчиков на ПАВ состоит в возможности изготовить пассивный, т.е. не требующий источников питания приемоответчик с малыми габаритами. Используемый приемоответчик представляет возможность дистанционного считывания несущей им информации о давлении, температуре и влажности атмосферы (воздуха) неограниченное число раз, в автоматическом режиме.

Другое преимущество заключается в возможности совмещения функций переизлучения энергии, кодирования информации о номере и функций датчиков давления, температуры и влажности в одном устройстве с простой конструкцией.

Положительным свойством приемоответчика на ПАВ можно считать также малые затраты на длительную эксплуатацию (отсутствие батарей и большое время наработки ни отказ).

Тем самым функциональные возможности устройства расширены.

Устройство для дистанционного измерения параметров атмосферы, содержащее сканирующие устройство и приемоответчик, при этом сканирующее устройство содержит последовательно включенные усилитель мощности и дуплексер, вход/вход которого связан с приемопередающей направленной или ненаправленной антенной, последовательно включенные первый удвоитель фазы, первый делитель фазы на два, первый узкополосный фильтр, фазовый детектор и блок регистрации, последовательно включенные задающий генератор и первый фазометр, второй вход которого соединен с вторым выходом первого узкополосного фильтра, а выход подключен к второму входу блока регистрации, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей первый встречно-штыревой преобразователь, который выполнен в виде двух гребенчатых систем электродов, нанесенных на поверхность звукопровода, электроды которой из гребенок соединены между собой шинами, которые связаны с микрополосковой приемопередающей антенной, при этом на звукопроводе размещены первый чувствительный элемент, выполненный в виде тонкой мембраны, и первая отражательная решетка, отличающееся тем, что сканирующее устройство снабжено двумя перемножителями, вторым, третьим, четвертым и пятым узкополосными фильтрами, сумматором, тремя полосовыми фильтрами, вторым и третьим удвоителями фазы, вторым и третьим делителями фазы, вторым и третьим фазометрами, причем к второму выходу задающего генератора последовательно подключены первый перемножитель, второй вход которого соединен с вторым выходом задающего генератора, второй узкополосный фильтр и сумматор, второй вход которого соединен с вторым выходом задающего генератора, а выход подключен к входу усилителя мощности, к выходу второго узкополосного фильтра последовательно подключены второй перемножитель, второй вход которого соединен с выходом второго узкополосного фильтра, и третий узкополосный фильтр, выход которого подключен к третьему входу сумматора, выход дуплексера через первый полосовой фильтр подключен к входу первого удвоителя фазы и к второму входу фазового детектора, к выходу дуплексера последовательно подключены второй полосовой фильтр, второй удвоитель фазы, второй делитель фазы на два, четвертый узкополосный фильтр и второй фазометр, второй вход которого соединен с выходом второго узкополосного фильтра, а выход подключен к третьему входу блока регистрации, к выходу дуплексера последовательно подключены третий полосовой фильтр, третий удвоитель фазы, третий делитель фазы на два, пятый узкополосный фильтр и третий фазометр, второй вход которого соединен с выходом третьего узкополосного фильтра, а выход подключен к четвертому входу блока регистрации, а приемоответчик снабжен вторым и третьим встречно-штыревым преобразователем, вторым и третьим чувствительными элементами, второй и третьей отражающими решетками, которые нанесены на поверхность одного и того же звукопровода, причем шины второго и третьего встречно-штыревых преобразователей связаны с одной и той же микрополосковой приемопередающей антенной, центральные частоты ω, ω и ω встречно-штыревых преобразователей определяются шагом размещения электродов, их количеством и выбраны следующим образом: ω=2ω, ω=2ω.
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ПАРАМЕТРОВ АТМОСФЕРЫ
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ПАРАМЕТРОВ АТМОСФЕРЫ
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ПАРАМЕТРОВ АТМОСФЕРЫ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 130.
20.11.2017
№217.015.efd9

Спутниковая система для определения местоположения судов и самолетов, потерпевших аварию

Изобретение предназначено для определения местоположения аварийных радиобуев (АРБ), передающих радиосигналы бедствия на частоте 121,5 МГц и в диапазоне частот 406-406,1 МГц. Достигаемый технической результат изобретения - расширение функциональных возможностей системы путем формирования...
Тип: Изобретение
Номер охранного документа: 0002629000
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.f117

Устройство для контроля концентрации опасных газов

Изобретение предназначено для мониторинга окружающей среды, в частности для автоматического непрерывного контроля концентрации горючих газов (метана - СН, кислорода - O и угарного газа - СО) в жилых, коммунальных и производственных помещениях с целью обнаружения превышения допустимых...
Тип: Изобретение
Номер охранного документа: 0002638915
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f5bc

Система определения параметров движения астероида

Изобретение относится к комплексам защиты Земли от космических объектов. Система определения параметров движения астероида содержит передатчик, дуплексер, приемопередающую антенну, приемные антенны, опорный генератор, генератор импульсов, электронный коммутатор, гетеродин, смеситель, фильтр...
Тип: Изобретение
Номер охранного документа: 0002637048
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f687

Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов

Изобретение относится к радиолокации пассивных космических объектов (КО), например, крупных метеоритов и астероидов. Способ включает радиолокационное зондирование КО, вращающегося в процессе полета, периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности....
Тип: Изобретение
Номер охранного документа: 0002634453
Дата охранного документа: 30.10.2017
29.12.2017
№217.015.fe59

Способ идентификации субъекта на обслуживаемом объекте и устройство для его осуществления

