×
20.06.2013
216.012.4dd8

СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ НИТРАТНЫХ СОЕДИНЕНИЙ В АТМОСФЕРНОМ ВОЗДУХЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области гидрометеорологии контроля окружающей среды и может быть использовано для определения концентрации нитратных соединений (взвешенных частиц) в атмосферном воздухе населенных мест. Способ определения концентрации нитратных соединений в атмосферном воздухе включает измерение концентрации азотосодержащих соединений в атмосферном воздухе в заданной точке, расчет на этой основе концентрации нитратных соединений по определенной зависимости на основе предварительно построенных графиков. Причем сначала измеряют концентрацию диоксида азота в заданной точке, затем рассчитывают концентрацию нитратных соединений по зависимости: где C(NO) - концентрация диоксида азота по результатам замера, мг/м; k - коэффициент влияния угла склонения Солнца; k - коэффициент влияния степени общей облачности. При этом коэффициент влияния угла склонения Солнца (k) определяют с учетом степени трансформации диоксида азота в различные временные периоды года, а коэффициент влияния степени общей облачности (k) определяют в зависимости от общей облачности. Техническим результатом изобретения является снижение трудоемкости и повышение точности определения концентрации нитратных соединений в атмосферном воздухе. 4 ил.
Основные результаты: Способ определения концентрации нитратных соединений в атмосферном воздухе, включающий измерение концентрации азотосодержащих соединений в атмосферном воздухе в заданной точке, расчет на этой основе концентрации нитратных соединений по определенной зависимости на основе предварительно построенных графиков, отличающийся тем, что сначала измеряют концентрацию диоксида азота в заданной точке, затем рассчитывают концентрацию нитратных соединений но зависимости: где C(NO) - концентрация диоксида азота по результатам замера, мг/м;k - коэффициент влияния угла склонения Солнца;k - коэффициент влияния степени общей облачности;при этом коэффициент влияния угла склонения Солнца (k) определяют с учетом степени трансформации диоксида азота в различные временные периоды года, а коэффициент влияния степени общей облачности (k) определяют в зависимости от общей облачности, при этом при общей облачности в 1 балл коэффициент облачности составляет 1, при общей облачности в 2 балла коэффициент облачности составляет 2,75, при общей облачности в 3 балла коэффициент облачности составляет 4,5, при общей облачности в 4 балла коэффициент облачности составляет 6,25, при общей облачности в 5 баллов коэффициент облачности составляет 8, при общей облачности в 6 баллов коэффициент облачности составляет 9,75, при общей облачности в 7 баллов коэффициент облачности составляет 11,5, при общей облачности в 8 баллов коэффициент облачности составляет 13,25, при общей облачности в 9 баллов коэффициент облачности составляет 15, при общей облачности в 10 баллов коэффициент облачности составляет 16,75.
Реферат Свернуть Развернуть

Изобретение относится к области гидрометеорологии контроля окружающей среды и может быть использовано для определения концентрации нитратных соединений (взвешенных частиц) в атмосферном воздухе населенных мест в диапазоне географических широт 50-60° северной широты.

Известен способ определения нитратов и нитритов в жидких средах тест-методом по длине окрашенной в сиреневый цвет зоны тест-полосы размером (3-4)×(80-90) мм, заклеенной в полимерную пленку и контактирующей одним концом с исследуемой жидкостью. В качестве впитывающей бумаги использована диальдегидцеллюлозная бумага, с которой ковалентно связан 1-нафтиламин или N-(нафтил-1)этилендиамин, диазосоставляющей служат новокаин или анестезин, иммобилизованные на бумаге. В качестве восстановителя при определении нитратов использована цинковая пыль [патент РФ №RU 2173851 от 20.09.2001].

Недостатком данного способа является ограниченность области его применения исключительно жидкими средами.

