×
20.06.2013
216.012.4d25

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ НИЗКОТЕМПЕРАТУРНОГО ИСТОЧНИКА ТЕПЛА В МЕХАНИЧЕСКУЮ ЭНЕРГИЮ

Вид РИД

Изобретение

№ охранного документа
0002485331
Дата охранного документа
20.06.2013
Аннотация: Изобретение относится к преобразованию тепловой энергии низкотемпературного источника тепла в механическую энергию. Способ преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию в замкнутом циркуляционном контуре, при котором жидкая рабочая среда нагревается посредством передачи тепла от низкотемпературного источника и частично испаряется в устройстве для создания разрежения, можно предотвратить эрозию конденсатора для конденсации частично преобразованной в пар рабочей среды за счет того, что в частично преобразованной в пар рабочей среде непосредственно перед конденсатором жидкая фаза отделяется от парообразной фазы, только парообразная фаза подается на конденсатор для конденсации, и затем сконденсированная парообразная фаза и жидкая фаза объединяются. Также представлено устройство для осуществления способа. Изобретение позволяет надежным образом предотвратить эрозию конденсатора, не повышая существенно сложность циркуляционного контура. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к способу и устройству для преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию согласно родовому понятию пункта 1 формулы изобретения и, соответственно, пункта 5 формулы изобретения. Подобный способ и, соответственно, подобное устройство известны, например, из патента США 7093503 В1.

Для использования тепловой энергии низкотемпературного источника тепла, как, например, геотермальных источников, газообразных, парообразных или жидкостных источников отходящего тепла или солнечной энергии, уже известно, что в циркуляционном контуре рабочая среда не испаряется, а только нагревается. За счет отказа от испарения можно использовать обычно требуемую для испарения рабочей среды тепловую энергию, например, можно нагреть заметно больший массовый поток рабочей среды. Тем самым для низкотемпературных источников в диапазоне температур менее 400оС можно достичь заметных преимуществ по КПД по сравнению с циркуляционными контурами с испарением рабочей среды.

В известном из патента США 7093503 В1 циркуляционном контуре на первом этапе жидкая рабочая среда доводится с помощью насоса до высокого давления. На втором этапе находящаяся под повышенным давлением жидкая рабочая среда в теплообменнике посредством теплопередачи нагревается от низкотемпературного источника тепла, без испарения. На третьем этапе нагретая жидкая рабочая среда расширяется в двухфазной турбине, причем за счет частичного испарения рабочей среды вырабатывается разреженная, частично испаренная рабочая среда с жидкой и парообразной фазой, и тепловая энергия рабочей среды преобразуется в механическую энергию.

Двухфазная турбина имеет для этого непосредственно на ее входе форсунки, в которых рабочая среда за счет увеличения объема от повышенного входного давления к меньшему выходному давлению расширяется, благодаря чему рабочая среда частично испаряется. Возникающий за счет этого пучок воды и пара направляется на лопатки турбины, посредством которой кинетическая энергия пучка воды и пара преобразуется в механическую энергию вала ротора. Вал ротора связан с генератором, с помощью которого механическая энергия вала ротора преобразуется в электрическую энергию.

Выходящая из турбины двухфазная рабочая среда затем подается в конденсатор. В конденсаторе затем на четвертом этапе парообразная фаза разреженной, частично испаренной рабочей среды конденсируется и тем самым образуется вышеупомянутая жидкая рабочая среда. Последняя подается на уже упоминавшийся насос и тем самым циркуляционный контур замыкается. Представленная на фиг.2 T-s-диаграмма наглядно иллюстрирует протекающий при этом циркуляционный процесс. При этом SL обозначает линию кипения, TL - линию пара и К - критическую точку рабочей среды. Рабочая среда вдоль линии кипения SL от точки А до точки В вблизи критической точки К нагревается, от точки В до точки С при частичном испарении расширяется и от точки С до точки А - конденсируется.

Из WO 2005/031123 А1, кроме того, известно, что двухфазная смесь, выходящая из двухфазной турбины, подается в сепаратор, чтобы отделить парообразную фазу от жидкой фазы. Парообразная фаза затем в паровой турбине расширяется, чтобы получить дополнительную механическую энергию. Выходящий из паровой турбины разреженный пар подается на конденсатор, конденсируется в нем, затем с помощью насоса приводится к высокому давлению и затем объединяется с отделенной в сепараторе жидкой фазой двухфазной смеси. Возникающий за счет этого поток рабочей среды с помощью еще одного насоса накачивается в теплообменник, при этом он за счет теплопередачи нагревается от низкотемпературного источника. К конденсатору при этом подается только отработавший пар паровой турбины, но не двухфазная смесь двухфазной турбины. Этот циркуляционный контур хотя и имеет очень хороший КПД, но также отличается заметно более высокой сложностью и капитальными затратами.