Предлагаемые способ и устройство относятся к методам защиты объектов от доступа посторонних лиц и регистрации штатного персонала, обслуживающего объекты, а именно к способам идентификации, позволяющим регистрировать субъекты, получившие доступ на объекты, а также регистрировать отпирание замков...
Тип: Изобретение
Номер охранного документа: 0002638504
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.0203

Устройство для дистанционного измерения параметров атмосферы

Изобретение относится к области метеорологии и может быть использовано для дистанционного измерения параметров атмосферы. Сущность: устройство состоит из сканирующего устройства и приемоответчика. Сканирующее устройство содержит задающий генератор (1), усилитель (2) мощности, дуплексер (3),...
Тип: Изобретение
Номер охранного документа: 0002629897
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.0279

Система для определения местоположения самолетов, потерпевших катастрофу

Система для определения местоположения самолетов, потерпевших катастрофу, содержит «черный ящик» с сигнализацией, помещенный в хвосте самолета, приемник GPS-сигналов, генератор электромагнитных волн и пункт контроля. «Черный ящик» содержит блок генераторов звука и электромагнитных волн, блок...
Тип: Изобретение
Номер охранного документа: 0002630272
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.059b

Диспетчерская система контроля движения городского транспорта

Изобретение относится к области общественного транспорта, в частности к средствам передачи информации для контроля движения городского транспорта, и может найти применение в автоматизированных системах управления транспортом города. Каждый радиокомплекс 1, установленный на транспортных...
Тип: Изобретение
Номер охранного документа: 0002630945
Дата охранного документа: 14.09.2017
19.01.2018
№218.016.0bee

Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Техническим...
Тип: Изобретение
Номер охранного документа: 0002632564
Дата охранного документа: 05.10.2017
13.02.2018
№218.016.216f

Автономная сигнально-пусковая система пожаротушения

Предлагаемая система относится к противопожарной технике, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использована для противопожарной защиты различных объектов и одновременной передачи сигналов...
Тип: Изобретение
Номер охранного документа: 0002641886
Дата охранного документа: 22.01.2018
Показаны записи 111-120 из 178.
19.01.2018
№218.016.0bee

Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Техническим...
Тип: Изобретение
Номер охранного документа: 0002632564
Дата охранного документа: 05.10.2017
13.02.2018
№218.016.216f

Автономная сигнально-пусковая система пожаротушения

Предлагаемая система относится к противопожарной технике, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использована для противопожарной защиты различных объектов и одновременной передачи сигналов...
Тип: Изобретение
Номер охранного документа: 0002641886
Дата охранного документа: 22.01.2018
04.04.2018
№218.016.31d9

Система автоматического управления микроклиматом в помещениях для размещения животных

Предлагаемая система относится к теплонасосным системам и установкам и может быть использована для горячего водоснабжения и отопления помещений. Система автоматического управления микроклиматом в помещениях для размещения животных, содержащая компрессор, два бака-аккумулятора, конденсатор,...
Тип: Изобретение
Номер охранного документа: 0002645203
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.34c3

Система интеллектуального управления и контроля параметров и режимов работы машин и оборудования ферм по производству молока

Изобретение относится к сельскому хозяйству, в частности к оборудованию ферм по производству молока. Датчики (1)-(6) соединены с многоканальными цифровыми измерителями (7)-(12), выходы которых через модуль (13) сбора данных соединены с компьютером (14) фермы. Видеокамеры (15) через регистратор...
Тип: Изобретение
Номер охранного документа: 0002646051
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.4a31

Способ маркировки автотранспорта

Изобретение относится к области предотвращения несанкционированного использования транспортных средств и предназначено для идентификации автомобиля или его частей с целью предупреждения угона автотранспорта, затруднения преступной продажи угнанного транспорта или его частей и затруднения...
Тип: Изобретение
Номер охранного документа: 0002651443
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4bd1

Устройство для организации дорожного движения

Изобретение относится к области регулирования и организации дорожного движения и может быть применено при остановке и контроле транспортных средств на постоянных и временных пунктах контроля дорожного движения. Устройство для организации дорожного движения содержит жезл регулировщика,...
Тип: Изобретение
Номер охранного документа: 0002651936
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4bf6

Устройство контроля параметров движения транспортного средства (черный ящик)

Изобретение относится к приборостроению. Устройство контроля параметров движения транспортного средства содержит датчик импульсов пути, счетчики импульсов пути, микропроцессоры, блок управления, датчики состояния: тормозной системы, приборов сигнализации, фар, распределительный блок,...
Тип: Изобретение
Номер охранного документа: 0002651935
Дата охранного документа: 24.04.2018
29.05.2018
№218.016.5778

Способ синхронизации часов

Предлагаемый способ относится к технике связи и может быть использован в радиоинтерферометрии со сверхдлинными базами, а также в службе единого времени и частоты. Технической задачей изобретения является повышение точности сличения удаленных шкал времени путем автоматического выполнения...
Тип: Изобретение
Номер охранного документа: 0002654846
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.58e2

Система для определения скорости распространения и направления прихода ионосферного возмущения

Изобретение относится к области радиофизики и может быть использовано для контроля за солнечной, геомагнитной и сейсмической активностью, предвестников землетрясений, извержения вулканов, цунами, процессов грозовой активности, динамики мощных циклонов, а также для обнаружения ядерных и иных...
Тип: Изобретение
Номер охранного документа: 0002655164
Дата охранного документа: 24.05.2018
09.06.2018
№218.016.5a8a

Способ определения расхода жидкости в трубопроводе

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта и электромагнитного явления. Устройство, реализующее предлагаемый способ, содержит трубопровод 1, ферритовое кольцо 2, обмотку 3, помещенную в...
Тип: Изобретение
Номер охранного документа: 0002655621
Дата охранного документа: 29.05.2018
+ добавить свой РИД