Имеется реактивная индикаторная полоса для определения нитрат-ионов «Рип-Нитрат-Тест». Сущность изобретения состоит в следующем: между слоем с кислотным реагентом и слоем с органическими индикаторными реагентами теста Грисса имеется слой, состоящий из цинковой пыли с клеющим наполнителем, причем слой с кислотным реагентом содержит в качестве маскиранта на нитрит-ионы вторичный амин, а под индикаторным слоем выполнена полимерная подложка-державка, в полимерной подложке выполнено отверстие, а цинковая пыль размещена в отверстии клеющего слоя, эквидистантном отверстию в полимерной подложке, в качестве вторичного амина применены дифениламин, N-фенил-1-нафтиламин, 3-гидрокси-1,2,3,4-тетрагидро/h/хинолин, закрепленные на модифицированной хроматографической бумаге, содержащей полиамидо(амино)эпихлоргидриновую смолу, эпоксидированную целлюлозу [патент РФ №RU 2009486 от 15.03.1994].

Недостатком данного способа является сложность выполнения измерений и невозможность их проведения в атмосферном воздухе.

Существует способ оценки распределения аэрозольных частиц, заключающийся в осаждении полидисперсного аэрозоля на каскадный пробоотборник. Способ заключается в осаждении полидисперсного аэрозоля на каскадный пробоотборник, в котором последовательно размещены фильтрующие элементы, например полиуретаны, в порядке возрастания плотности упаковки волокон и с заранее известной эффективностью фильтрации частиц различных размеров. При исследовании аэрозолей твердых веществ фильтрующие элементы предварительно смачиваются адгезионной жидкостью с вязкостью 100 сСт, например полиметилсилоксаном. Способ оценки массового распределения аэрозольных частиц по размерам включает отбор проб аэрозоля на каскадный пробоотборник, проведение количественного анализа содержания примеси на каждом элементе и последующий расчет параметров распределения [заявка на изобретение №93012769 от 20.08.1996].

Недостатком данного способа является невозможность определения концентрации нитратных соединений (взвешенных частиц) в атмосферном воздухе.

Известен способ определения нитратов и нитритов в биологических средах малых объемов. Согласно способу проводят осаждение белков 1,5 мл охлажденного до +4-8°C 96% этанола и 0,1 мл дистиллированной воды при конечной концентрации 86,4%, затем прибавляют 2 мл аммиачно-хлоридного буфера pH 9,6±0,05 и дистиллированной водой доводят объем до 10 мл. Производят выделение нитратов и нитритов через кадмиевую колонку, проведение цветной реакции с добавлением N-нафтилэтилендиаминдигидрохлорида, фотометрирование, определение концентрации нитратов и нитритов по графику зависимости концентрации от оптической плотности. Концентрацию нитратов и нитритов определяют по формуле:

где C1 - концентрация нитрит-ионов, найденная по калибровочному графику, [патент РФ RU 2317545 от 20.02.2008].

Недостатком известного способа определения нитратов является невозможность определения количества нитратных соединений (взвешенных веществ) в атмосферном воздухе населенных мест.

Наиболее близким по технической сущности к заявляемому способу является способ фотометрического определения концентрации нитрит-нитрат хлорида кальция (ННХК) в воздухе рабочей зоны [МУК 4.1.146-96 Методические указания по фотометрическому измерению концентраций нитрит-нитрат хлорида кальция (ННХК) в воздухе рабочей зоны]. Методика основана на реакции взаимодействия анализируемого соединения с реактивом Грисса-Илосвая и последующем фотометрическом измерении окрашенного продукта реакции при 540 нм. Согласно этому способу воздух с объемным расходом 1 л/мин аспирируют через фильтры типа АФА-ВП-20. Фильтр с пробой помещают в стакан, заливают 10 мл дистиллированной воды. Через 3-4 мин фильтр отжимают стеклянной палочкой и удаляют 2 мл полученного раствора переносят в фарфоровую чашку. Далее пробы обрабатывают аналогично градуировочным растворам. Оптическую плотность полученного анализируемого раствора пробы измеряют аналогично градуировочным растворам по сравнению с контролем, который готовят одновременно и аналогично пробе. Количественное определение содержания вещества (мкг) в анализируемой пробе проводят по предварительно построенному градуировочному графику. Концентрацию вещества (C) в воздухе (мг/м3) вычисляют по формуле:

где а - содержание нитрата натрия в анализируемом объеме пробы, определенное по калибровочному графику, мкг; в - общий объем раствора пробы, мл; б - объем раствора пробы, взятой для анализа, мл; V - объем воздуха, взятого для анализа и приведенного к стандартным условиям, л.