В известном из ЕР 0485596 циркуляционном контуре также только нагретая жидкая, то есть не преобразованная в пар рабочая среда подается в устройство для создания разрежения и там частично испаряется. Пароводяная смесь, выходящая из устройства для создания разрежения, затем подается на сепаратор, который служит только для измерения жидкостной составляющей в паре.

В вышеупомянутом циркуляционном контуре на конденсатор подается двухфазная смесь, выходящая из турбины, так что жидкостная составляющая может привести к эрозии конденсатора, за счет чего срок службы конденсатора уменьшается.

Поэтому задачей настоящего изобретения является дополнительно усовершенствовать способ согласно родовому понятию пункта 1 и устройство согласно родовому понятию пункта 5 формулы изобретения, чтобы можно было надежным образом предотвратить эрозию конденсатора, не повышая существенно сложность циркуляционного контура.

Соответствующий изобретению способ предусматривает, что в разреженной, частично преобразованной в пар рабочей среде непосредственно перед конденсатором жидкая фаза отделяется от парообразной фазы. Только парообразная фаза подается на конденсатор для конденсации. Сконденсированная парообразная (то есть затем жидкая) фаза и отделенная жидкая фаза после конденсатора, но перед этапом 1, то есть повышения давления жидкой рабочей среды, объединяются для получения жидкой рабочей среды. Жидкая фаза, таким образом, отводится мимо конденсатора, за счет чего может быть предотвращена эрозия конденсатора. Для этого необходимы только сепаратор для отделения жидкой фазы от парообразной фазы, обводной трубопровод для направления жидкой фазы мимо конденсатора и светвитель для объединения (отделенной) жидкой и сконденсированной парообразной (то есть затем жидкой) фазы. Сложность циркуляционного контура повышается, таким образом, лишь несущественно.

Величина капель жидкой фазы в парообразной фазе рабочей среды после разрежения зависит от давления рабочей среды в конденсаторе. Чем выше давление рабочей среды в конденсаторе и, тем самым, на выходе устройства для создания разрежения, тем меньше капли. В свою очередь, чем меньше капли, тем меньше опасность эрозии, которая вызывается каплями. На другой стороне, однако, с увеличением давления рабочей среды в конденсаторе и на выходе устройства для создания разрежения снижается механическая энергия, которая может быть выработана путем преобразования тепловой энергии посредством устройства для создания разрежения.

Поэтому предпочтительным образом давление рабочей среды при конденсации устанавливается на этапе 3 на оптимум между минимально возможным размером капель жидкой фазы в парообразной фазе рабочей среды и максимально возможной вырабатываемой энергией. Тем самым целенаправленно снижается выработанная механическая энергия, чтобы избежать эрозии конденсатора. На основе большого преимущества по КПД, обусловленного нагреванием вместо испарения рабочей среды с помощью низкотемпературного источника тепла, могут быть, однако, все равно достигнуты заметные преимущества по КПД по сравнению с обычными циркуляционными контурами с испарением рабочей среды с помощью низкотемпературного источника тепла.

Согласно особенно предпочтительному выполнению соответствующего изобретению способа объединение сконденсированной парообразной (то есть затем жидкой) фазы и (отделенной) жидкой фазы осуществляется в накопителе рабочей среды. Так как такой накопитель и так присутствует во многих циркуляционных контурах, можно отказаться от дополнительного конструктивного элемента для объединения обеих фаз.

Особенно хорошие КПД могут при этом достигаться, если низкотемпературный источник имеет температуру менее 400оС.

Соответствующее изобретению устройство содержит сепаратор для отделения жидкой фазы от парообразной фазы разреженной, частично испаренной рабочей среды, причем сепаратор размещен в направлении потока рабочей среды непосредственно перед конденсатором. Светвитель служит для объединения (отделенной) жидкой фазы и сконденсированной парообразной (то есть затем жидкой) фазы разреженной, частично испаренной рабочей среды, причем светвитель размещен в направлении потока рабочей среды перед насосом. Сепаратор связан с конденсатором для подвода парообразной фазы в конденсатор. Светвитель связан с сепаратором для подвода (отделенной) жидкой фазы к светвителю и с конденсатором для подвода сконденсированной парообразной (то есть затем жидкой) фазы к светвителю. Преимущества, названные для соответствующего изобретению способа, также имеют место и для соответствующего изобретению устройства.

Предпочтительным образом давление рабочей среды устанавливается в устройстве для создания разрежения на оптимум между минимально возможным размером капель жидкой фазы в парообразной фазе рабочей среды и максимально возможной вырабатываемой механической энергией.

Согласно особенно предпочтительному варианту осуществления светвитель выполнен как накопитель рабочей среды.

Предпочтительным образом в устройстве для создания разрежения для разрежения упомянутой рабочей среды в направлении потока рабочей среды размещены последовательно друг за другом форсунка и турбина. В форсунке рабочая среда может расширяться за счет увеличения объема от повышенного входного давления до пониженного выходного давления, благодаря чему рабочая среда частично испаряется. Возникающий из-за этого пучок воды и пара направляется на лопатки турбины, посредством которой кинетическая энергия пучка воды и пара преобразуется в механическую энергию вала ротора. Вместо одной единственной форсунки на входе турбины, например, в кольцевой конфигурации, может также быть расположено несколько форсунок, через которые параллельно протекает рабочая среда.

Форсунка и турбина могут при этом также образовывать единый конструктивный блок, то есть форсунки размещаются непосредственно на входе турбины.

Изобретение и его дополнительные варианты осуществления согласно признакам зависимых пунктов далее поясняются на примерах выполнения со ссылками на чертежи, на которых показано следующее:

Фиг.1 - схема соответствующего изобретению устройства в упрощенном схематичном представлении и

Фиг.2 - T-s-диаграмма циркуляционного контура, известного из уровня техники с нагреванием (без испарения) рабочей среды посредством низкотемпературного источника.

Соответствующее изобретению устройство 1 для преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию включает в себя термодинамический циркуляционный контур, в котором в направлении потока рабочей среды размещены последовательно друг за другом теплообменник 2, устройство 3 для создания разрежения, сепаратор 7, конденсатор 8, накопитель рабочей среды в форме бака 9 конденсата и насос 10.

В случае низкотемпературного источника тепла речь идет об источнике тепла с температурой менее 400оС. Примерами таких источников тепла являются геотермальные источники (горячая термальная вода), промышленные источники отходящего тепла (например, отходящее тепло сталеплавильной, стекольной или цементной промышленности), а также солнечная энергия.

Для температур менее 300оС в качестве рабочей среды используется, например, охлаждающая жидкость типа R134, а для температур более 300оС используется, например, охлаждающая жидкость типа R245. Насос 10 служит для накачки жидкой рабочей среды до повышенного давления.

Теплообменник 2 служит для нагрева жидкой рабочей среды под повышенным давлением циркуляционного контура посредством передачи тепла низкотемпературного источника 20 тепла к рабочей среде без испарения рабочей среды, т.е. рабочая среда в теплообменнике 2 только нагревается, но не испаряется. Теплообменник для этого на своей первичной стороне обтекается низкотемпературным источником 20 тепла, например, горячей геотермальной водой, а на своей вторичной стороне - рабочей средой под повышенным давлением. Трубопровод 11 соединяет вторичную сторону теплообменника 2 с устройством 3 для создания разрежения. Рабочая среда на выходе вторичной стороны теплообменника 2 при входе в трубопровод 11 имеется далее как жидкость.

Устройство 3 для создания разрежения служит для разрежения нагретой жидкой рабочей среды, причем в устройстве 3 для создания разрежения за счет частичного испарения нагретой жидкой рабочей среды может создаваться разреженная, частично преобразованная в пар рабочая среда с жидкой и парообразной фазой, и тепловая энергия нагретой жидкой рабочей среды может преобразовываться в механическую энергию. Устройство 3 для создания разрежения содержит для этого форсунку 4 и турбину 5, которые размещены в направлении потока рабочей среды последовательно друг за другом. Форсунка и турбина могут при этом образовывать единый конструктивный блок, то есть форсунка 4 размещена непосредственно на входе турбины 5. Вместо только одной форсунки 4 на входе турбины 5, например, в кольцевой конфигурации могут быть размещены также несколько форсунок 4, через которые параллельно протекает рабочая среда.