Недостатками данного способа являются его высокая трудоемкость, обусловленная необходимостью осуществления отбора проб воздуха с последующей пробоподготовкой.

Технической задачей заявляемого способа является снижение трудоемкости и повышение точности определения концентрации нитратных соединений в атмосферном воздухе.

Указанная задача решается следующим образом.

Способ определения концентрации нитратных соединений в атмосферном воздухе включает измерение концентрации азотосодержащих соединений в атмосферном воздухе в заданной точке, расчет на этой основе концентрации нитратных соединений по определенной зависимости на основе предварительно построенных графиков, при этом сначала измеряют концентрацию диоксида азота в заданной точке, затем рассчитывают концентрацию нитратных соединений по зависимости:

где C(NO2) - концентрация диоксида азота по результатам замера, мг/м3;

kα - коэффициент влияния угла склонения Солнца;

kобл - коэффициент влияния степени общей облачности.

Коэффициент влияния угла склонения Солнца (kα) определяют с учетом степени трансформации диоксида азота в различные временные периоды года, а коэффициент влияния степени общей облачности (kобл) определяют в зависимости от общей облачности, при этом при общей облачности в 1 балл коэффициент облачности составляет 1, при общей облачности в 2 балла коэффициент облачности составляет 2,75, при общей облачности в 3 балла коэффициент облачности составляет 4,5, при общей облачности в 4 балла коэффициент облачности составляет 6,25, при общей облачности в 5 баллов коэффициент облачности составляет 8, при общей облачности в 6 баллов коэффициент облачности составляет 9,75, при общей облачности в 7 баллов коэффициент облачности составляет 11,5, при общей облачности в 8 баллов коэффициент облачности составляет 13,25, при общей облачности в 9 баллов коэффициент облачности составляет 15, при общей облачности в 10 баллов коэффициент облачности составляет 16,75.

Изобретение поясняется чертежами. На фиг.1 представлено изменение суточных концентраций диоксида азота (NO2) и озона (O3): 1 - график суточной концентрации (мг/м3) озона (O3); 2 - график суточной концентрации (мг/м3) диоксида азота (NO2). На фиг.2 представлено изменение толщины оптического слоя атмосферы по месяцам: α1 - угол склонения Солнца в июле, α2 - угол склонения Солнца в августе, α3 - угол склонения Солнца в сентябре. На фиг.3 представлены графики: концентрации оксида азота (IV), 30.03.09, в пасмурный день, облачность 10 баллов; 1 - график концентрации оксида азота (IV); 2 - значение среднесуточной предельно допустимой концентрации оксида азота (IV). На фиг.4 представлены графики концентрации оксида азота (IV), 02.04.09, солнечный день, облачность 1 балл; 1 - график концентрации оксида азота (IV); 2 - значение среднесуточной предельно допустимой концентрации оксида азота (IV)

Предлагаемый способ осуществляется следующим образом.

Для определения концентрации нитратных соединений в атмосферном воздухе в заданной точке населенного пункта сначала измеряют концентрацию диоксида азота. Затем находят значение коэффициента влияния угла склонения Солнца kα по таблице 1 в зависимости от времени года и суток.

Табл.1
Значения коэффициентов степени трансформации диоксида азота в различные временные периоды года для диапазона географических широт 50-60° северной широты
Месяц Часы дня
6 8 10 12 14 16 18 20
Значение коэффициента трансформации kα
Январь 0 0 0,1 0,5 1 0,4 0 0
Февраль 0 0 0,2 0,6 1 0,5 0 0
Март 0 0 0,3 0,6 1 0,6 0,1 0
Апрель 0 0 0,4 0,7 1 1 0,6 0
Май 0 0 0,5 0,75 1 1 1 0,6
Июнь 0 0,1 0,6 0,9 1 1 1 1
Июль 0 0 0.5 0,75 1 1 1 0.9
Август 0 0 0,4 0,65 1 1 0,7 0,3
Сентябрь 0 0 0,3 0,5 1 1 0,4 0
Октябрь 0 0 0,2 0,4 1 0,4 0 0
Ноябрь 0 0 0,1 0,3 1 0,3 0 0
Декабрь 0 0 0 0,3 1 0,1 0 0

Таблица численных значений степени трансформации (полноты химических превращений) диоксида азота в виде коэффициента - kα, в зависимости от угла склонения Солнца, соответствующего определенному временному интервалу, была разработана по результатам данных экспериментов, проведенных в период 2008-2010 г. методом дифференциальной оптической абсорбционной спектроскопии (ДОАС). С помощью метода ДОАС была установлена зависимость между падением концентрации диоксида азота и ростом концентрации озона в различное время суток и времена года (фиг.1) в зависимости от угла склонения Солнца (фиг.2), соответствующего определенному временному интервалу.

Исследование проводилось в диапазоне географических широт 50-60° северной широты.

Далее определяют значение коэффициента влияния облачности kобл по таблице 2 исходя из значения общей облачности (в баллах).

Табл.2
Значения коэффициента влияния степени общей облачности на степень трансформации диоксида азота
Общая облачность (баллы) kобл
1 1
2 2,75
3 4,5
4 6,25
5 8
6 9,75
7 11,5
8 13,25
9 15
10 16,75

Таблица значений коэффициента влияния облачности kобл была составлена на основе результатов экспериментов, выполненных в течение двух смежных дней, видно, что концентрация диоксида азота в солнечный и пасмурный дни отличаются во много раз. Так, на фиг.3 изображен график концентрации диоксида азота, измеренной 30 марта года в городе Туле в пасмурный день при десятибалльной облачности, отмечается превышение предельно допустимой концентрации в 2,5 раза. А при измерении концентрации диоксида азота 2 апреля 2009 года в городе Туле в солнечный день при облачности в один балл превышения предельно допустимой концентрации нет (фиг.4).

В соответствие с законом сохранения масс каждая молекула, образовавшейся в атмосферном воздухе, азотной кислоты образует молекулу нитрата аммония - твердое взвешенное вещество - PM по международной классификации. Соответственно массовая концентрация взвешенного вещества (NH4NO3) будет пропорциональна концентрации диоксида азота.

Для практического подтверждениям образования именно этого нитрата методом атомно-абсорбционной спектроскопии был проведен анализ снежного покрова зимы 2009-2010 года в трех различных точках г.Тулы. Теоретическим обоснованием правильности выбора такого подхода является то, что получаемая из снега вода растворяет находящиеся в ней вещества, разбивая их на отдельные молекулы, образуя истинные молекулярные растворы. Качественный и количественный химический состав снеговых проб представлен в таблице 3.

Табл.3
Качественный и количественный химический состав снеговых проб
Вещество Точки отбора в г.Тула
1 точка (ул. Оборонная) 2 точка (пр. Ленина) 3 точка (ул. Мира)
мг/л
9 9 8,7
2,6 2,5 2,4

1 точка: г.Тула, ул. Оборонная

2 точка: г.Тула, пр. Ленина

3 точка: г.Тула, ул. Мира

Как видно из расчета, молярные концентрации ионов аммония и нитратной группы совпадают, т.е. в воде растворен нитрат аммония.

В основу предложенного способа положен закон сохранения масс и результаты экспериментальных исследований динамики суточных превращений соединений азота и кислорода в тропосфере.

Сам процесс образования нитратов основан на сенсибилизирующих свойствах диоксида азота - способности поглощать квант солнечного света и передавать избыточную энергию возбуждения молекулам кислорода, переводя их тем самым в синглетное состояние - O(1D) и O(3Р).

Появление синглетов кислорода, в свою очередь, запускает цепную реакцию образования свободных радикалов, которая протекает по следующей реакции (2):

В дальнейшем при взаимодействие радикала ОН с NO2 образуется азотная кислота, которая накапливается в воздухе (3).

Таким образом, при максимальном воздействии солнечной радиации, зависящем от толщины оптического слоя атмосферы (угла склонения солнца) и степени его проницаемости (облачности), каждая молекула диоксида азота (газ) трансформируется в молекулу азотной кислоты (жидкость). О чем свидетельствуют экспериментальные данные (фиг.1-3).