Турбина 5 с выходной стороны через трубопровод 12 соединена с сепаратором 7. Сепаратор 7 служит для отделения жидкой фазы от парообразной фазы рабочей среды, частично испаренной в устройстве 3 для создания разрежения. Сепаратор 7 в направлении потока рабочей среды размещен непосредственно перед конденсатором 8 и через трубопровод 13 соединен с конденсатором 8 для подвода парообразной фазы в конденсатор 8 и через трубопровод 14 - с баком 9 для конденсата для подвода жидкой фазы в бак 9 для конденсата.

Конденсатор 8 служит для получения жидкой рабочей среды посредством конденсации частично испаренной рабочей среды.

Бак 9 для конденсата служит для объединения жидкой фазы и сконденсированной парообразной (то есть затем жидкой) фазы частично испаренной рабочей среды. Бак 9 для конденсата размещен в направлении потока рабочей среды после конденсатора 8 и перед насосом 10 и через трубопровод 14 соединен с сепаратором 7 для подвода жидкой фазы и через трубопровод 15 - с конденсатором 8 для подвода сконденсированной парообразной фазы в бак 9 для конденсата.

При работе устройства 1 на первом этапе жидкая рабочая среда из бака 9 для конденсата с помощью насоса 10 доводится до повышенного давления и накачивается в теплообменник 2.

На втором этапе жидкая рабочая среда под повышенным давлением нагревается в теплообменнике 2 за счет передачи тепла от протекающего на первичной стороне теплообменника 2 низкотемпературного источника 20 тепла к рабочей среде, при этом она не испаряется.

На третьем этапе в устройстве 3 для создания разрежения нагретая жидкая рабочая среда расширяется, причем рабочая среда частично испаряется, и ее тепловая энергия преобразуется в механическую энергию. Посредством устройства 3 для создания разрежения, таким образом, вырабатывается разреженная, частично испаренная рабочая среда с жидкой и парообразной фазой. Для этого подведенная по трубопроводу 11 к форсунке 4 нагретая жидкая рабочая среда расширяется в форсунке 4 и за счет этого частично испаряется. Кинетическая энергия возникающего при этом пучка воды и пара в турбине 5 преобразуется в механическую энергию вала ротора и тем самым приводит в действие генератор 6, который механическую энергию вновь преобразует в электрическую энергию.

Созданная на третьем этапе выходящая из турбины 5 разреженная, частично испаренная рабочая среда в форме двухфазной смеси (пар/жидкость) через трубопровод 12 подается на сепаратор 7, в котором парообразная фаза отделяется от жидкой фазы двухфазной смеси.

Только парообразная фаза подается через трубопровод 13 на конденсатор 8. В конденсаторе 8 парообразная фаза конденсируется посредством охлаждения, например, посредством прямого охлаждения, воздушного охлаждения, гибридного охлаждения или водяного охлаждения, и сконденсированная парообразная (то есть затем жидкая) фаза по трубопроводу 15 подается в бак 9 для конденсата.

Напротив, отделенная жидкая фаза по трубопроводу 14 отводится мимо конденсатора 8 и только после этого, но еще перед насосом 10 и тем самым перед первым этапом, объединяется со сконденсированной парообразной (то есть затем жидкой) фазой в баке 9 для конденсата.

Жидкая рабочая среда из бака 9 для конденсата с помощью насоса 10 доводится до повышенного давления и накачивается в теплообменник 2, за счет чего циркуляционный контур замыкается.

Посредством отделения жидкой фазы от газообразной фазы, выходящей из турбины 5 двухфазной смеси в сепараторе 7 и последующего направления жидкой фазы мимо конденсатора 8 непосредственно в бак 9 для конденсата, можно предотвратить эрозию конденсатора 8.

При этом давление рабочей среды в конденсаторе 8 устанавливается на третьем этапе на оптимум между минимально возможным размером капель жидкой фазы в парообразной фазе рабочей среды и максимально возможной вырабатываемой механической энергией. Тем самым можно еще больше снизить эрозию конденсатора.


СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ НИЗКОТЕМПЕРАТУРНОГО ИСТОЧНИКА ТЕПЛА В МЕХАНИЧЕСКУЮ ЭНЕРГИЮ
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ НИЗКОТЕМПЕРАТУРНОГО ИСТОЧНИКА ТЕПЛА В МЕХАНИЧЕСКУЮ ЭНЕРГИЮ
Источник поступления информации: Роспатент

Показаны записи 671-680 из 1 428.
13.01.2017
№217.015.8beb

Реактивный электродвигатель, имеющий ротор повышенной устойчивости

Изобретение касается ротора для реактивного электродвигателя, реактивного электродвигателя, имеющего такой ротор, автомобиля, а также способа изготовления вышеназванного ротора. Технический результат - обеспечение возможности высокого крутящего момента и высокой частоты вращения. Ротор для...
Тип: Изобретение
Номер охранного документа: 0002604877
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8c4e

Электрическая машина с конструкцией с малой массой в магнитно активных частях

Изобретение относится к электрической машине. Технический результат - уменьшение массы активных частей без снижения мощности. Электрическая машина содержит первый магнитный полюс, имеющий систему слоев из магнитно активных слоев с общим объемом V, и второй магнитный полюс. Первый и второй...
Тип: Изобретение
Номер охранного документа: 0002604663
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c83

Устройство для ввода hf-мощности в волновод

Устройство (200) для ввода HF-мощности в волновод (100, 110) содержит двухтактный выходной каскад (210) с входом (211, 212) и выходом (213, 214), узел (240) фильтрации, который соединен с выходом (213, 214) двухтактного выходного каскада (210), индуктивную петлю (270), которая соединена с узлом...
Тип: Изобретение
Номер охранного документа: 0002604960
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ef3

Способ и устройство для отвода легколетучих продуктов деградации из имеющегося в технологическом процессе отделения двуокиси углерода co контура с абсорбирующим веществом

Изобретение относится к способу отвода легколетучих продуктов деградации из имеющегося в технологическом процессе отделения двуокиси углерода контура с абсорбирующим веществом. Способ заключается в том, что направляют адсорбирующее вещество, которым является водный раствор вторичной соли...
Тип: Изобретение
Номер охранного документа: 0002605132
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f79

Способ передачи информации и устройство для осуществления способа

Изобретение относится к передаче информаций между электродвигателем и блоком управления двигателем. Заявлена группа изобретений, включающая способы передачи информаций между электродвигателем и блоком управления двигателем, а также устройства с блоком управления двигателем для передачи...
Тип: Изобретение
Номер охранного документа: 0002605155
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.915f

Токоприемник для рельсового транспортного средства

Изобретение относится к токоприёмникам для линий энергоснабжения транспортных средств с электротягой. Токоприемник содержит рычаг (14) токоприемника и изоляционную систему. Изоляционная система включает в себя изолирующие стойки (10) для электроизолирующего крепления рычага (14) токоприемника...
Тип: Изобретение
Номер охранного документа: 0002605800
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.9180

Способ предоставления функций в промышленной системе автоматизации и промышленная система автоматизации

Группа изобретений относится к промышленной системе автоматизации. Технический результат - гибкое и эффективное предоставление распределенных по множеству блоков управления или вычислительных блоков функций в промышленной системе автоматизации. Для этого функции системы автоматизации...
Тип: Изобретение
Номер охранного документа: 0002605918
Дата охранного документа: 27.12.2016
24.08.2017
№217.015.94b7

Электрическое переключающее устройство

Изобретение относится к электрическому переключающему устройству. Переключающее устройство имеет первый и второй переключающие контактные элементы (1) и (2). Первый переключающий контактный элемент (1) имеет направляющий участок (10). Первый переключающий контактный элемент (1) посредством...
Тип: Изобретение
Номер охранного документа: 0002608571
Дата охранного документа: 23.01.2017
24.08.2017
№217.015.94cb

Электромагнитный привод

Изобретение относится к электромагнитному приводу (10) электрического выключателя (20), в частности электрического силового выключателя, содержащему по меньшей мере один подвижный якорь (60), который может совершать в заданном направлении (Р) перемещения возвратно-поступательное движение,...
Тип: Изобретение
Номер охранного документа: 0002608563
Дата охранного документа: 23.01.2017
24.08.2017
№217.015.94d2

Материал изоляционной ленты, способ его изготовления и применение

Изобретение относится к материалу изоляционной ленты, к способу его изготовления и применения, в частности для изготовления электроизоляционной бумаги, такой как слюдяная бумага, которая содержится в теплопроводных изоляционных лентах, которые используются, например, в высоковольтной изоляции....
Тип: Изобретение
Номер охранного документа: 0002608543
Дата охранного документа: 19.01.2017
Показаны записи 671-680 из 944.
13.01.2017
№217.015.7cad