В свою очередь азотная кислота, обладающая высокой реакционной способностью, вступает в реакцию с аммиаком - NH3, который всегда присутствует в атмосфере за счет биологической трансформации и разложения биологического материала. В результате образуется нитрат аммония NH4NO3 (4).

После этого рассчитывают значение концентрации нитратных соединений в атмосферном воздухе населенных мест по следующей зависимости:

где C(NO2) - концентрация диоксида азота по результатам замера, мг/м3; kα - коэффициент влияния угла наклона (таблицы оптического слоя); kобл - коэффициент влияния степени общей облачности;

Предлагаемое изобретение позволяет уменьшить трудоемкость и повысить точность измерения концентрации нитратных соединений в атмосферном воздухе, что дает возможность на практике реализовать требование «Методики расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий» ОНД-86 в части пункта 1.5, гласящего, что «расчет концентрации вредных веществ, претерпевающих полностью или частично химические превращения (трансформацию) в более вредные вещества, проводится по каждому исходному и образующемуся веществу отдельно».

Пример. Определить значение концентрации нитратных соединений в атмосферном воздухе в 12 часов, 15 мая, с уровнем облачности 3 балла в точке А, населенного места Б 550 северной широты.

1. Проводится замер концентрации диоксида азота в заданной точке населенного пункта. По результатам замеров C(NO2)=0,18 мг/м3.

2. По таблице 1 находим значение коэффициента kα. В нашем случае, для рассматриваемого периода времени kα=0,75.

3. По таблице 2 определяем значение коэффициента kобл для трехбалльной облачности. В нашем случае kобл=4,5.

4. По зависимости находим искомое значение концентрации нитратных соединений в атмосферном воздухе в точке А населенного места Б:

Способ определения концентрации нитратных соединений в атмосферном воздухе, включающий измерение концентрации азотосодержащих соединений в атмосферном воздухе в заданной точке, расчет на этой основе концентрации нитратных соединений по определенной зависимости на основе предварительно построенных графиков, отличающийся тем, что сначала измеряют концентрацию диоксида азота в заданной точке, затем рассчитывают концентрацию нитратных соединений но зависимости: где C(NO) - концентрация диоксида азота по результатам замера, мг/м;k - коэффициент влияния угла склонения Солнца;k - коэффициент влияния степени общей облачности;при этом коэффициент влияния угла склонения Солнца (k) определяют с учетом степени трансформации диоксида азота в различные временные периоды года, а коэффициент влияния степени общей облачности (k) определяют в зависимости от общей облачности, при этом при общей облачности в 1 балл коэффициент облачности составляет 1, при общей облачности в 2 балла коэффициент облачности составляет 2,75, при общей облачности в 3 балла коэффициент облачности составляет 4,5, при общей облачности в 4 балла коэффициент облачности составляет 6,25, при общей облачности в 5 баллов коэффициент облачности составляет 8, при общей облачности в 6 баллов коэффициент облачности составляет 9,75, при общей облачности в 7 баллов коэффициент облачности составляет 11,5, при общей облачности в 8 баллов коэффициент облачности составляет 13,25, при общей облачности в 9 баллов коэффициент облачности составляет 15, при общей облачности в 10 баллов коэффициент облачности составляет 16,75.
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ НИТРАТНЫХ СОЕДИНЕНИЙ В АТМОСФЕРНОМ ВОЗДУХЕ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ НИТРАТНЫХ СОЕДИНЕНИЙ В АТМОСФЕРНОМ ВОЗДУХЕ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ НИТРАТНЫХ СОЕДИНЕНИЙ В АТМОСФЕРНОМ ВОЗДУХЕ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ НИТРАТНЫХ СОЕДИНЕНИЙ В АТМОСФЕРНОМ ВОЗДУХЕ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ НИТРАТНЫХ СОЕДИНЕНИЙ В АТМОСФЕРНОМ ВОЗДУХЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 24.
10.01.2013
№216.012.19cd

Действующая модель миниатюрного полуавтоматического пистолета

Изобретение относится к области действующих моделей миниатюрного оружия, преимущественно образцов оружия, действие автоматики которого основано на отдаче ствола с коротким ходом. Действующая модель миниатюрного полуавтоматического пистолета содержит корпус, в котором размещены ствол, затвор,...
Тип: Изобретение
Номер охранного документа: 0002472097
Дата охранного документа: 10.01.2013
20.03.2013
№216.012.3035

Устройство контроля параметров условий труда

Изобретение относится к приборостроению, в частности к области контроля параметров условий труда, и может быть использовано для контроля и управления уровнями факторов производственной среды. Технический результат - расширение функциональных возможностей контроля фактического уровня параметров...
Тип: Изобретение
Номер охранного документа: 0002477876
Дата охранного документа: 20.03.2013
20.07.2013
№216.012.570c

Система экологического контроля атмосферного воздуха промышленного региона

Изобретение относится к экологическим системам сбора и обработки информации и может быть использовано для проведения мониторинга атмосферного воздуха промышленного региона. Технический результат заключается в расширении функциональных возможностей системы за счет введения в нее процесса...
Тип: Изобретение
Номер охранного документа: 0002487892
Дата охранного документа: 20.07.2013
20.12.2013
№216.012.8e07

Управляемый реактивный снаряд

Изобретение относится к области военной техники, в частности к управляемым реактивным снарядам. Управляемый реактивный снаряд включает управляющий и разгонный блоки. Управляющий блок выполнен в виде двух модулей: носового с органами управления реактивным снарядом и хвостового. Между собой...
Тип: Изобретение
Номер охранного документа: 0002502042
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.8fa5

Способ диагностики вызванного потенциала мозга и устройство для его осуществления

Изобретение относится к медицине. Устройство содержит последовательно соединенные датчик, средство для регистрации электрической активности мозга, линии задержки, усилители с регулируемыми коэффициентами усиления, сумматоры, блок анализа вызванных потенциалов, блок управления средством подачи...
Тип: Изобретение
Номер охранного документа: 0002502466
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.917c

Способ управления реактивным снарядом

Изобретение относится к области вооружения и может быть использовано в комплексах управляемого артиллерийского вооружения. Способ заключается в том, что старт или полет реактивного снаряда осуществляют со стабилизацией по крену его головного отсека, соединенного с остальными отсеками снаряда...
Тип: Изобретение
Номер охранного документа: 0002502937
Дата охранного документа: 27.12.2013
27.04.2014
№216.012.bce9

Информационно-измерительная система контроля параметров условий труда

Изобретение относится к области контроля параметров условия труда. Техническим результатом является расширение функциональных возможностей контроля фактического уровня параметров условий труда путем дополнительного контроля уровня плотности магнитного потока. Информационно-измерительная система...
Тип: Изобретение
Номер охранного документа: 0002514100
Дата охранного документа: 27.04.2014
27.04.2014
№216.012.bece

Информационно-измерительная и управляющая система оптимизации производства тепловой энергии на распределенных объектах теплоснабжения

Изобретение относится к системам теплоснабжения городов и других населенных пунктов и может быть использовано для автоматического учета расхода тепла в системах теплоснабжения. Первый выход первого контура с источником тепла - газовым котлом - связан с входом датчика температуры сбросных газов...
Тип: Изобретение
Номер охранного документа: 0002514586
Дата охранного документа: 27.04.2014
27.05.2014
№216.012.c8bc

Кольцевой пружинный тренажер для укрепления суставов и мышц конечностей

Тренажер относится к устройствам для тренировки суставов и мышц конечностей человека с возможностью использования в бытовых условиях, в физкультурных кабинетах клиник и тренировки спортсменов для развития физической силы конечностей. Кольцевой пружинный тренажер для укрепления суставов и мышц...
Тип: Изобретение
Номер охранного документа: 0002517154
Дата охранного документа: 27.05.2014
20.06.2014
№216.012.d417

Информационно-измерительная система мониторинга энергосбережения при производстве тепловой энергии

Изобретение относится к системам теплоснабжения городов и других населенных пунктов и может быть использовано для автоматического учета расхода тепла в системах теплоснабжения. Изобретение позволяет оптимизировать процесс производства тепловой энергии на распределенных объектах теплоснабжения и...
Тип: Изобретение
Номер охранного документа: 0002520066
Дата охранного документа: 20.06.2014
Показаны записи 1-10 из 84.
27.01.2013
№216.012.1f28