Разъединительное устройство

Разъединительное устройство устройства передачи электроэнергии имеет изоляционный промежуток (2), который продолжается вдоль оси (5), пересекающей перпендикулярно первую плоскость (1) и лежащей в или параллельно второй плоскости (14). Разъединительное устройство также имеет заземляющий...
Тип: Изобретение
Номер охранного документа: 0002600724
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7d70

Лопаточный узел со связующим ptal покрытием и термобарьерным покрытием и соответствующий способ изготовления

Лопаточный узел для газовой турбины содержит внутренний и внешний бандажи и лопатку, расположенную между ними. Лопатка содержит покрытую секцию поверхности, которая покрыта платино-алюминидным и термобарьерным покрытиями и представляет собой часть полной поверхности лопатки. Термобарьерное...
Тип: Изобретение
Номер охранного документа: 0002600837
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e19

Способ и устройство для управления, соответственно, регулирования транспортера текучей среды для транспортировки текучей среды внутри трубопровода для текучей среды

Способ предназначен для управления/регулирования транспортера (112) текучей среды для транспортировки текучей среды (118) внутри трубопровода (114, 116) для текучей среды. Способ содержит: получение информации (128) о заданной величине потока текучей среды внутри трубопровода для текучей среды;...
Тип: Изобретение
Номер охранного документа: 0002600835
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e5c

Способ эксплуатации ротационной машины

Изобретение относится к способу эксплуатации ротационной машины с установленным в подшипнике (39) ротором (14), который в какой-то момент работы подвержен действию силы тяги, действующей, главным образом, только в аксиальном направлении, а воспринимаемой и отводимой первым упорным подшипником...
Тип: Изобретение
Номер охранного документа: 0002601067
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e64

Вч генератор

Изобретение относится к высокочастотному (ВЧ) генератору. Технический результат изобретения заключается в создании устройства, генерирующего и направляющего ВЧ мощность. ВЧ генератор содержит полый проводник с проводящей стенкой. При этом стенка имеет первую щель, над которой размещен первый...
Тип: Изобретение
Номер охранного документа: 0002601181
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e93

Способ обработки относящихся к пациенту комплектов данных

Изобретение относится к способу обработки относящихся к пациенту комплектов данных. Техническим результатом является обеспечение безопасности и защиты данных. В заявленном способе доверительные данные пациента каждого относящегося к пациенту комплекта данных подвергают обезличиванию, за счет...
Тип: Изобретение
Номер охранного документа: 0002601199
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f17

Вч генератор

Изобретение относится к ВЧ генератору и содержит твердотельный переключатель, проходящий в z-направлении рупорный волновод с первым продольным концом и вторым продольным концом и проходящий в z-направлении цилиндрический полый проводник с третьим продольным концом. При этом размещенная в...
Тип: Изобретение
Номер охранного документа: 0002601260
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f7a

Охлаждаемый изнутри конструктивный элемент для газовой турбины, снабженный по меньшей мере одним каналом охлаждения

Охлаждаемый изнутри конструктивный элемент для газовой турбины снабжен по меньшей мере одним каналом охлаждения. На внутренней поверхности канала охлаждения расположены завихрительные элементы в виде распространяющихся поперек направления основного течения охлаждающего средства турбуляторов....
Тип: Изобретение
Номер охранного документа: 0002599886
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f98

Устройство аккумулирования энергии и потребители переменной нагрузки

Использование: в области электротехники. Технический результат - повышение эффективности обмена мощностью между сетью энергоснабжения и нагрузкой. Устройство (8) аккумулирования энергии для электрической нагрузки (4), обменивающейся электрической мощностью с сетью (2) энергоснабжения, с двумя...
Тип: Изобретение
Номер охранного документа: 0002599784
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.803c

Электрическое контактное устройство

Электрическое контактное устройство имеет первый контактный элемент (1) с контактным гнездом (3) и, кроме того, имеет второй контактный элемент (13), который является подвижным относительно первого контактного элемента (1). Второй контактный элемент (13) выполнен комплементарно первому...
Тип: Изобретение
Номер охранного документа: 0002599777
Дата охранного документа: 20.10.2016
+ добавить свой РИД