Вяжущее

Изобретение относится к составу вяжущего и может найти применение в промышленности строительных материалов для изготовления бетонов. Технический результат - увеличение прочности на сжатие в возрасте 28 суток, снижение себестоимости вяжущего. Вяжущее, включающее портландцемент, молотый...
Тип: Изобретение
Номер охранного документа: 0002473477
Дата охранного документа: 27.01.2013
20.03.2013
№216.012.3035

Устройство контроля параметров условий труда

Изобретение относится к приборостроению, в частности к области контроля параметров условий труда, и может быть использовано для контроля и управления уровнями факторов производственной среды. Технический результат - расширение функциональных возможностей контроля фактического уровня параметров...
Тип: Изобретение
Номер охранного документа: 0002477876
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.3165

Способ трансформации в полете кормового отсека артиллерийского снаряда и устройство для его реализации

Изобретение относится к оборонной технике, в частности к устройству и способу трансформации в полете кормового отсека артиллерийского снаряда. Способ заключается в аккумулировании газов заснарядного пространства в накопительной камере кормового отсека, удлинении кормового отсека снаряда, путем...
Тип: Изобретение
Номер охранного документа: 0002478183
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.3168

Оптико-электронный маятниковый датчик уровня

Изобретение относится к устройствам для измерения отклонения объекта в вертикальной плоскости и может быть использовано для контроля и выправки положения железнодорожного полотна. Сущность: датчик уровня содержит маятник, излучатель света, ряд светоприемников, корпус. В эту схему введены...
Тип: Изобретение
Номер охранного документа: 0002478186
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.3181

Компенсационный акселерометр

Изобретение предназначено для использования в качестве чувствительного элемента в системах стабилизации и навигации и может найти применение в приборах измерения механических величин компенсационного типа. Компенсационный акселерометр содержит чувствительный элемент, датчик угла, интегрирующий...
Тип: Изобретение
Номер охранного документа: 0002478211
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.3182

Компенсационный акселерометр

Изобретение предназначено для использования в качестве чувствительного элемента в системах стабилизации и навигации. Компенсационный акселерометр содержит чувствительный элемент, датчик угла, выход которого соединен с входом полосового фильтра, отрицательную обратную связь, реализованную с...
Тип: Изобретение
Номер охранного документа: 0002478212
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.326d

Способ изготовления роликов тяжелонагруженных приводных цепей

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении роликов приводных цепей, применяемых в металлургии, конвейерных устройствах и других высокоэнергетических передачах движения. Отрезанную от прутка заготовку после термообработки и смазывания...
Тип: Изобретение
Номер охранного документа: 0002478452
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.32d2

Устройство для выгрузки кускового материала из бункера

Устройство содержит рабочий орган, расположенный под углом 60° к горизонтали и содержащий ступени, форсунки и шторы с регулируемой щелью. Ступени рабочего органа выполнены в виде плиты и подвижных ступеней. Плита закреплена к торцевой и вертикальным стенкам с внутренней стороны бункера....
Тип: Изобретение
Номер охранного документа: 0002478553
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.360c

Способ обработки цилиндрических зубчатых колес шевингованием-прикатыванием

Изобретение относится к области машиностроения, в частности к обработке круговых и арочных зубьев цилиндрических зубчатых колес. Способ включает обработку с периодической радиальной подачей после каждого из 2-4 рабочих циклов и без радиальной подачи в течение 1-2 циклов выхаживания. Обработку...
Тип: Изобретение
Номер охранного документа: 0002479389
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3702

Фурма для донной продувки металла газами в ковше и способ ее изготовления

Изобретение относится к металлургии и может быть использовано при внепечной обработке стали и сплавов в ковшах. Фурма содержит металлическую конусную гильзу с дном и газоподводящей трубкой, заполненную огнеупорной массой, в которой выполнены продольные сквозные щелевые каналы и расположен...
Тип: Изобретение
Номер охранного документа: 0002479635
Дата охранного документа: 20.04.2013
+ добавить свой РИД